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Abstract

The problem of diffusiophoretic and electrophoretic motions of a dielectric spherical particle in an electrolyte solution situated at an arbitrary
position between two infinite parallel plane walls is studied theoretically in the quasisteady limit of negligible Peclet and Reynolds numbers.
The applied electrolyte concentration gradient or electric field is uniform and perpendicular to the plane walls. The electric double layer at the
particle surface is assumed to be thin relative to the particle radius and to the particle–wall gap widths, but the polarization effect of the diffuse
ions in the double layer is incorporated. To solve the conservative equations, the general solution is constructed from the fundamental solutions
in both cylindrical and spherical coordinates. The boundary conditions are enforced first at the plane walls by the Hankel transforms and then on
the particle surface by a collocation technique. Numerical results for the diffusiophoretic and electrophoretic velocities of the particle relative to
those of a particle under identical conditions in an unbounded solution are presented for various cases. The collocation results agree well with
the approximate analytical solutions obtained by using a method of reflections. The presence of the walls can reduce or enhance the particle
velocity, depending on the properties of the particle–solution system and the relative particle–wall separation distances. The boundary effects
on diffusiophoresis and electrophoresis of a particle normal to two plane walls are found to be quite significant and complicated, and generally
stronger than those parallel to the confining walls.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The electrokinetic transport phenomena of charged colloidal
particles suspended in electrolyte solutions are of much funda-
mental and practical interest in the fields of chemical, biolog-
ical, and electronic engineering and science. Electrophoresis,
which results from the interaction between an applied elec-
tric field and the electric double layer surrounding a charged
particle, is the most familiar example of various electrokinetic
transport phenomena. The electrophoretic velocity U(0) of a
uniformly charged particle in an unbounded ionic solution is
simply related to the uniformly imposed electric field E∞ by
the Smoluchowski equation [1–4],

(1)U(0) = εζ

η
E∞.
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In this equation, ε and η are the dielectric permittivity and vis-
cosity, respectively, of the fluid, and ζ is the zeta potential at
the particle surface.

Diffusiophoresis, which is the movement of a particle in re-
sponse to the macroscopic concentration gradient of a solute,
can be another example of electrokinetic motions. In an un-
bounded solution of a symmetrically charged electrolyte with a
constant concentration gradient ∇n∞, the diffusiophoretic ve-
locity of a dielectric particle is [5–7]

(2)U(0) = εζ

η

kT

Ze

∇n∞

n∞(0)

(
α + ln cosh ζ̄

ζ̄

)
,

with the dimensionless parameters

(3)α = D̄2 − D̄1

D̄2 + D̄1
,

(4)ζ̄ = Zeζ

4kT
.
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Here n∞(0) is the macroscopic electrolyte concentration mea-
sured at the particle center 0 in the absence of the particle, D̄1
and D̄2 are the diffusion coefficients of the anion and cation, re-
spectively, Z is the absolute value of valences of ions, e is the
charge of a proton, k is the Boltzmann constant, and T is the
absolute temperature.

Diffusiophoresis of a charged particle in an electrolyte solu-
tion can be considered as a linear combination of two effects:
chemiphoresis due to the nonuniform adsorption of counteri-
ons and depletion of co-ions over the surface of the particle and
electrophoresis driven by the macroscopic electric field gener-
ated by the electrolyte concentration gradient. For the special
case of D̄2 = D̄1 or α = 0, the induced macroscopic electric
field disappears and Eq. (2) predicts that the particle movement
(due to chemiphoresis only) is in the direction of increasing
electrolyte concentration regardless of the sign of ζ and the par-
ticle velocity increases monotonically with an increase in the
magnitude of ζ .

As shown in Eqs. (1) and (2), the electrophoretic and diffu-
siophoretic velocities of a dielectric particle having a uniform
zeta potential on its surface are independent of the particle size
and shape. However, their validity is based on the assumptions
that the local radii of curvature of the particle are much larger
than the thickness of the electric double layer surrounding the
particle surface and that the effect of polarization (relaxation ef-
fect) of the diffuse ions in the double layer due to nonuniform
“osmotic” flow is negligible. In the past decades, important ad-
vances have been made in the evaluation of the electrophoretic
and diffusiophoretic velocities of dielectric particles relaxing
these assumptions.

O’Brien and White [8] took the double-layer distortion from
equilibrium as a perturbation to obtain numerical solutions for
the electrophoretic velocity of a spherical particle of radius
a in a KCl solution which were applicable to arbitrary val-
ues of ζ and κa, where κ−1 is the Debye screening length
equal to (εkT /2Z2e2n∞)1/2. On the other hand, Dukhin and
Derjaguin [3] obtained an analytical expression for the elec-
trophoretic mobility of a dielectric sphere surrounded by a
thin but polarized double layer in the solution of a symmetric
electrolyte. Later, O’Brien [9] generalized this analysis to the
case of electrophoretic motion of a charged sphere in the so-
lution containing an arbitrary combination of electrolytes. The
essence of this thin-layer polarization approach is that a thin dif-
fuse layer can still transport a significant amount of electrolyte
ions so as to affect the ionic transport outside the diffuse layer.
The result for the electrophoretic velocity of a dielectric sphere
with a thin but polarized double layer in a symmetric electrolyte
solution can be expressed as [10]

(5)U0 = εζ

3η
E∞

[
2 + c1 + c2 + (c1 − c2)

ln cosh ζ̄

ζ̄

]
,

where coefficients c1 and c2 are defined by Eqs. (A.6a) and
(A.6b). A comparison of Eq. (5) with the numerical results
for the KCl solution [8] shows that the thin-layer polarization
model is quite good over a wide range of zeta potentials when
κa > 20. If |ζ | is small and κa is large, the interaction between
the diffuse counterions and the particle surface is weak and the
polarization of the double layer is also weak. In the limit of

(6)e2|ζ̄ |/κa → 0,

c1 = c2 = 1/2 and Eq. (5) reduces to the Smoluchowski equa-
tion (1). Unlike the prediction of Eq. (1), the electrophoretic
velocity given by Eq. (5) in general is not a monotonic function
of ζ̄ for a finite value of κa.

On the other hand, Prieve and Roman [11] obtained numeri-
cal solutions of the diffusiophoretic velocity over a broad range
of ζ̄ and κa for a charged sphere in concentration gradients
of symmetric electrolytes (KCl or NaCl) using the method of
O’Brien and White [8]. Analytical expressions for the veloc-
ity of a dielectric sphere with a thin but polarized double layer
undergoing diffusiophoresis in ionic solutions have also been
derived [12,13], and the result for this diffusiophoretic velocity
in a symmetric electrolyte solution is

U0 = εζ

3η

kT

Ze

∇n∞

n∞(0)

{
c′

1 − c′
2 + α(2 + c1 + c2)

(7)+ [
2 + c′

1 + c′
2 + α(c1 − c2)

] ln cosh ζ̄

ζ̄

}
,

where coefficients c′
1 and c′

2 are defined by Eqs. (A.6c) and
(A.6d). When κa > 20, the agreement between Eq. (7) and the
numerical solutions [11] is excellent for all reasonable values of
the zeta potential. In the limiting situation given by Eq. (6), the
effect of double-layer polarization disappears, c1 = c2 = c′

1 =
c′

2 = 1/2, and Eq. (7) reduces to Eq. (2). Even for the case of
D̄2 = D̄1, the particle velocity given by Eq. (7) for a finite value
of κa may not be a monotonic function of the magnitude of ζ̄

and its direction can reverse (toward lower electrolyte concen-
tration) when |ζ̄ | becomes large.

An examination of Eqs. (5) and (7) indicates that the effect
of polarization of the diffuse layer is to decrease the particle
velocity. The reason for this outcome is that the transport of the
diffuse ions within the double layer reduces the local electrolyte
gradient or electric field along the particle surface. Numerical
calculations of Eqs. (5) and (7) show that, even when κa is as
large as 300, the effect of ionic transport inside the diffuse layer
cannot be ignored if |ζ | equals several kT /e.

In real situations of electrophoresis and diffusiophoresis,
particles are not isolated and the surrounding fluid is exter-
nally bounded by solid walls [14–17]. Thus, it is important
to determine if the presence of neighboring boundaries signif-
icantly affects the movement of particles. In the limiting case
that Eqs. (1) and (2) are applicable, the normalized velocity
field of the immense fluid that is dragged by a particle during
diffusiophoresis is the same as for electrophoresis of the particle
[8]; thus, the boundary effects on electrophoresis under the sit-
uation of infinitesimally thin double layer (satisfying Eq. (6)),
which have been studied extensively in the past [17–24], can be
taken to interpret those in diffusiophoresis.

When the polarization effect of diffuse ions in the electric
double layer surrounding the particle is considered, the bound-
ary effects on diffusiophoresis can be quite different from those
on electrophoresis. Through the use of a boundary collocation
technique, the diffusiophoretic and electrophoretic motions of a
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Fig. 1. Geometrical sketch for the diffusiophoretic motion of a spherical particle
perpendicular to two plane walls at an arbitrary position between them.

colloidal sphere with a thin but polarized diffuse layer perpen-
dicular to a plane wall have been examined [25]. The wall effect
in each transport mechanism was found to be a complicated
function of the properties of the particle and ions. Recently,
the diffusiophoretic and electrophoretic motions of a colloidal
sphere with a thin polarized diffuse layer parallel to two plane
walls at an arbitrary position between them were also inves-
tigated by Chen and Keh [26] using the boundary collocation
method. Numerical results of the wall correction to Eqs. (5) and
(7) for the particle mobilities were presented for various values
of the relative separation distances and other relevant parame-
ters.

