
f arbitrary
s assumed
ip at the
rvation of

tic velocity
ocity: first,
he particle;
le velocity,

istance. In
s. In most
Journal of Colloid and Interface Science 289 (2005) 94–103
www.elsevier.com/locate/jcis

Photophoresis of an aerosol sphere normal to a plane wall

Huan J. Keh∗, Fu C. Hsu

Department of Chemical Engineering, National Taiwan University, Taipei 106-17, Taiwan, Republic of China

Received 22 November 2004; accepted 21 March 2005

Available online 27 April 2005

Abstract

A combined analytical–numerical study is presented for the quasisteady photophoretic motion of a spherical aerosol particle o
thermal conductivity and surface properties exposed to a radiative flux perpendicular to a large plane wall. The Knudsen number i
to be so small that the fluid flow is described by a continuum model with a temperature jump, a thermal slip, and a frictional sl
surface of the radiation-absorbing particle. In the limit of small Peclet and Reynolds numbers, the appropriate equations of conse
energy and momentum for the system are solved using a boundary collocation method and numerical results for the photophore
of the particle are obtained for various cases. The presence of the neighboring wall causes two basic effects on the particle vel
the local temperature gradient on the particle surface is enhanced or reduced by the wall, thereby speeding up or slowing down t
second, the wall increases viscous retardation of the moving particle. The net effect of the wall can decrease or increase the partic
depending upon the relative conductivity and surface properties of the particle as well as the relative particle–wall separation d
general, the boundary effect of a plane wall on the photophoresis of an aerosol particle can be quite significant in some situation
aerosol systems, the boundary effect on photophoresis is weaker than that on the motion driven by a gravitational field.
 2005 Elsevier Inc. All rights reserved.
Keywords: Photophoresis; Aerosol sphere; Thin Knudsen layer; Boundary effect
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1. Introduction

Small particles, when suspended in a gaseous me
and exposed to an intense light beam, will migrate pa
lel to the direction of the light. This phenomenon is a res
of the uneven heating of the light-absorbing particle (a
therefore of its adjacent gas molecules) and is known as
tophoresis[1]. The photophoretic (or thermophoretic) effe
can be explained in part by appealing to the kinetic theor
gases[2,3]. The higher energy molecules in the hot region
the gas impinge on the particle with greater momenta t
molecules coming from the cold region, thereby leading
the migration of the particle in a direction opposite to
surface temperature gradient. Thus, the photophoretic f
on an aerosol particle can be directed either toward (n
ative photophoresis) or away from (positive photophore
* Corresponding author.
E-mail address: huan@ntu.edu.tw(H.J. Keh).
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the light source, depending upon the optical characteri
of the particle. If the particle is opaque and the incident li
energy is absorbed and dissipated directly at the front sur
of the particle, positive photophoresis occurs. Converse
the light beam is partially transmitted and focused on the
side of the particle, negative photophoresis may appear.

Photophoresis has been observed for many particu
materials in the diameter range between 10−8 and 10−3 m,
and at pressures from above 1 atm down to below 1 T
under illumination intensities comparable with those of s
light [4]. Therefore, the results of photophoretic investi
tions are of interest to a wide variety of fields including clo
physics, aerosol science, and environmental engineering
example, measurements of the photophoretic force or th
versal point from positive to negative photophoresis with
elaboration of photophoretic spectroscopy can be use

determine the physical properties, such as the complex re-
fractive index, and the chemical composition of aerosol par-
ticles[5]. The photophoretic phenomena of aerosol particles

http://www.elsevier.com/locate/jcis
mailto:huan@ntu.edu.tw
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subjected to coherent light beams have been applied to
development of laser atmospheric monitoring methods[6]. It
was found that, due to the effect of both positive and nega
photophoresis, some stratospheric aerosol particles ma
caused to rise against gravity, whereas others are induc
fall considerably more rapidly than they would under grav
alone [7]. Considering that radiative heat transfer can
count for around 95% of the total heat flux in pulverized-c
furnaces, the driving force for photophoresis of small pa
cles in combustion environments can be significantly gre
than that for thermophoresis[8].

When the Knudsen number (l/a, wherea is the radius of
the particle andl is the mean free path of the surrounding g
molecules), Reynolds number, and Peclet number are s
the photophoretic velocity of an aerosol sphere illumina
by an intense light beam can be expressed as[8,9]

(1)U0 = − 2JCsηI

3(1+ 2Cml/a)(2k + kp + 2kpCtl/a)ρfT0
.

In the above equation,I is the intensity of the inciden
light (incoming illumination energy flux);ρf , η, andk are
the density, viscosity, and thermal conductivity, respectiv
of the gas;kp is the thermal conductivity of the particle
T0 is the absolute temperature of the bulk gas;J is the so-
called photophoretic asymmetry factor[10], which can be
either positive (negative photophoresis) or negative (pos
photophoresis);Cs, Ct, and Cm are dimensionless coeffi
cients accounting for the thermal slip, temperature jump,
frictional slip phenomena, respectively, at the particle s
face and must be determined experimentally for each g
solid system. A set of reasonable kinetic-theory values
complete thermal and momentum accommodation appe
be Cs = 1.17, Ct = 2.18, andCm = 1.14 [11]. Recently,
kinetic-theory values of these slip coefficients have been
tained accurately under various conditions[12,13]. Note that
the photophoretic velocity given by Eq.(1) is proportional to
the fluid viscosity due to the existence of the thermal slip
locity at the particle surface.

In many applications of photophoresis, aerosol partic
are not isolated and will move in the presence of neighb
ing particles and/or boundaries. For example, the mecha
and rate of deposition of photophoretic particles on vari
surfaces are of practical interest. It is of some importan
therefore, to examine the behavior of a particle under p
tophoretic forces as it is in the proximity of rigid boundarie
Recently, the quasisteady photophoresis of an aerosol sp
located at the center of a spherical cavity has been in
tigated and an analytical expression for the wall-correc
particle velocity was derived in a closed form[14]. In this
work we present an analysis of the photophoretic motio
an aerosol sphere perpendicular to an infinite plane wall.
quasisteady equations of conservation applicable to the
tem are solved by a combined analytical–numerical met

using the boundary collocation technique. Results for the
wall-corrected particle velocity are obtained with good con-
vergence for various cases.
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Fig. 1. Geometrical sketch for the photophoretic motion of a spherical
ticle perpendicular to a plane wall.

2. Analysis

We consider the quasisteady photophoretic motion
spherical particle of radiusa with arbitrary thermal conduc
tivity and surface properties in a gaseous medium trans
ent to radiation in the direction normal to an infinite pla
wall located at a distanced from the particle center, as illus
trated inFig. 1. Here,(ρ,φ, z) and(r, θ,φ) denote the cir-
cular cylindrical and spherical coordinate systems, res
tively, and both origins of coordinates are set at the ce
of the particle. The incident light is imposed to the parti
in thez direction (perpendicular to the wall) with intensityI

and the photophoretic velocity of the particle isUez, where
ez is the unit vector in the positivez direction. Both of the
bulk gas and the plane wall are kept at a constant tempe
reT0. The Knudsen numbersl/a andl/(d − a) are assumed
to be so small that the fluid flow is in the continuum regi
and the Knudsen layer adjacent to the surface of the par
is relatively thin. The fluid is allowed to slip, both therma
and frictionally, and the temperature jump may occur at
particle surface. Our objective is to determine the correc
to Eq.(1) for the photophoretic particle due to the prese
of the plane wall.

To determine the photophoretic velocity of the particle
is necessary to ascertain the temperature and fluid vel
distributions.

2.1. Temperature distribution

The Peclet number of this axisymmetric problem is
sumed to be small. Hence, the equation of energy gover
the temperature distributionT (r, θ) for the fluid of constan
thermal conductivityk is the Laplace equation,

(2)∇2T = 0.