This paper is an extension of the previous works [25,26] to
the situation of the diffusiophoretic and electrophoretic motions
of a dielectric sphere with a thin but polarized double layer per-
pendicular to two plane walls at an arbitrary position between
them. The quasisteady equations of conservation applicable to
each system are solved by using both the boundary-collocation
technique numerically and a method of reflections analytically.
The numerical solutions of the particle velocities are obtained
with good convergence for various cases and agree well with
the approximate analytical solutions. For the case of motions
normal to a single plane wall, our results are in excellent agree-
ment with those available in the literature [18,25]. Because the
governing equations and boundary conditions concerning the
general problem of diffusiophoresis and electrophoresis of a
particle at an arbitrary position between two parallel plane walls
in an arbitrary direction are linear, its solution can be obtained
as a superposition of the solutions for its two subproblems: mo-
tion parallel to the plane walls, which was previously examined
[26], and motion normal to the confining walls, which is con-
sidered in this paper.

2. Analysis for diffusiophoresis

We consider, in this section, the quasisteady diffusiophoretic
motion of a dielectric spherical particle of radius a in a solution
of a symmetrically charged electrolyte perpendicular to two in-
finite plane walls whose distances from the center of the particle
are b and c, as shown in Fig. 1. Here (ρ,φ, z) and (r, θ,φ) de-
note the circular cylindrical and spherical coordinate systems,
respectively, and the origin of coordinates is chosen at the par-
ticle center. A linear electrolyte concentration field n∞ (z) with
a uniform gradient in the z direction is imposed in the ambient
fluid far removed from the particle. The particle is charged uni-
formly on the surface, and the thickness of the electric double
layers surrounding the particle and adjacent to the plane walls
is assumed to be small in comparison with the radius of the par-
ticle and the spacing between the particle and each plane wall
[i.e., κa � 1, κ(b − a) � 1, and κ(c − a) � 1, which is valid
for most practical situations where the electrolyte solution has
a relatively strong ionic strength]. Hence, the fluid phase can be
divided into two regions: an “inner” region defined as the thin
double layer adjacent to each solid surface and an “outer” re-
gion defined as the remainder of the fluid, which is electrically
neutral. The purpose is to obtain the correction to Eq. (7) for
the particle velocity due to the presence of the plane walls.

To determine the diffusiophoretic velocity of the particle, it
is necessary to ascertain the electrochemical potential and ve-
locity fields in the fluid phase.

2.1. Electrochemical potential distribution

The diffusiophoretic motion of a particle can be considered
quasisteady if the Peclet and Reynolds numbers of the system
are small. Hence, the conservation of each ionic species for the
outer region of the fluid solution is governed by [9,12]

(8)∇2μm = 0, m = 1,2.

In the above Laplace equation, μm is the electrochemical po-
tential energy of ionic species m defined by

(9)μm = μ0
m + kT lnnm + zmeΦ,

where μ0
m is a constant, nm and zm are the concentration and

valence, respectively, of type m ions, and Φ is the electric
potential. m equal to 1 and 2 refers to the anion and cation, re-
spectively, so −z1 = z2 = Z > 0. Note that, in the outer region,
n1 = n2 = n, and both n and Φ also satisfy Laplace’s equation.

The boundary condition at the particle “surface” (outer limit
of the thin double layer) can be obtained by solving for the elec-
trochemical potentials in the inner region and using a matching
procedure to ensure a continuous solution in the whole fluid
phase, with the result [9,12]

r = a+:
∂μm

∂r
= −

2∑
i=1

βmi

1

r2 sin θ

∂

∂θ

(
sin θ

∂μm

∂θ

)
,

(10)m = 1,2,

where the relaxation coefficients

(11a)β11 = 1

κ

[
4

(
1 + 3f1

Z2

)
eζ̄ sinh ζ̄ − 12f1

Z2
(ζ̄ + ln cosh ζ̄ )

]
,

(11b)β12 = − 1

κ

(
12f1

Z2

)
ln cosh ζ̄ ,

(11c)β21 = − 1

κ

(
12f2

Z2

)
ln cosh ζ̄ ,

β22 = 1

κ

[
−4

(
1 + 3f2

Z2

)
e−ζ̄ sinh ζ̄

(11d)+ 12f2
2

(ζ̄ − ln cosh ζ̄ )

]
.

Z
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In the above equation, fm = 2εk2T 2/3ηe2D̄m and ζ̄ was de-
fined by Eq. (4). To obtain Eqs. (10) and (11), it was assumed
that the concentration of each ionic species within the elec-
tric double layer is related to the electric potential energy by
a Boltzmann distribution. Evidently, in the limit of Eq. (6),
β11 = β12 = β21 = β22 = 0.

Since the ionic electrochemical potentials far away from the
particle approach the undisturbed distributions, we can write

(12)z = c, −b: μm = μm∞,

(13)ρ → ∞, −b < z < c: μm → μm∞,

where

(14)μm∞ = μ0
m + kT

[
1 − (−1)mα

]
lnn∞

and α was defined by Eq. (3). The second term in the brackets of
Eq. (14) represents the contribution from the macroscopic elec-
tric field induced by the difference between cation and anion
diffusion rates [6]. Note that the ionic electrochemical poten-
tials have been set equal to different constants at the two parallel
plane walls (which must be electrically conducting ones) to al-
low a uniform electrolyte concentration gradient in their normal
direction far from the particle. This situation can be gener-
ated experimentally, as an example, from employing two planar
electrodes on which some electrochemical reactions occur.

The electrochemical potential distributions, which are gov-
erned by the linear Laplace equation, can be expressed as the
superposition

(15)μm = μm∞ + μmw + μmp, m = 1,2.

Here μmw is a separable solution of Eq. (8) in cylindrical co-
ordinates that represents the disturbance produced by the plane
walls and is given by a Fourier–Bessel integral,

(16)μmw =
∞∫

0

[
X(ω)eωz + Y(ω)e−ωz

]
ωJ0(ωρ)dω,

where Jn is the Bessel function of the first kind of order n, and
X(ω) and Y(ω) are unknown functions of the separation vari-
able ω. The last term on the right-hand side of Eq. (15), μmp,
is a separable solution of Eq. (8) in spherical coordinates rep-
resenting the disturbance generated by the particle and is given
by an infinite series in harmonics,

(17)μmp =
∞∑

n=0

Rmnr
−n−1Pn(cos θ),

where Pn is the Legendre polynomial of order n and Rmn are
unknown constants. Note that a solution for μm of the form
given by Eqs. (15)–(17) immediately satisfies the boundary
condition at infinity in Eq. (13).

Substituting the electrochemical potential distribution μm

given by Eqs. (15)–(17) into the boundary condition (12) and
applying the Hankel transform on the variable ρ lead to a so-
lution for the functions X(ω) and Y(ω) in terms of the coef-
ficients Rmn. After the substitution of this solution into Eqs.
(15)–(17), μm can be expressed as
(18)μm = μm∞ +
∞∑

n=0

Rmnδ
(1)
n (r, θ), m = 1,2,

where the function δ
(1)
n (r, θ) is defined by Eq. (B.1) in Appen-

dix B (in which the definite integral must be performed numer-
ically).

Application of the boundary condition given by Eq. (10) to
Eq. (18) yields

∞∑
n=0

2∑
m=1

RmnR
′
m(θ) = kT

|∇n∞|
n∞(0)

[(
1 − 2β11

a

)
(1 + α)

(19a)− 2β12

a
(1 − α)

]
cos θ,

∞∑
n=0

2∑
m=1

RmnR
′′
m(θ) = kT

|∇n∞|
n∞(0)

[(
1 − 2β22

a

)
(1 − α)

(19b)− 2β21

a
(1 + α)

]
cos θ,

where

(20a)R′
1(θ) =

(
2β11

a
− 1

)
δ(2)
n (a, θ) + β11δ

(4)
n (a, θ),

(20b)R′
2(θ) = β12

[
2

a
δ(2)
n (a, θ) + δ(4)

n (a, θ)

]
,

(20c)R′′
1 (θ) = β21

[
2

a
δ(2)
n (a, θ) + δ(4)

n (a, θ)

]
,

(20d)R′′
2 (θ) =

(
2β22

a
− 1

)
δ(2)
n (a, θ) + β22δ

(4)
n (a, θ),

and the definitions of functions δ
(2)
n (r, θ) and δ

(4)
n (r, θ) are

given by Eqs. (B.2) and (B.4) (in which the integration must
be performed numerically).

To satisfy the condition (19) exactly along the entire sur-
face of the particle would require the solution of the entire
infinite array of unknown constants Rmn. However, the collo-
cation method [25–27] enforces the boundary condition at a
finite number of discrete points on any semicircular longitudi-
nal generating arc of the sphere (from θ = 0 to π ) and truncates
the infinite series in Eq. (18) into a finite one. If the spheri-
cal boundary is approximated by satisfying the condition (10)
at M discrete points on its generating arc, the infinite series in
Eq. (18) is truncated after M terms, resulting in a system of 2M

simultaneous linear algebraic equations in the truncated form
of Eq. (19). This matrix equation can be numerically solved to
yield the 2M unknown constants R1n and R2n required in the
truncated form of Eq. (18) for the electrochemical potential dis-
tributions. The accuracy of the boundary-collocation/truncation
technique can be improved to any degree by taking a sufficiently
large value of M . Naturally, as M → ∞ the truncation error
vanishes and the overall accuracy of the solution depends only
on the numerical integration required in evaluating the func-
tions δ

(2)
n (r, θ) and δ

(4)
n (r, θ) in Eq. (20).
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2.2. Fluid velocity distribution

Having obtained the solution for the ionic electrochemical
potential distributions on the particle surface that drive the dif-
fusiophoretic migration, we can now proceed to find the flow
field. The fluid solution is assumed to be incompressible and
Newtonian. Owing to the low Reynolds number encountered
in diffusiophoresis, the fluid motion in the outer region is gov-
erned by the quasisteady fourth-order differential equation for
viscous axisymmetric creeping flows,

(21)E2(E2Ψ
) = 0,

in which the Stokes stream function Ψ is related to the compo-
nents of fluid velocity v in cylindrical coordinates by (vφ = 0)

(22a)vρ = 1

ρ

∂Ψ

∂z
,

(22b)vz = − 1

ρ

∂Ψ

∂ρ
,

and the Stokes operator E2 has the form

(23)E2 = ρ
∂

∂ρ

(
1

ρ

∂

∂ρ

)
+ ∂2

∂z2
.