The temperature distributionTp(r, θ) inside the radiation
absorbing particle is described by

(3)∇2Tp = − 1

kp
Q(r, θ),
where kp is the thermal conductivity of the particle and
Q(r, θ) is the volumetric thermal energy generation rate re-
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sulting from local radiation absorption. For a plane mo
chromatic wave, the source functionQ(r, θ) is related to
the electric fieldE(r, θ) inside the particle according to th
Lorenz–Mie theory[7,15],

(4)Q(r, θ) = 4πυκI

λ

|E(r, θ)|2
|E0|2 = 4πυκI

λ
B(ζ, θ).

Here,υ andκ are the real and imaginary parts of the co
plex refractive indexN (N = υ + iκ) of the particle,E0 is
the incident electric field strength,λ is the wavelength of the
incident radiation,B(ζ, θ) is the dimensionless electric fie
distribution function, andζ = r/a is the dimensionless ra
dial spherical coordinate.

The boundary conditions at the particle surface (r = a)
require that the normal heat fluxes be continuous and a
perature jump that is proportional to the normal tempera
gradient[3] occur. Also, the fluid temperature at the pla
wall or far removed from the particle approaches the bu
gas temperatureT0, which is a constant. Thus,

(5a)r = a: k
∂T

∂r
= kp

∂Tp

∂r
,

(5b)T − Tp = Ctl
∂T

∂r
,

(6)z = d: T = T0,

(7)r → ∞ andz � d: T = T0,

whereCt is the temperature jump coefficient on the parti
surface. In Eq.(5a), the flux due to radiative heat transfe
which was taken into account by Akhtaruzzaman and
[16] in studying the photophoresis of a spherical particle
the free molecule regime (in a rarefied gas with large Kn
sen number), is neglected on the assumption that the su
temperature of the particle is not very high. The Knud
layer adjacent to the isothermal plane wall is neglected
the case of small Knudsen number.

Since the governing equations and boundary condit
are linear, one can write the temperature distributionT as
the superposition

(8)T = T0 + Tw + Ts.

Here,Tw is a Fourier–Bessel integral solution of Laplac
equation in cylindrical coordinates that represents the dis
bance produced by the plane wall and is given by

(9)Tw =
∞∫

0

ωR(ω)J0(ωρ)eωz dω,

whereJ0 is the Bessel function of the first kind of order ze
andR(ω) is an unknown function ofω. The last term on the
right-hand side of Eq.(8), Ts, is the solution of Laplace’s
equation in spherical coordinates, representing the di
bance generated by the particle, and is given by an infi
series in harmonics,
(10)Ts = aI

k

∞∑
n=0

Tnζ
−(n+1)Pn(cosθ),
Interface Science 289 (2005) 94–103
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wherePn is the Legendre polynomial of ordern andTn are
the unknown coefficients to be determined. Note that a
lution for T in the form given by Eqs.(8)–(10)immediately
satisfies boundary condition(7).

Since the temperature is finite for any position in the
terior of the particle, the solution to Eq.(3) can be written
as[8,9]

(11)Tp = T0 + aI

kp

∞∑
n=0

[
Hnζ

n + Sn(ζ )
]
Pn(cosθ),

where

Sn(ζ ) = 2πυκa

λ

×
[
ζ n

1∫
ζ

t−n+1

π∫
0

B(t, θ)Pn(cosθ)sinθ dθ dt

+ ζ−n−1

ζ∫
0

tn+2

π∫
0

B(t, θ)Pn(cosθ)sinθ dθ dt

]
,

(12)

andHn are unknown coefficients.
A brief conceptual description of the solution proced

to determineR(ω) andTn is given below to help the read
ers follow the mathematical development. At first, bound
condition (6) is exactly satisfied on the plane wall using
Hankel transform. This permits the unknown functionR(ω)

to be determined in terms of the coefficientsTn. Then, the
boundary conditions on the particle surface given by Eqs(5)
can be satisfied by making use of the collocation met
and the solution of the collocation matrix provides nume
cal values for the coefficientsTn.