The boundary conditions for the fluid velocity at the particle
surface [9,12], on the plane walls, and far from the particle are

(24)r = a+: v = Uez +
2∑

m=1

Wm

∂μm

r∂θ
eθ ,

(25)z = c, −b: v = 0,

(26)ρ → ∞: v → 0,

where Wm are coefficients for the apparent slip velocity (across
the thin electric double layer) at the particle surface due to the
diffusioosmotic effect (a linear combination of both chemios-
motic and electroosmotic effects),

(27)Wm = 2ε

η

kT

(Ze)2

[
(−1)mζ̄ − ln cosh ζ̄

]
,

ez and eρ are the unit vectors in cylindrical coordinates, er and
eθ are the unit vectors in spherical coordinates, and U is the dif-
fusiophoretic velocity of the particle to be determined. Since the
ionic electrochemical potentials are constants at the two con-
ducting plane walls as set in Eq. (12), no apparent slip velocity
occurs there as indicated by Eq. (25).

To solve the flow field, we express the stream function in the
form

(28)Ψ = Ψw + Ψp.

Here Ψw is a Fourier–Bessel integral solution of Eq. (21) in
cylindrical coordinates that represents the disturbance produced
by the plane walls and is given by

Ψw =
∞∫

0

[
A(ω)eωz + B(ω)e−ωz + C(ω)ωzeωz

(29)+ D(ω)ωze−ωz
]
ρJ1(ωρ)dω,
where A(ω),B(ω),C(ω), and D(ω) are unknown functions
of ω. The second part of Ψ , denoted by Ψp, is a separable
solution of Eq. (21) in spherical coordinates representing the
disturbance generated by the charged sphere and is given by

(30)Ψp =
∞∑

n=2

(
Bnr

−n+1 + Dnr
−n+3)G−1/2

n (cos θ),

where G
−1/2
n is the Gegenbauer polynomial of the first kind of

order n and degree −1/2;Bn and Dn are unknown constants.
Note that the boundary condition in Eq. (26) is immediately
satisfied by a solution of the form given by Eqs. (28)–(30).

Substituting the stream function Ψ given by Eqs. (28)–
(30) into the boundary conditions in Eq. (25) and applying
the Hankel transform on the variable ρ lead to a solution for
A(ω),B(ω),C(ω), and D(ω) in terms of the coefficients Bn

and Dn. After the substitution of this solution into Eqs. (28)–
(30), the fluid velocity components can be expressed as

(31a)vρ =
∞∑

n=2

[
Bnγ

(1)
1n (r, θ) + Dnγ

(1)
2n (r, θ)

]
,

(31b)vz =
∞∑

n=2

[
Bnγ

(2)
1n (r, θ) + Dnγ

(2)
2n (r, θ)

]
,

where the definitions of functions γ
(j)
in (r, θ) for i and j equal to

1 or 2 are given by Eqs. (B.5) and (B.6) (in which the integration
must be performed numerically).

The only boundary condition that remains to be satisfied is
that on the particle surface. Substituting Eqs. (18) and (31) into
Eq. (24), one obtains

(32a)

∞∑
n=2

[
Bnγ

(1)
1n (a, θ) + Dnγ

(1)
2n (a, θ)

] =
2∑

m=1

WmFm(θ) cos θ,

(32b)

∞∑
n=2

[
Bnγ

(2)
1n (a, θ) + Dnγ

(2)
2n (a, θ)

] = U −
2∑

m=1

WmFm(θ) sin θ,

where

(33)

Fm(θ) = −kT
[
1 − (−1)mα

] |∇n∞|
n∞(0)

sin θ +
∞∑

n=0

Rmnδ
(3)
n (a, θ)

and the definition of the function δ
(3)
n (r, θ) is given by Eq. (B.3).

The first 2M coefficients Rmn have been determined through
the procedure given in the previous subsection.

Equation (32) can be satisfied by utilizing the boundary-
collocation technique presented for the solution of the electro-
chemical potential field. Along a longitudinal generating arc at
the particle surface, Eq. (32) is applied at N discrete points (val-
ues of θ between 0 and π ) and the infinite series in Eq. (31) are
truncated after N terms. This generates a set of 2N linear al-
gebraic equations for the 2N unknown coefficients Bn and Dn.
The fluid velocity field is completely obtained once these coef-
ficients are solved for a sufficiently large number of N .
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2.3. Derivation of the particle velocity

The hydrodynamic force acting on the spherical particle can
be determined from [27,28]

(34)F = 4πηD2.

This expression shows that only the lowest-order coefficient D2
contributes to the drag force exerted on the particle by the fluid.

Since the particle is freely suspended in the surrounding
fluid, the net force acting on the particle must vanish. Apply-
ing this constraint to Eq. (34), one has

(35)D2 = 0.

To determine the diffusiophoretic velocity U of the particle,
Eq. (35) and the 2N algebraic equations resulting from Eq. (32)
are to be solved simultaneously.

3. Results and discussion for diffusiophoresis

The numerical results for the diffusiophoretic velocity of
a charged spherical particle perpendicular to two plane walls
at an arbitrary position between them, obtained by using the
boundary-collocation method described in the previous section,
are presented in this section. The system of linear algebraic
equations to be solved for the coefficients R1n and R2n is con-
structed from Eq. (19), while that for Bn and Dn is composed
of Eq. (32). All the numerical integrations to evaluate the func-
tions δ

(i)
n and γ

(j)
in were done by the 180-point Gauss–Laguerre

guadrature.
When specifying the points along the half-circular generat-

ing arc of the spherical particle where the boundary conditions
are to be exactly satisfied, the first points that should be chosen
are θ = 0 and π , since these stagnation points control the gaps
between the particle and the plane walls. In addition, the point
θ = π/2 which defines the projected area of the particle normal
to the direction of motion is also important. However, an exami-
nation of the systems of linear algebraic equations (19) and (32)
shows that the matrix equations become singular if these points
are used. To overcome this difficulty, these points are replaced
by closely adjacent basic points, i.e., θ = δ,π/2 − δ,π/2 + δ,
and π − δ [25–27]. Additional points along the generating arc
are selected as mirror-image pairs about the equatorial plane
θ = π/2 to divide the two quarter-circular arcs of the parti-
cle into equal segments. The optimum value of δ in this work
is found to be 0.01◦, with which the numerical results of the
particle velocity for various values of the parameters α, f1, Z,
ζe/kT , κa, b/(b + c), and a/b converge satisfactorily.

3.1. Motion normal to a single plane wall

Some of the typical boundary-collocation solutions for the
diffusiophoretic velocity of a dielectric sphere normal to a sin-
gle plane wall (with c → ∞) for different values of the parame-
ters α, Z, ζe/kT , and a/b are presented in Table 1. The diffu-
siophoretic velocity of an identical particle in an infinite fluid,
U0, given by Eq. (7), is used to normalize the wall-corrected
Fig. 2. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical
particle perpendicular to a plane wall (with c → ∞) versus the separation pa-
rameter a/b with Z = 1, f1 = 0.2, and ζe/kT = −5 for various values of κa.
The solid curves represent the case of α = 0 and the dashed curves denote the
case of α = −0.2.

values. All of the results obtained under the collocation scheme
converge satisfactorily to at least the significant figures shown
in the table. The accuracy and convergence behavior of the trun-
cation technique is principally a function of the ratio a/b. For
the difficult case with a/b = 0.999, the numbers of colloca-
tion points M = N = 200 are sufficiently large to achieve this
convergence. Our collocation results in Table 1 can be found to
agree excellently with the existing numerical solutions obtained
by using a similar boundary-collocation method [25]. Note that
the electrolytes associated with α = 0 and −0.2 (taking Z = 1
and f1 = 0.2) in the table are very close to the aqueous solutions
of KCl and NaCl, respectively. As shown in Table 1, the particle
migrates with the velocity that would exist in the absence of the
wall, given by Eq. (7), as a/b → 0. The diffusiophoretic veloc-
ity then may decrease or increase, or even reverse its direction,
as the particle approaches the wall (with increasing a/b), de-
pending on the combination of the relevant parameters. In any
case, the particle velocity vanishes at the limit a/b → 1.

In Appendix A, an approximate analytical solution for the
same diffusiophoretic motion as that considered here is also
obtained by using a method of reflections. The particle veloc-
ity is given by Eq. (A.28), which is a power series expansion
in λ (= a/b). The values of the wall-corrected normalized par-
ticle velocity calculated from this asymptotic solution, with the
O(λ9) term neglected, are also listed in Table 1 for compar-
ison. It can be seen that the asymptotic formula (A.28) from
the method of reflections for the normalized particle mobility
U/U0 agrees quite well with the collocation results as long as
λ � 0.6; the errors in most cases are less than 2%. However, the
accuracy of Eq. (A.28) deteriorates rapidly, as expected, when
the relative spacing between the particle and the plane wall be-
comes small (say, λ � 0.8). The prediction of Eq. (A.28) may
overestimate or underestimate the diffusiophoretic velocity of
the particle, depending on the combination of the relevant para-
meters.
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Table 1
Normalized diffusiophoretic velocity of a dielectric sphere perpendicular to a single plane wall (with c → ∞) obtained from the boundary-collocation method for
the case f1 = 0.2 and κa = 100

a/b U/U0

α = 0 α = −0.2

Z = 1 Z = 2 Z = 1 Z = 2

ζe/kT = 2
0.2 0.99542 (0.99542) 0.99575 (0.99575) 0.99900 (0.99899) 0.99629 (0.99629)
0.4 0.96340 (0.96333) 0.96616 (0.96604) 0.99363 (0.99297) 0.97066 (0.97047)
0.6 0.87088 (0.87069) 0.88114 (0.87986) 0.98667 (0.97092) 0.89819 (0.89482)
0.8 0.65020 (0.66431) 0.67774 (0.68129) 0.97061 (0.83775) 0.72431 (0.70793)
0.9 0.43157 (0.49515) 0.46989 (0.50975) 0.86353 (0.61297) 0.53351 (0.52998)
0.95 0.26107 (0.38991) 0.29872 (0.39853) 0.64904 (0.41310) 0.35809 (0.40651)
0.99 0.06415 (0.29505) 0.08142 (0.29507) 0.20075 (0.18983) 0.10512 (0.28608)
0.995 0.03314 0.04341 0.10741 0.05692
0.999 0.0068 0.0093 0.0228 0.0124

ζe/kT = 5
0.2 0.99628 (0.99628) 1.00286 (1.00286) 0.99697 (0.99697) 0.94469 (0.94471)
0.4 0.97053 (0.97037) 1.02472 (1.02412) 0.97634 (0.97609) 0.54463 (0.54846)
0.6 0.89716 (0.89450) 1.09373 (1.07872) 0.91883 (0.91384) −0.65639 (−0.54796)
0.8 0.72012 (0.70992) 1.24760 (1.10887) 0.77856 (0.74581) −3.45318 (−2.33078)
0.9 0.53023 (0.53827) 1.32572 (1.01832) 0.61143 (0.56930) −5.66735 (−2.95219)
0.95 0.36136 (0.42113) 1.27559 (0.90452) 0.44068 (0.43969) −6.56694 (−2.91781)
0.99 0.11668 (0.30816) 0.89325 (0.76140) 0.15405 (0.30872) −5.35464 (−2.58919)
0.995 0.06661 0.71943 0.08961 −4.41782
0.999 0.0164 0.4096 0.0226 −2.5812

Note. The figures in parentheses are asymptotic solutions calculated using Eq. (A.28).

Table 2
Normalized diffusiophoretic velocity of a dielectric sphere perpendicular to two equally distant plane walls (with c = b) obtained from the boundary-collocation
method for the case f1 = 0.2 and κa = 100

a/b U/U0

α = 0 α = −0.2

Z = 1 Z = 2 Z = 1 Z = 2

ζe/kT = 2
0.2 0.99232 (0.99233) 0.99310 (0.99311) 1.00076 (1.00076) 0.99437 (0.99437)
0.4 0.94181 (0.94257) 0.94775 (0.94842) 1.00582 (1.00514) 0.95737 (0.95784)
0.6 0.81559 (0.82975) 0.83379 (0.84624) 1.01279 (0.99996) 0.86334 (0.87227)
0.8 0.57210 (0.67553) 0.60930 (0.70219) 0.98474 (0.91849) 0.67050 (0.74153)
0.9 0.36698 (0.60439) 0.41151 (0.63192) 0.85040 (0.81012) 0.48386 (0.66867)
0.95 0.21849 (0.57587) 0.25896 (0.60203) 0.62403 (0.73151) 0.32181 (0.63354)
0.99 0.05313 (0.55808) 0.07050 (0.58216) 0.18838 (0.65559) 0.09416 (0.60726)
0.995 0.02742 0.03765 0.10045 0.05103
0.999 0.00566 0.00813 0.02130 0.01120

ζe/kT = 5
0.2 0.99436 (0.99436) 1.01004 (1.01004) 0.99600 (0.99600) 0.87160 (0.87164)
0.4 0.95735 (0.95790) 1.07979 (1.07948) 0.96988 (0.97024) 0.00308 (0.01193)
0.6 0.86336 (0.87387) 1.26036 (1.25681) 0.90193 (0.90874) −2.20226 (−2.05070)
0.8 0.66984 (0.75174) 1.56955 (1.58573) 0.74932 (0.80875) −6.16959 (−5.35636)
0.9 0.48527 (0.68985) 1.70590 (1.85084) 0.58045 (0.74960) −8.61952 (−7.54210)
0.95 0.32920 (0.66306) 1.64942 (2.03081) 0.41533 (0.72061) −9.28579 (−8.85757)
0.99 0.10698 (0.64524) 1.16253 (2.20893) 0.14498 (0.69912) −7.15545 (−10.0748)
0.995 0.06133 0.93865 0.08451 −5.85974
0.999 0.01523 0.53734 0.02147 −3.4055

Note. The figures in parentheses are asymptotic solutions calculated using Eq. (A.38).
Some numerical solutions for the normalized diffusio-
phoretic velocity U/U0 of a spherical particle normal to a plane
wall as functions of a/b are depicted in Fig. 2 for various val-
ues of the parameters α and κa. It can be seen that U/U0

decreases with an increase in κa for the otherwise specified
condition. This behavior is expected knowing that the elec-
trochemical potential gradients on the particle surface near a
normal plane wall decrease as κa (or G) increases (see the
analysis in Appendix A). Under the situation of large κa, the
diffusiophoretic mobility of the particle near the plane wall is
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Fig. 3. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical particle perpendicular to two plane walls with b/(b + c) = 0.5 (solid curves) and
b/(b+c) = 0.25 (dashed curves) versus the separation parameter a/b with f1 = 0.2 and κa = 100 for various values of Z: (a) α = 0 and ζe/kT = ±5; (b) α = −0.2
and ζe/kT = −5.
a monotonic decreasing function of a/b. In the limiting case
of κa → ∞, the diffusiophoretic mobility of the particle is
identical to the prediction by ignoring the polarization effect
of the diffuse layer [20]. On the contrary, under the situation
of relatively small κa (e.g., with κa = 20), the diffusiophoretic
mobility of the particle increases with an increase in a/b as a/b

is small or moderate, but decreases from a maximum with in-
creasing a/b as a/b is sufficiently large. This interesting feature
that U/U0 may not be a monotonic decreasing function of a/b

and can even be greater than unity is understood because the
wall effect of hydrodynamic resistance on the particle is in com-
petition with the wall effect of electrochemical enhancement
when a particle with small κa is undergoing diffusiophoretic
motion normal to a plane wall.

3.2. Motion perpendicular to two plane walls

The diffusiophoretic velocity of a dielectric sphere normal
to two plane wall is a complicated function of the properties
of the particle and suspending solution as well as the relative
separation distances. In Table 2, the collocation solutions for
the normalized velocity U/U0 of a spherical particle located
between two parallel plane walls whose distance to one wall
is the same as to the other (with c = b) undergoing diffusio-
phoresis perpendicularly are presented for various values of the
parameters α,Z, ζe/kT , and a/b. The corresponding method-
of-reflection solutions, given by Eq. (A.38) in Appendix A as a
power series expansion in λ (= a/b) correct to O(λ8), are also
listed in this table for comparison. Similar to the case of diffu-
siophoresis of a spherical particle normal to a single plane wall
considered in the previous subsection, the approximate analyti-
cal formula (A.38) agrees quite well with the collocation results
as long as λ < 0.6, but can have significant errors when λ > 0.6.
A comparison between Table 2 for the case of a slit and Table 1
for the case of a single normal plane indicates that the assump-
tion that the boundary effect for two walls can be obtained by
simple addition of single-wall effects can lead to a greater or
smaller correction to diffusiophoretic motion, depending on the
combination of the relevant parameters.

Numerical results of the normalized diffusiophoretic ve-
locity U/U0 of a spherical particle perpendicular to two
plane walls at two particular positions between them (with
b/(b + c) = 0.25 and 0.5) obtained using the boundary-
collocation method are plotted as functions of a/b and Z in
Fig. 3 with f1 = 0.2 and κa = 100. For the case of α = 0
(D̄1 = D̄2), the macroscopic electric field induced by the elec-
trolyte concentration gradient vanishes and the particle velocity,
which is due to the chemiphoretic effect only, is an even func-
tion of zeta potential. It can be seen that, for a specified value
of b/(b + c),U/U0 is not necessarily a monotonic function
of a/b. For some cases, the particle will reverse the direction of
diffusiophoresis and the magnitude of its normalized velocity
can be dramatically varied when the separation distance be-
tween the particle and the plane walls is changed. In general,
no simple rule could appropriately predict the boundary ef-
fect on diffusiophoresis. As expected, for a given value of a/b,
the boundary effect on the diffusiophoretic particle is stronger
for the case of b/(b + c) = 0.5 than that of b/(b + c) = 0.25.
Although it is difficult to obtain convergent results of the par-
ticle velocity for situations of very small separation distances
(a/b > 0.999), both physical reasoning and numerical tendency
indicate that U/U0 → 0 as a/b → 1.

In Figs. 4 and 5, the collocation solutions for the normal-
ized velocity U/U0 of a spherical particle situated midway
between two parallel plane walls (with c = b) undergoing dif-
fusiophoresis perpendicularly are plotted versus ζe/kT in the
range from −8 to 8 for cases of α = 0 and −0.2, respectively,
with a/b = 0.6 and various values of κa. Note that U = U0 = 0
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Fig. 4. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical particle perpendicular to two equally distant plane walls (c = b) versus ζe/kT with
a/b = 0.6 and f1 = f2 = 0.2 (α = 0) for various values of κa: (a) Z = 1; (b) Z = 2; (c) Z = 3.
at ζe/kT = 0. As expected, when the value of κa is large and
the magnitude of ζe/kT is small to satisfy Eq. (6), the diffusio-
phoretic mobility of the particle approaches the value calculated
by ignoring the polarization effect of the double layers (shown
by a dashed line labeled with κa → ∞ in each figure). These
figures illustrate that the difference of the results obtained from
the presence and absence of the polarization effect can be quite
substantial and needs to be considered. For given values of Z

and κa, there can be a maximum and a minimum of the nor-
malized particle mobility occurring at an associated value of
ζe/kT (in addition to the one with small magnitude appear-
ing for the case of α 	= 0). If the value of κa is smaller or the
counterions have a larger magnitude of valence, the locations of
these extremes will shift toward a smaller magnitude of ζe/kT .
Because the direction of diffusiophoresis of an isolated spher-
ical particle can reverse with the variation of Z,ζe/kT , or κa
[11–13], these extremes arise at combinations of Z,ζe/kT , and
κa in which U0 → 0.