Substitution of the solutionT given by Eqs.(8)–(10)into
the boundary condition(6) and application of the Hanke
transform on the variableρ lead to a solution forR(ω) in
terms of the unknown coefficientsTn. After the substitution
of this solution into Eq.(9), the resulting temperature fie
T is given by

(13)T = T0 + aI

k

∞∑
n=0

Tna
n+1[B ′′

n(ρ, z) − B ′′
n(ρ,2d − z)

]
,

where the functionB ′′
n(ρ, z) is defined by Eq.(A.5b) in

Appendix A. Equation(13) provides an exact solution fo
the temperature distribution in the fluid phase and the
known coefficientsTn must be determined from the remai
ing boundary conditions on the particle surface.

Utilizing the relation

(14)
∂

∂r
= sinθ

∂

∂ρ
+ cosθ

∂

∂z
,

one can apply Eqs.(5) to Eqs.(11) and (13)to yield
(15a)

∞∑
n=0

{
Tna

n+1α′
n(ρ, z) − [

nHn + S′
n(ζ )

]
Pn(cosθ)

} = 0,
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∞∑
n=0

{
Tnk

∗an+1[B ′′
n(ρ, z) − B ′′

n(ρ,2d − z) − C∗
t α′

n(ρ, z)
]

(15b)− [
Hn + Sn(ζ )

]
Pn(cosθ)

} = 0

atζ = 1. Here, the functionα′
n(ρ, z) is defined by Eq.(A.1a),

k∗ = kp/k, C∗
t = Ctl/a, and the prime onSn(ζ ) means dif-

ferentiation with respect toζ . Note that the dimensionles
parameterk∗C∗

t denotes the relative resistance caused
the temperature jump at the particle surface with respe
heat conduction inside the particle.

To satisfy the conditions in Eqs.(15) exactly along the
entire surface of the particle would require the solution
the infinite series of unknown coefficientsTn. However, the
collocation technique[17–19]enforces the boundary cond
tions at a finite number of discrete points on the semicirc
generating arc of the particle and truncates the infinite se
in Eqs.(11) and (13)into finite ones. If the spherical bound
ary is approximated by satisfying conditions in Eqs.(5) at
N discrete points (values ofθ ) on its generating arc, the
the infinite series in Eqs.(11) and (13)are truncated afterN
terms, resulting in a system of 2N simultaneous linear al
gebraic equations in the truncated form of Eqs.(15). This
matrix equation can be solved to yield the 2N unknown
coefficientsTn and Hn required in the truncated form o
Eqs.(11) and (13)for the temperature distribution. The a
curacy of the truncation technique can be improved to
degree by taking a sufficiently large value ofN . Naturally,
asN → ∞ the truncation error vanishes.

2.2. Fluid velocity distribution

Having obtained the solution for the temperature dist
ution on the particle surface which drives the migration,
can now proceed to find the flow field. The fluid surround
the particle is assumed to be incompressible and Newton
Due to the low Reynolds number, the fluid motion cau
by the photophoretic migration of the particle is govern
by the quasisteady fourth-order differential equation for
isymmetric creeping flows,

(16)E4Ψ = E2(E2Ψ
) = 0,

where the Stokes stream functionΨ is related to the velocity
components in cylindrical coordinates by

(17a)vρ = 1

ρ

∂Ψ

∂z
,

(17b)vz = − 1

ρ

∂Ψ

∂ρ
,

and the operatorE2 has the form

(18)E2 = ρ
∂

∂ρ

(
1

ρ

∂

∂ρ

)
+ ∂2

∂z2
.

Owing to the thermal and frictional slip velocities along t
particle surface, the boundary conditions for the fluid vel

ity at the particle surface are[20]

(19a)r = a: vr = U cosθ,
Interface Science 289 (2005) 94–103 97

.

(19b)vθ = −U sinθ + Cml

η
τrθ + Csη

ρfT0r

∂T

∂θ
.