A careful comparison of the results in Figs. 3–5 (or Table 2)
for the case of a slit with those in Fig. 2 (or Table 1) for the case
of a single wall reveals an interesting feature of the boundary ef-
fect on diffusiophoresis of a colloidal sphere. The presence of a
second, identical, normal plane wall, even at a symmetric posi-
tion with respect to the sphere against the first, does not always
enhance the wall effect on the diffusiophoretic particle induced
by the first plane only. This outcome reflects again the fact that
the confining wall can affect the electrochemical driving force
and the viscous drag force on a particle in opposite directions.
Each force is increased in its own direction as the value of a/b

turns large, but to a different degree, for the case of diffusio-
phoretic motion of a particle in a slit relative to that for the
case of migration normal to a single plate. Thus, the net effect
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Fig. 5. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical particle perpendicular to two equally distant plant walls (c = b) versus ζe/kT with
a/b = 0.6, f1 = 0.2 and α = −0.2 for various values of κa: (a) Z = 1; (b) Z = 2; (c) Z = 3.
composed of these two opposite forces for the slit case is not
necessarily to enhance that for the case of a single wall.

In Fig. 6, the collocation results for the normalized diffusio-
phoretic velocity U/U0 of a charged sphere normal to two plane
walls at various positions between them are plotted for some
cases. The dashed curves (with a/b = constant) illustrate the
effect of the position of the second wall (at z = c) on the parti-
cle velocity for various values of the relative sphere-to-first-wall
spacing b/a. The solid curves [with 2a/(b + c) = constant]
indicate the variation of the particle velocity as a function of
the sphere position at various values of the relative wall-to-wall
spacing (b + c)/2a. It can be seen that the net wall effect can
reduce or enhance the diffusiophoretic mobility U/U0 of the
particle. At a constant value of 2a/(b + c), the particle expe-
riences a minimum viscous drag force and in general has a
greatest velocity when it is located midway between the two
walls (with c = b), as indicated in the cases of Figs. 6a and 6c;
the hydrodynamic drag increases and the diffusiophoretic ve-
locity decreases as the particle approaches either of the walls
[or the ratio b/(b + c) decreases]. Interestingly, as illustrated in
Fig. 6a, at some specified values of a/b for the diffusiophoretic
particle near a first wall, the presence and approach of a second
plate can increase the velocities of the particle when it is far
from the particle (c is large), and then reduce the particle ve-
locity when it is close to the particle. On the other hand, for the
case shown in Fig. 6b, the net wall effect is to increase the dif-
fusiophoretic mobility U/U0 of the particle; at a constant value
of 2a/(b + c), the normalized particle mobility has a smallest
value when it is located midway between the two walls, where
the particle experiences a minimum effect of electrochemical
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Fig. 6. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical particle perpendicular to two plane walls versus b/(b + c) with a/b and 2a/(b + c) as
parameters at f1 = f2 = 0.2 (α = 0), ζe/kT = ±5, and κa = 100: (a) Z = 1; (b) Z = 2; (c) Z = 3.
enhancement, and becomes larger when it approaches either of
the walls.

4. Electrophoresis

Considered in this section is the quasisteady electrophoretic
motion of a dielectric sphere in a uniformly applied electric
field E∞ = E∞ez perpendicular to two large plane walls at an
arbitrary position between them. The velocity of the particle
caused by the field is U = Uez. The bulk concentration n∞ of
the symmetric electrolyte in the fluid beyond the electric double
layer is constant now. Like the analysis in Section 2, the thick-
ness of the double layer is assumed to be much smaller than
the radius of the particle and the surface-to-surface distance be-
tween the particle and each wall, but the polarization effect in
the thin diffuse layer is incorporated.
Outside the double layer, the electrochemical potentials μm

of the ions still satisfy Laplace’s equation (8) and boundary con-
ditions (10)–(13), but their undisturbed values in Eq. (14) are
replaced by

(36)μm∞ = μ0
m + kT lnn∞ − (−1)mZeE∞z.

The solution for μm in this case can still be expressed as
Eq. (18) with coefficients Rmn determined by

(37a)
∞∑

n=0

2∑
m=1

RmnR
′
m(θ) = ZeE∞

(
1 − 2β11

a
+ 2β12

a

)
cos θ,

(37b)

∞∑
n=0

2∑
m=1

RmnR
′′
m(θ) = −ZeE∞

(
1 + 2β21

a
− 2β22

a

)
cos θ,
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Table 3
Normalized electrophoretic velocity of a dielectric sphere perpendicular to
a single plane wall (with c → ∞) obtained from the boundary-collocation
method for the case f1 = f2 = 0.2 and κa = 100

a/b U/U0

Z = 1 Z = 2

ζe/kT = 2
0.2 0.99511 (0.99511) 0.99528 (0.99528)
0.4 0.96076 (0.96073) 0.96224 (0.96220)
0.6 0.86075 (0.86192) 0.86633 (0.86686)
0.8 0.62218 (0.64915) 0.63725 (0.65814)
0.9 0.39379 (0.48486) 0.41460 (0.49218)
0.95 0.22716 (0.38791) 0.24713 (0.39164)
0.99 0.05222 (0.30429) 0.06084 (0.30294)
0.995 0.02666 0.03169
0.999 0.00540 0.00660

ζe/kT = 5
0.2 0.99557 (0.99557) 0.99639 (0.99639)
0.4 0.96460 (0.96453) 0.97135 (0.97124)
0.6 0.87502 (0.87475) 0.89916 (0.89788)
0.8 0.66040 (0.67333) 0.72497 (0.72654)
0.9 0.44731 (0.50674) 0.54830 (0.57710)
0.95 0.28047 (0.40243) 0.40387 (0.47989)
0.99 0.07873 (0.30794) 0.19900 (0.38934)
0.995 0.04327 0.14864
0.999 0.0100 0.0774

Note. The figures in parentheses are asymptotic solutions calculated using
Eq. (A.28).

to replace Eq. (19). The governing equation, boundary condi-
tions, and solution for the fluid velocity field have the same
forms as those given by Eqs. (21)–(31). The final results for
the electrophoretic velocity of the particle can be determined
by the simultaneous solution of Eqs. (32) and (35), with

(38)Fm(θ) = (−1)mZeE∞ sin θ +
∞∑

n=0

Rmnδ
(3)
n (a, θ),

in replacement of Eq. (33).
Some converged collocation solutions for the electrophoretic

velocity of a dielectric sphere (which is an odd function of the
parameter ζe/kT ) normal to a plane wall (with c → ∞) for
various values of a/b are presented in Table 3, while the corre-
sponding results for the electrophoretic velocity of the particle
located at the median plane between two parallel plates (with
c = b) are given in Table 4. Now, the electrophoretic veloc-
ity of the particle in an unbounded fluid given by Eq. (5) is
used to normalize the wall-corrected values. The corresponding
method-of-reflection solutions, given by Eqs. (A.28) and (A.38)
with the parameters defined by Eqs. (A.29) and (A.30) in Ap-
pendix A as power series expansions in λ (= a/b) correct to
O(λ8), are also listed in these tables for comparison. Analo-
gous to the cases of diffusiophoresis considered in the previous
section, the asymptotic formulas (A.28) and (A.38) for U/U0
agree quite well with the collocation results as long as λ � 0.6,
but can have significant errors for greater values of λ.

The collocation results for the normalized electrophoretic
mobility U/U0 of a spherical particle normal to a plane wall
and the corresponding results for the particle undergoing elec-
trophoresis at the median plane between two parallel plane
Table 4
Normalized electrophoretic velocity of a dielectric sphere perpendicular to two
equally distant plane walls (with c = b) obtained from the boundary-collocation
method for the case f1 = f2 = 0.2 and κa = 100

a/b U/U0

Z = 1 Z = 2

ζe/kT = 2
0.2 0.99158 (0.99159) 0.99200 (0.99201)
0.4 0.93621 (0.93710) 0.93940 (0.94023)
0.6 0.79834 (0.81487) 0.80813 (0.82362)
0.8 0.53601 (0.65430) 0.55612 (0.66803)
0.9 0.32471 (0.58644) 0.34864 (0.60002)
0.95 0.18305 (0.56232) 0.20437 (0.57471)
0.99 0.04132 (0.54962) 0.04997 (0.56043)
0.995 0.02105 0.02605
0.999 0.00429 0.00547

ζe/kT = 5
0.2 0.99268 (0.99268) 0.99465 (0.99465)
0.4 0.94456 (0.94532) 0.96010 (0.96081)
0.6 0.82400 (0.83831) 0.87544 (0.88916)
0.8 0.58870 (0.69370) 0.70927 (0.81423)
0.9 0.38813 (0.62920) 0.55821 (0.80712)
0.95 0.24141 (0.60478) 0.43411 (0.82104)
0.99 0.06839 (0.59083) 0.23830 (0.84422)
0.995 0.03783 0.18331
0.999 0.00892 0.09930

Note. The figures in parentheses are asymptotic solutions calculated using
Eq. (A.38).

walls in the normal direction as functions of a/b are plotted
in Fig. 7 for various values of κa and ζe/kT (U/U0 is an
even function of ζe/kT ). In either case, the value of U/U0 is
a monotonic decreasing function of a/b. It appears that U/U0
decreases with an increase in κa and with a decrease in the
magnitude of ζe/kT . As expected, the presence of a second
normal plane wall in general enhances the wall effect on the
electrophoretic particle induced by the first plate only.

In Fig. 8, the normalized electrophoretic mobility U/U0 of
a spherical particle at the median plane between two parallel
plane walls in the normal direction is plotted versus the parti-
cle’s zeta potential for three cases of κa when the separation pa-
rameter a/b is kept constant. When Z = 1, as shown in Fig. 8a,
U/U0 is a monotonic increasing function of the magnitude of
the nondimensional zeta potential ζe/kT ranging from 0 to 8
and the boundary effect is weakened (U/U0 is larger) as the
value of κa becomes smaller. However, when Z = 2 or 3 as il-
lustrated in Figs. 8b and 8c, a maximum of U/U0 may exist
at a magnitude of ζe/kT for a specified κa or at a value of
κa for a given ζe/kT . If the specified κa increases, the maxi-
mum occurs at a larger magnitude of ζe/kT ; if the magnitude
of the given ζe/kT increases, the maximum occurs at a larger
κa. If the counterions have a larger magnitude of valence, the
location of this maximum will shift toward a smaller magnitude
of ζe/kT or larger κa. Similar to the case of diffusiophoresis
considered in the previous section, no simple rule could ap-
propriately describe the boundary effects on the electrophoretic
mobility of the particle, which are dependent on the combina-
tion of ζe/kT , κa,Z,f1, f2, and a/b.

In Fig. 9, collocation results for the normalized elec-
trophoretic velocity U/U0 of a dielectric sphere perpendicular
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Fig. 7. Plots of the normalized electrophoretic velocity U/U0 of a spherical particle perpendicular to two plane walls (solid curves) and to a single plane wall
(dashed curves) versus the separation parameter a/b with Z = 1 and f1 = f2 = 0.2: (a) ζe/kT = ±5; (b) κa = 100.
to two plane walls at various positions between them are dis-
played. It can be seen that the particle experiences a minimum
viscous drag and has a greatest electrophoretic velocity when it
is located midway between the two walls (with c = b). At a rel-
atively small value of a/b for the electrophoretic particle near
a first normal wall, the presence of a second plate is to further
reduce the velocity of the particle, and the degree of this re-
duction increases monotonically with a decrease in the relative
distance between the particle and the second plate [or with an
increase in b/(b + c)]. For a specified value of a/b greater than
about 0.8, however, the presence of a second plane wall is not
necessarily to further reduce the particle velocity.

5. Conclusions

The numerical solutions and approximate analytical solu-
tions for the quasisteady diffusiophoretic and electrophoretic
motions of a charged sphere perpendicular to two infinite plane
walls at an arbitrary position between them have been obtained
in this work by using the boundary-collocation technique and
the method of reflections, respectively, in the limit of vanish-
ingly small Reynolds and Peclet numbers. It has been found
that the boundary effects on these phoretic motions of a particle
are quite significant and are complicated functions of the prop-
erties of the particle and surrounding ions (ζe/kT , κa, Z, f1,
and f2) and the separation distances (a/b and a/c). The diffu-
siophoretic or electrophoretic mobility of a particle near a wall
is generally, but not necessarily, a monotonic decreasing func-
tion of the separation parameter a/b. When the value of a/b

is sufficiently large, the effect of a confining wall can speed
up or slow down the particle velocity relative to its isolated
value depending on the values of the relevant parameters of the
particle–electrolyte system. This behavior reflects the competi-
tion between the relatively weak hydrodynamic retardation ex-
erted by the neighboring wall on the particle migration and the
possible, strong phoretic enhancement due to the electrochem-
ical interaction between the particle and the wall. No general
rule can make an adequate prediction for such complicated phe-
nomena present in the boundary effects on diffusiophoresis and
electrophoresis.

The diffusiophoretic and electrophoretic mobilities of a
spherical particle parallel to two infinite plane walls at an ar-
bitrary position between them were calculated in a previous
work [26] for various values of the parameters α, ζe/kT , κa,
a/b, and b/(b + c). It was also found that the particle mo-
bilities may decrease or increase with increasing a/b and the
particle can migrate faster than it would as a/b = 0, depend-
ing the electrochemical boundary condition at the walls and the
combination of the relevant parameters. The effect of viscous
retardation is stronger and the effect of possible electrochem-
ical enhancement is weaker in a transverse diffusiophoresis or
electrophoresis than in a parallel motion. In general, the net
boundary effects on diffusiophoresis and electrophoresis of a
particle are stronger for the perpendicular migration. For the
general problem of a particle undergoing diffusiophoresis or
electrophoresis in an arbitrary direction with respect to the two
parallel plane walls, the solution can be obtained by adding both
the parallel and the transverse results vectorially.
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Appendix A. Analysis of the diffusiophoresis and
electrophoresis of a spherical particle perpendicular to one
or two plane walls by a method of reflections

In this appendix, the quasisteady diffusiophoretic and elec-
trophoretic motions of a dielectric sphere in the solution of a
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(a) (b)

(c)

Fig. 8. Plots of the normalized electrophoretic velocity U/U0 of a spherical particle perpendicular to two equally distant plane walls (c = b) versus ζe/kT with
a/b = 0.6 and f1 = f2 = 0.2 for various values of κa: (a) Z = 1; (b) Z = 2; (c) Z = 3.
symmetric electrolyte perpendicular either to an infinite plane
wall (with c → ∞) or to two parallel plane walls with equal
distances from the particle (c = b), as shown in Fig. 1, will be
analyzed using a method of reflections. The effect of the walls
on the particle velocity U is sought in expansions of λ, which
equals a/b, the ratio of the particle radius to the distance be-
tween the particle center and the walls.

A.1. Motion normal to a single plane wall

For the problem of diffusiophoretic motion of a spherical
particle driven by a uniform electrolyte concentration gradient
∇n∞ normal to an infinite plane wall, the governing equa-
tions (8) and (21) must be solved by satisfying the boundary
conditions (10), (12), (13), and (24)–(26) with c → ∞. The
method-of-reflection solution for the ionic electrochemical po-
tential and velocity fields in the fluid phase consists of the fol-
lowing series, whose terms depend on increasing powers of λ,

(A.1a)μm = μm∞ + μ(1)
mp + μ(1)

mw + μ(2)
mp + μ(2)

mw + · · · ,

(A.1b)v = v(1)
p + v(1)

w + v(2)
p + v(2)

w + · · · ,
where the subscripts p and w represent the reflections from the
particle and wall, respectively, and the superscript (i) denotes
the ith reflection from that surface. In these series, all the ex-
pansion sets of the electrochemical potential and velocity fields
must satisfy Eqs. (8) and (21).

According to Eq. (A.1), the diffusiophoretic velocity of the
particle can also be expressed in the series form,

(A.2)U = U0ez + U(1) + U(2) + · · · .
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(a) (b)

Fig. 9. Plots of the normalized electrophoretic velocity U/U0 of a spherical particle perpendicular to two plane walls versus b/(b + c) with a/b and 2a/(b + c) as
parameters at f1 = f2 = 0.2, ζe/kT = ±5, and κa = 100: (a) Z = 1; (b) Z = 2.
,

In this expression, U0 is the diffusiophoretic velocity of an iden-
tical particle in the corresponding unbounded continuous phase
given by Eq. (7); U(i) is related to ∇μ

(i)
mw and v

(i)
w by the Faxen

law [28,29],

(A.3)U(i) =
2∑

m=1

Gm

[∇μ(i)
mw

]
0 + [

v(i)
w

]
0 + a2

6

[∇2v(i)
w

]
0,

where the subscript 0 to variables inside brackets denotes eval-
uation at the position of the particle center. In Eq. (A.3),

(A.4a)

G1 = 4εkT

3η(Ze)2

[
(1 + g11 − g21)ζ̄ + (1 + g11 + g21) ln cosh ζ̄

]
,

(A.4b)

G2 = 4εkT

3η(Ze)2

[
(−1 + g12 − g22)ζ̄ + (1 + g12 + g22) ln cosh ζ̄

]

where ζ̄ is defined by Eq. (4), and

(A.5a)g11 = 1

2

(
c′

1 + c1
)
,

(A.5b)g12 = 1

2

(
c′

1 − c1
)
,

(A.5c)g21 = 1

2

(
c′

2 − c2
)
,

(A.5d)g22 = 1

2

(
c′

2 + c2
)
.

In Eq. (A.5),

c1 = 1

2a2�1

(
a2 − 2aβ11 + 3aβ12 + aβ22 + 2β12β21

(A.6a)− 2β11β22
)
,

c2 = 1

2a2�1

(
a2 − 2aβ22 + 3aβ21 + aβ11 + 2β12β21

(A.6b)− 2β11β22
)
,

(A.6c)c′
1 = c1 − 3

β12

a�1
,

(A.6d)c′
2 = c2 − 3

β21

a�1
,

where

(A.7)�1 = 1

a2

(
a2 + aβ11 + aβ22 − β12β21 + β11β22

)
,

and the relaxation coefficients β11, β12, β21, and β22 were de-
fined by Eq. (11). In the limit of Eq. (6) or zero relaxation
coefficients, Eqs. (A.5) and (A.6) reduce to c1 = c2 = c′

1 =
c′

2 = g11 = g22 = 1/2 and g12 = g21 = 0. In the other limit
of very large relaxation coefficients, these equations become
c1 = c2 = c′

1 = c′
2 = g11 = g22 = −1 and g12 = g21 = 0.

The solution for the first reflected fields from the particle is

(A.8a)μ(1)
mp = a3r−2 cos θ

2∑
i=1

gmi |∇μi∞|,

(A.8b)v(1)
p = 1

2
U0a

3r−3(2 cos θer + sin θeθ ).

The velocity distribution shown in Eq. (A.8b) is identical to
the irrotational flow surrounding a rigid sphere moving with
velocity U0ez.

The boundary conditions for the ith reflected fields from the
wall are derived from Eqs. (12), (13), (25), and (26),

(A.9a)z = −b: μ(i)
mw = −μ(i)

mp,

(A.9b)v(i) = −v(i);
w p
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(A.9c)r → ∞, z > −b: μ(i)
mw → 0,

(A.9d)v(i)
w → 0.