Here, vr and vθ are the velocity components in spheric
coordinates,Cm andCs are the frictional and thermal sli
coefficients, respectively, on the surface of the particle,τrθ is
the shear stress for the fluid flow,

(20)τrθ = η

[
r

∂

∂r

(
vθ

r

)
+ 1

r

∂vr

∂θ

]
,

and U is the photophoretic velocity of the particle, to
determined. The derivative∂T /∂θ at the particle surfac
can be evaluated from the temperature distribution given
Eq.(13)with coefficientsTn determined from Eqs.(15). The
thermal slip velocity expressed by the last term in Eq.(19b)
is proportional to the fluid viscosity due to the fact that
tangential stress of the fluid caused by the temperature
dient along the particle surface is proportional to the prod
of the temperature gradient (or momentum gradient) and
kinematic viscosity of the fluid, and the validity of this e
pression is based on the assumption that the fluid temp
ture is only slightly nonuniform on the length scale of t
particle radius. Generally speaking, the slip condition
comes increasingly more important for small particles.
the isothermal plane wall and far away from the particle,
boundary conditions for the fluid velocity are

(21)z = d: vρ = vz = 0,

(22)r → ∞ andz � d: vρ = vz = 0.

The effect of gas slip at the plane wall is negligible since
plane is isothermal and the Knudsen number is small.

The stream function for the fluid flow is linearly com
posed of two parts:

(23)Ψ = Ψw + Ψs.

HereΨw is a solution of Eq.(16) in cylindrical coordinates
that represents the disturbance produced by the plane
and is given by a Fourier–Bessel integral,

(24)Ψw =
∞∫

0

ρJ1(ωρ)
[
X(ω) + zY (ω)

]
eωz dω,

whereJ1 is the Bessel function of the first kind of order on
andX(ω) andY(ω) are unknown functions ofω. The sec-
ond part ofΨ , denoted byΨs, is a solution of Eq.(16) in
spherical coordinates representing the disturbance gene
by the particle and is given by

(25)Ψs = Ua2
∞∑

n=2

(
Bnζ

−n+1 + Dnζ
−n+3)G−1/2

n (cosθ),

whereG
−1/2
n is the Gegenbauer polynomial of the first ki

of ordern and degree−1/2, andBn andDn are unknown
constants. Note that boundary condition(22) is immediately

satisfied by a solution of the form given by Eqs.(23)–(25).

As was the case with the solution for the temperature
distribution, the determination ofX(ω), Y(ω), Bn, andDn
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will be undertaken by a two-step procedure. First, bou
ary condition(21) is exactly satisfied on the plane wall b
a Hankel transform; then, the boundary conditions given
Eq. (19) are satisfied numerically at collocation points
the particle surface. Application of boundary condition(21)
to Eqs.(23)–(25)using Eq.(17) leads to a solution forX(ω)

andY(ω) in terms of the unknown coefficientsBn andDn.
This solution is substituted back into Eq.(24), leading to a
new expression for the stream function. The result for
velocity components is

(26a)vρ = U

∞∑
n=2

[
Bna

n+1β ′
n(ρ, z) + Dna

n−1δ′
n(ρ, z)

]
,

(26b)vz = U

∞∑
n=2

[
Bna

n+1β ′′
n(ρ, z) + Dna

n−1δ′′
n(ρ, z)

]
,

where the functionsβ ′
n, δ′

n, β ′′
n , and δ′′

n are defined by
Eqs.(A.2) and (A.3).

The only boundary conditions that remain to be satis
are those on the particle surface. Substituting Eq.(13) into
Eq.(19), one obtains

vρ = C∗
ma

η
τrθ cosθ + CsηI

ρfT0k
cosθ

∞∑
n=0

Tna
n+1α′′

n(ρ, z),

(27a)

vz = U − C∗
ma

η
τrθ sinθ − CsηI

ρfT0k
sinθ

∞∑
n=0

Tna
n+1α′′

n(ρ, z)

(27b)

at r = a, whereC∗
m = Cml/a and the definition ofα′′

n(ρ, z)

is given by Eq.(A.1b). Here the firstN coefficientsTn have
been determined through the procedure given in the
vious section. Application of these boundary conditions
Eqs.(26) can be accomplished by utilizing the collocati
technique presented for the solution of the temperature fi
At the particle surface, boundary conditions in Eq.(27) are
applied atM discrete points (values ofθ ) and the infinite se
ries in Eqs.(26) are truncated afterM terms. This generate
a set of 2M linear algebraic equations for the 2M unknown
coefficientsBn andDn. The fluid velocity field is completely
solved once these coefficients are determined.

2.3. Velocity of the particle

The drag force exerted by the fluid on the spher
boundaryr = a can be determined from[21]

(28)F = ηπ

π∫
0

r3 sin3 θ
∂

∂r

(
E2Ψ

r2 sin2 θ

)
r dθ.

Substitution of Eqs.(23)–(25)into the above integral and ap
plication of the orthogonality properties of the Gegenba

polynomials result in the simple relation

(29)F = 4πηD2.
Interface Science 289 (2005) 94–103

This shows that only the coefficientD2 contributes to the
drag force on the particle.

Since the photophoretic particle is freely suspended in
fluid, the net force exerted by the fluid on the surface of
particle must vanish. From Eq.(29), we haveD2 = 0. The
photophoretic velocityU of the particle can be obtained b
satisfying this constraint.

The normalized particle velocityU/U0 will be a function
of the parametersk∗, C∗

t , C∗
m, anda/d , whereU0 is the pho-

tophoretic velocity of the particle in the absence of the pl
wall and is given by Eq.(1), or

(30)U0 = − 2JCsηI

3(1+ 2C∗
m)(2+ k∗ + 2k∗C∗

t )kρfT0
.

HereJ is the so-called photophoretic asymmetry factor,

(31)J = 6πυκa

λ

1∫
0

π∫
0

B(ζ, θ)ζ 3 cosθ sinθ dθ dζ,

which depends on the complex refractive index (N = υ+ iκ)
and the normalized size (2πa/λ) of the particle. The asym
metry factor represents a weighted integration of the h
source function over the particle volume and defines
sign and magnitude of the photophoretic force. IfJ < 0, the
particle moves in the direction of the light beam (posit
photophoresis). IfJ > 0, the particle moves in the opposi
direction (negative photophoresis). Equation(30)shows that
the magnitude ofU0 decreases with an increase ink∗, C∗

t , or
C∗

m for a given value ofJCsηI/kρfT0.
For a completely opaque spherical particle the h

sources are concentrated on the illuminated part of the p
cle surface[9,14]; namely,

(32)B(ζ, θ) =



−λ

2πυκa
cosθδ(ζ − 1), for π

2 � θ � π,

0, for 0� θ � π
2 ,

whereδ(ζ −1) is a Dirac delta function which equals infini
if ζ = 1 and vanishes otherwise. The substitution of Eq.(32)
into Eq.(31) results inJ = −1/2 knowing that

1∫
0

g(ζ )δ(ζ − 1)dζ = (1/2)g(1).

If the incident light is transmitted and focused on the r
part of the particle surface, Eq.(32) should be modified in
reverse with the angleθ and its substitution into Eq.(31)
yieldsJ = 1/2. Thus, the range of the asymmetry factor
−1/2 � J � 1/2. According to Eq.(30), the photophoretic
velocity at on illumination of an intensity comparable to t
solar constant (1353 W m−2) is on the order of 10−5 m s−1.

By the linearity of the problem, the same value of

normalized photophoretic velocity is predicted for a given
combination ofk∗, C∗

t , C∗
m, anda/d whether the particle is

approaching the plane wall or receding from it.
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Table 1
Normalized photophoretic mobility of a spherical particle moving perpendicular to a plane wall