The solution of μ
(1)
mw is obtained by applying Hankel transforms

on variable ρ in Eqs. (8) and (A.9a and A.9c) (taking i = 1),
with the result

(A.10)

μ(1)
mw = a3(2b + z)

[
(2b + z)2 + ρ2]−3/2

2∑
i=1

gmi |∇μi∞|.

This reflected electrochemical potential field may be interpreted
as arising from the reflection of the imposed field from a ficti-
tious particle identical to the actual particle, its location being
at the mirror-image position of the actual particle with respect
to the plane z = −b (i.e., at ρ = 0, z = −2b). The solution
of v(1)

w can also be obtained by applying Hankel transforms to
the Stokes equation (21) twice and to the boundary conditions
(A.9b and A.9d), which results in

v(1)
w = −1

2
U0a

3

∞∫
0

ω2[E(ω, z)J1(ωρ)eρ

(A.11)+ F(ω, z)J0(ωρ)ez

]
dω,

where

(A.12a)E(ω, z) = [
2(b + z)ω − 1

]
e−ω(z+2b),

(A.12b)F(ω, z) = [
2(b + z)ω + 1

]
e−ω(z+2b).

The contributions of μ
(1)
mw and v(1)

w to the particle velocity are
determined using Eq. (A.3),

(A.13a)U(1)
s =

2∑
m=1

Gm

[∇μ(1)
mw

]
r=0 = −1

4
Gλ3U0ez,

(A.13b)U(1)
h =

[
v(1)

w + a2

6
∇2v(1)

w

]
r=0

= −1

4

(
2λ3 − λ5)U0ez,

(A.13c)U(1) = U(1)
s + U(1)

h = 1

4

[−(2 + G)λ3 + λ5]U0ez,

where

(A.14)G = 1

U0

2∑
m=1

2∑
i=1

Gmgmi |∇μi∞|.

After the substitution of Eq. (14) for μi∞ and Eq. (A.5) for gmi ,
Eq. (A.14) becomes

(A.15)G = kT |∇n∞|
U0n∞(0)

2∑
m=1

Gmbm,

where

(A.16)bm = c′
m − (−1)mcmα.

Equation (A.13a) shows that the reflected electrochemical po-
tential field from the plane wall can decrease (if G > 0) or
increase (if G < 0) the diffusiophoretic velocity of the parti-
cle from its undisturbed value, while Eq. (A.13b) indicates that
the reflected velocity field is to decrease this velocity; the net
effect of the reflected fields is expressed by Eq. (A.13c), which
can enhance or retard the movement of the particle, depending
on the combination of the values of G and λ. When G = 0, the
reflected electrochemical potential field makes no contribution
to the diffusiophoretic velocity. Eq. (A.13c) indicates that the
wall correction to the velocity of the diffusiophoretic particle
is O(λ3), which is weaker than that obtained for the corre-
sponding sedimentation problem, in which the leading bound-
ary effect is O(λ). Note that the necessary condition for the
wall enhancement on the diffusiophoretic motion to occur is a
small value of G and/or a value of λ close to unity such that the
relation λ5 > (2 + G)λ3 is warranted.

The solution for the second reflected fields from the particle
is

μ(2)
mp = −1

4
λ3a3r−2 cos θ

2∑
i=1

2∑
j=1

gmjgji |∇μi∞|

+ 3

16
λ4a4r−3(3 cos2 θ − 1

) 2∑
i=1

2∑
j=1

hmjgji |∇μi∞|

(A.17a)+ O
(
λ5a5),

v(2)
p = U0

{
−1

8
Gλ3a3r−3(2 cos θer + sin θeθ )

− 9

64
(5 − 4H)λ4a2r−2(3 cos2 θ − 1

)
er

− 9

16
Hλ4a4r−4[(3 cos2 θ − 1

)
er + 2 sin θ cos θeθ

]
+ 9

64
λ4a4r−4[(9 cos2 θ − 4

)
er + 54 sin θ cos θeθ

]
(A.17b)+ O

(
λ6a4)},

where

(A.18)H = 1

U0

2∑
m=1

2∑
i=1

Hmgmi |∇μi∞|,

with

H1 = − εkT

η(Ze)2

[
(1 + 2h11 − 2h21)ζ̄

(A.19a)+ (1 + 2h11 + 2h21) ln cosh ζ̄
]
,

H2 = − εkT

η(Ze)2

[
(−1 + 2h12 − 2h22)ζ̄

(A.19b)+ (1 + 2h12 + 2h22) ln cosh ζ̄
]
.

In Eqs. (A.17a) and (A.19),

(A.20a)h11 = 1

2

(
d ′

1 + d1
)
,

(A.20b)h12 = 1

2

(
d ′

1 − d1
)
,

(A.20c)h21 = 1

2

(
d ′

2 − d2
)
,
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(A.20d)h22 = 1

2
(d ′

2 + d2),

where

d1 = 1

3a2�2

(
a2 − 3aβ11 + 5aβ12 + 2aβ22 + 6β12β21

(A.21a)− 6β11β22
)
,

d2 = 1

3a2�2

(
a2 − 3aβ22 + 5aβ21 + 2aβ11 + 6β12β21

(A.21b)− 6β11β22
)
,

(A.21c)d ′
1 = d1 − 10β12

3a�2
,

(A.21d)d ′
2 = d2 − 10β21

3a�2
,

and

(A.22)�2 = 1

a2

(
a2 + 2aβ11 + 2aβ22 − 4β12β21 + 4β11β22

)
.

The boundary conditions for the second reflected fields from
the wall are obtained by substituting the result of μ

(2)
mp and v(2)

p
into Eq. (A.9), with which Eqs. (8) and (21) can be solved as
before to yield

[∇μ(2)
mw

]
r=0 = 1

256

[
16λ6

2∑
i=1

2∑
j=1

gmjgji |∇μi∞|

(A.23a)

+ 18λ8
2∑

i=1

2∑
j=1

hmjgji |∇μi∞| + O
(
λ9)]ez,

[
v(2)

w + a2

6
∇2v(2)

w

]
r=0

= U0

{
1

256

[
32G − 27(5 − 4H)

]
λ6

+ 1

512

[
27(5 − 4H) − 32G − 180H

(A.23b)− 99
]
λ8 + O

(
λ9)}ez.

The contribution of the second reflected fields to the particle
velocity is obtained by combining Eqs. (A.3) and (A.23), which
gives

U(2) = U0

{
1

256

[−27(5 − 4H) + 16(2G + G′)
]
λ6

(A.24)+ 1

128
(9 − 72H + 9H ′ − 8G)λ8 + O

(
λ9)}ez,

where

(A.25a)G′ = 1

U0

2∑
m=1

2∑
i=1

2∑
j=1

Gmgmjgji |∇μi∞|,

(A.25b)H ′ = 1

U0

2∑
m=1

2∑
i=1

2∑
j=1

Gmhmjgji |∇μi∞|.
After the substitution of Eq. (14) for μi∞ and Eq. (A.5) for gmi ,
Eqs. (A.18) and (A.25) become

(A.26)H = kT |∇n∞|
U0n∞(0)

2∑
m=1

Hmbm,

(A.27a)G′ = kT |∇n∞|
U0n∞(0)

2∑
m=1

2∑
j=1

Gmgmjbj ,

(A.27b)H ′ = kT |∇n∞|
U0n∞(0)

2∑
m=1

2∑
j=1

Gmhmjbj .

Evidently, U(3) will be O(λ9). With the substitution of Eqs.
(A.13c) and (A.24) into Eq. (A.2), the particle velocity can be
expressed as U = Uez with

U = U0

{
1 − 1

4
(2 + G)λ3 + 1

4
λ5

− 1

256

[
27(5 − 4H) − 16(2G + G′)

]
λ6

(A.28)+ 1

128
(9 − 72H + 9H ′ − 8G)λ8 + O

(
λ9)}.

The particle migrates along the imposed electrolyte concentra-
tion gradient at a rate that can increase or decrease as the parti-
cle approaches the wall. Owing to the linearity of the problem,
the above analysis is valid when the particle is either approach-
ing the plane wall or receding from it.

For the problem of electrophoretic motion of a spherical par-
ticle caused by a constant external electric field E∞ = E∞ez

perpendicular to a conducting plane, the above analysis still ap-
plies, but now U0 is the electrophoretic velocity of an isolated
sphere given by Eq. (5) and the expressions for G, H , G′, and
H ′ given by Eqs. (A.15), (A.26), and (A.27) become

(A.29a)G = −ZeE∞

U0

2∑
m=1

(−1)mGmcm,

(A.29b)H = −ZeE∞

U0

2∑
m=1

(−1)mHmcm,

(A.30a)G′ = −ZeE∞

U0

2∑
m=1

2∑
j=1

(−1)jGmgmjcj ,

(A.30b)H ′ = −ZeE∞

U0

2∑
m=1

2∑
j=1

(−1)jGmhmjcj .

Using the same method of reflections, Keh and Anderson [18]
obtained an asymptotic solution for the electrophoretic mobil-
ity of a dielectric sphere surrounded by an infinitesimally thin
electric double layer normal to a conducting plane wall correct
to O(λ6). In the limit of Eq. (6), the formula (A.28) with coef-
ficients given by Eqs. (A.29) and (A.30) is consistent with this
earlier solution.
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A.2. Motion normal to two parallel plane walls

For the problem of diffusiophoretic or electrophoretic mo-
tion of a spherical particle perpendicular to two infinite plane
walls with equal distances from the particle, the boundary con-
ditions corresponding to governing equations (8) and (21) are
given by Eqs. (10), (12), (13), and (24)–(26) with c = b. With
λ = a/b 
 1, the series expansions of the electrochemical po-
tentials of the ions, fluid velocity, and particle velocity given by
Eqs. (A.1), (A.2), and (A.8) remain valid here. From Eqs. (12),
(13), (25), and (26), the boundary conditions for μ

(i)
mw and v(i)

w
are found to be

(A.31a)|z| = b: μ(1)
mw = −μ(1)

mp,

(A.31b)v(1)
w = −v(1)

p ;
(A.31c)r → ∞, |z| � b: μ(1)

mw → 0,

(A.31d)v(1)
w → 0.

The first wall-reflected fields can be solved by the same method
as used for the case of a single plane wall in the previous sub-
section, with the results

μ(1)
mw = −aλ2

∞∫
0

1 + e−2t

sinh(2t)
sinh

(
t

b
z

)
tJ0

(
t

b
ρ

)
dt

(A.32a)×
2∑

i=1

gmi |∇μi∞|,

v(1)
w = −1

2
U0λ

3

∞∫
0

t2

[
E(t, z)J1

(
t

b
ρ

)
eρ

(A.32b)+ F(t, z)J0

(
t

b
ρ

)
ez

]
dt,

where

E(α, z) = 2

2α + sinh(2α)

×
[(

1 − α − e−α sinhα
)

sinh

(
α

b
z

)

(A.33a)+ α

b
z cosh

(
α

b
z

)]
,

F (α, z) = 2

2α + sinh(2α)

×
[(

α + e−α sinhα
)

cosh

(
α

b
z

)

(A.33b)− α

b
z sinh

(
α

b
z

)]
,

t = ωb, and U0 is given by Eqs. (7) and (5) for the cases of
diffusiophoresis and electrophoresis, respectively. The contri-
butions of μ

(1)
mw and v(1)

w to the particle velocity are determined
using Eq. (A.3), which lead to a result similar to Eq. (A.13),

(A.34a)U(1) = −d̄1Gλ3U0ez,
s
(A.34b)U(1)
h = [−d̄2λ

3 + d̄3λ
5]U0ez,

(A.34c)U(1) = U(1)
s + U(1)

h = [−(d̄2 + d̄1G)λ3 + d̄3λ
5]U0ez,

where G is given by Eq. (A.14) (or by Eqs. (A.15) and (A.29a)
for the relevant cases), and

(A.35a)d̄1 =
∞∫

0

1 + e−2t

sinh(2t)
t2 dt = 0.60103,

(A.35b)d̄2 =
∞∫

0

t + e−t sinh t

2t + sinh(2t)
t2 dα = 0.79076,

(A.35c)d̄3 = 1

3

∞∫
0

t4

2t + sinh(2t)
dt = 0.44175.

Again, Eq. (A.34a) shows that the reflected electrochemical po-
tential field from the confining walls can decrease (if G > 0) or
increase (if G < 0) the particle velocity, while Eq. (A.34b) indi-
cates that the reflected velocity field is to decrease this velocity;
the net effect is expressed by Eq. (A.34c), which can enhance
or retard the movement of the particle, depending on the com-
bination of the values of G and λ. Equation (A.34c) indicates
that the necessary condition for the wall enhancement on the
diffusiophoretic or electrophoretic motion to occur is a small
value of G and a value of λ close to unity such that the relation
d̄3λ

5 > (d̄2 + d̄1G)λ3 is warranted.
Analogous to the previous case, the results of the second re-

flections can be obtained as

(A.36a)

μ(2)
mp = −d̄1λ

3a3r−2 cos θ

2∑
i=1

2∑
j=1

gmjgji |∇μi∞| + O
(
λ5a5),

(A.36b)

v(2)
p = −1

2
U0d̄1Gλ3a3r−3(2 cos θer + sin θeθ ) + O

(
λ6a4),

(A.36c)

[∇μ(2)
mw

]
r=0 =

[
d̄2

1λ6
2∑

i=1

2∑
j=1

gmjgji |∇μi∞| + O
(
λ9)]ez,

[
v(2)

w + a2

6
∇2v(2)

w

]
r=0

(A.36d)= U0
[
d̄1d̄2Gλ6 − d̄1d̄3Gλ8 + O

(
λ9)]ez,

and

(A.37)

U(2) = [(
d̄2

1G′ + d̄1d̄2G
)
λ6 − d̄1d̄3Gλ8 + O

(
λ9)]U0ez.

Note that the λ5a5 and λ6a4 terms in the expressions for μ
(2)
mp

and v(2)
p vanish.

With the combination of Eqs. (A.2), (A.34c), and (A.37), the
particle velocity can be expressed as U = Uez with

U = U0
[
1 − (d̄2 + d̄1G)λ3 + d̄3λ

5

(A.38)+ (
d̄2

1G′ + d̄1d̄2G
)
λ6 − d̄1d̄3Gλ8 + O

(
λ9)].
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This result is valid for a particle undergoing diffusiophoresis or
electrophoresis toward either of the two plane walls.

As discussed in Sections 3 and 4, the boundary effects on dif-
fusiophoretic and electrophoretic motions in general are quite
complicated and no simple rule is able to make an adequate
prediction for such complicated phenomena. Thus, limited nu-
merical solutions with interpolation and extrapolation are awk-
ward to be used in practical applications. Therefore, the closed-
form analytical results obtained in this appendix, which can
be conveniently used in the calculations for various cases with
κa > 20 (without the need of a computer), should be a favorable
contribution to the evaluation and understanding of the bound-
ary effects on diffusiophoresis and electrophoresis.

Appendix B. Definitions of some functions in Section 2

The functions δ
(i)
n with i = 1,2,3, and 4 in Eqs. (18), (20),

(33), and (38) are defined by

δ(1)
n (r, θ) =

∞∫
0

ω(sinh τ)−1[−B ′′
1n(ω,−b) sinh ξ

+ B ′′
1n(ω, c) sinhσ

]
J0(ωr sin θ) dω

(B.1)+ r−n−1Pn(cos θ),

δ(2)
n (r, θ) =

∞∫
0

ω2(sinh τ)−1{sin θ
[
B ′′

1n(ω,−b) sinh ξ

− B ′′
1n(ω, c) sinhσ

]
J1(ωr sin θ)

+ cos θ
[−B ′′

1n(ω,−b) cosh ξ

+ B ′′
1n(ω, c) coshσ

]
J0(ωr sin θ)

}
dω

(B.2)− (n + 1)r−n−2Pn(cos θ),

δ(3)
n (r, θ) =

∞∫
0

ω2(sinh τ)−1{cos θ
[
B ′′

1n(ω,−b) sinh ξ

− B ′′
1n(ω, c) sinhσ

]
J1(ωr sin θ)

+ sin θ
[
B ′′

1n(ω,−b) cosh ξ

− B ′′
1n(ω, c) coshσ

]
J0(ωr sin θ)

}
dω

+ nr−n−2[Pn(cos θ) cos θ

(B.3)− Pn−1(cos θ)
]

csc θ,

δ(4)
n (r, θ) =

∞∫
0

ω3(sinh τ)−1{sin 2θ
[
B ′′

1n(ω,−b) cosh ξ

− B ′′
1n(ω, c) coshσ

]
J1(ωr sin θ)

+ cos2 θ
[−B ′′

1n(ω,−b) sinh ξ

+ B ′′
1n(ω, c) sinhσ

]
J0(ωr sin θ)

+ sin2 θ
[−B ′′

1n(ω,−b) sinh ξ

+ B ′′
1n(ω, c) sinhσ

][
J2(ωr sin θ)

− J0(ωr sin θ)
]/

2
}
dω

(B.4)+ (n + 1)(n + 2)r−n−3Pn(cos θ),
and the functions γ
(j)
in for i and j equal to 1 or 2 in Eqs. (31)

and (32) are defined by

γ
(1)
in (r, θ) = −

∞∫
0

[
G′′+(σ, ξ)B ′

in(ω,−b) − G′′+(ξ, σ )B ′
in(ω, c)

− G′+(σ, ξ)B ′′
in(ω,−b)

+ G′+(ξ, σ )B ′′
in(ω, c)

]
ωJ1(ωr sin θ) dω

− r−n+2i−3[(n + 1)G
−1/2
n+1 (cos θ) csc θ

(B.5)− 2(i − 1)G
−1/2
n (cos θ) cot θ

]
,

γ
(2)
in (r, θ) = −

∞∫
0

[−G′−(σ, ξ)B ′
in(ω,−b) + G′−(ξ, σ )B ′

in(ω, c)

+ G′′−(σ, ξ)B ′′
in(ω,−b)

− G′′−(ξ, σ )B ′′
in(ω, c)

]
ωJ0(ωr sin θ) dω

(B.6)

− r−n+2i−3[Pn(cos θ) + 2(i − 1)G
−1/2
n (cos θ)

]
,

where

(B.7)B ′
1n(ω, z) = − 1

n!
(

ω|z|
z

)n−1

e−ω|z|,

(B.8)B ′′
1n(ω, z) = −ωn−1

n!
( |z|

z

)n

e−ω|z|,

(B.9)

B ′
2n(ω, z) = − 1

n!
(

ω|z|
z

)n−3[
(2n − 3)ω|z| − n(n − 2)

]
e−ω|z|,

B ′′
2n(ω, z) = −ωn−3

n!
( |z|

z

)n[
(2n − 3)ω|z|

(B.10)− (n − 1)(n − 3)
]
e−ω|z|,

(B.11)G′±(μ, ν) = τ ∗μν(μ′ ± τ ′ν′),
(B.12)G′′±(μ, ν) = τ ∗[ν(coshμ − τ ′ν′) ± μ(μ′ − τ ′ coshν)

]
,

μ′ = sinhμ

μ
, ν′ = sinhν

ν
,

(B.13)τ ′ = sinh τ

τ
, τ ∗ = τ

sinh2 τ − τ 2
,

σ = ω(r cos θ + b), ξ = ω(r cos θ − c),

(B.14)τ = ω(b + c).
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