a/d U/U0

C∗
t = 2C∗

m = 0.02 C∗
t = 2C∗

m = 0.2

k∗ = 0 k∗ = 1 k∗ = 10 k∗ = 100 k∗ = 0 k∗ = 1 k∗ = 10 k∗ = 100

0 1 1 1 1 1 1 1 1
0.1 0.99615 0.99708 0.99875 1.00576 0.99733 0.99917 1.00681 1.07
0.2 0.98225 0.98630 0.99356 1.02194 0.98677 0.99438 1.02538 1.29
0.3 0.95589 0.96563 0.98316 1.04860 0.96541 0.98292 1.05400 1.67
0.4 0.91522 0.93354 0.96709 1.08841 0.93091 0.96258 1.09221 2.21
0.5 0.85791 0.88816 0.94508 1.14764 0.88062 0.93077 1.14048 2.95
0.6 0.78017 0.82634 0.91688 1.23912 0.81066 0.88358 1.19956 3.94
0.7 0.67557 0.74227 0.88209 1.39044 0.71479 0.81404 1.26856 5.24
0.8 0.53302 0.62437 0.84021 1.67222 0.58226 0.70800 1.33672 6.91
0.9 0.33199 0.44385 0.78874 2.33781 0.39035 0.52828 1.33283 8.69
0.95 0.19723 0.30288 0.74658 3.15679 0.25188 0.37173 1.17040 8.6
0.99 0.05885 0.11546 0.56164 4.21222 0.08011 0.13257 0.55408 4.6
.799 5778

.850 8223
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0.995 0.03570 0.07447 0.43936 3
0.999 0.01071 0.02401 0.18049 1

3. Results and discussion

The solution for the photophoretic motion of a spheri
particle normal to a plane wall, obtained by using the bou
ary collocation method described in the previous sect
is presented in this section. The system of linear algeb
equations to be solved for the coefficientsTn andHn is con-
structed from Eq.(15), while that forBn andDn is composed
of Eqs.(26) and (27).

In specifying the points along the semicircular gene
ing arc of the sphere (with a constant value ofφ) where the
boundary conditions are to be exactly satisfied, the first p
that should be chosen isθ = π/2, since this point define
the projected area of the particle normal to the direction
motion. In addition, the pointsθ = 0 andπ are also impor-
tant because they control the gap between the sphere
the plane. However, an examination of the systems of
ear algebraic equations given by Eqs.(15) and(27) shows
that the matrix equations become singular if these points
used. To overcome this difficulty, these points are repla
by closely adjacent points, i.e.,θ = δ, π/2− δ, π/2+ δ, and
π − δ. Additional points along the boundary are selected
mirror-image pairs about the planeθ = π/2 to divide the
two quarter-circular arcs of the particle into equal segme
The optimum value ofδ in this work is found to be 0.01◦, to
which the numerical results of the particle velocity conve
satisfactorily.

For the continuum-with-slippage approach employed
this work, the Knudsen number(l/a) of the system should
be smaller than about 0.1. As mentioned in the first sect
a set of well-adapted values for the temperature jump
frictional slip coefficients under the condition of comple
thermal and momentum accommodations are 2.18 and 1.14,
respectively. Consequently, the normalized coefficientsC∗

t∗
and Cm must be restricted to be less than unity. For con-
venience we will use the ratioC∗

t /C∗
m = 2 (rounded from

2.18/1.14 = 1.91) throughout this section, without loss of
05 0.04577 0.07751 0.34294 2.9
88 0.01086 0.01884 0.08861 0.7

d

reality or generality. On the other hand, although the si
aerogel can have a low thermal conductivity comparabl
that of nonmetallic gases[22], the thermal conductivity o
an aerosol particle is typically much higher than that of
surrounding gas. Thus, the value of the relative conducti
k∗ will exceed unity under most practical circumstances.

The collocation solutions for the wall-corrected reduc
photophoretic mobility of an opaque spherical particle w
the heat source distribution function given by Eq.(32) mov-
ing perpendicular to a plane wall for various values of
parametersC∗

m (= C∗
t /2), k∗, anda/d are presented inTa-

ble 1and depicted inFigs. 2–4. The cases ofk∗ < 1, which
are not likely to exist in practice, are considered here for
sake of numerical comparison. All of the results obtained

Fig. 2. Plots of the normalized velocity of a spherical particle undergo

photophoresis perpendicular to a plane wall versus the separation parame-
ter a/d for various values ofk∗. The solid curves represent the case of
C∗

t = 2C∗
m = 0, and the dashed curves denote the case ofC∗

t = 2C∗
m = 0.2.
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Fig. 3. Plots of the normalized velocity of a spherical particle unde
ing photophoresis perpendicular to a plane wall versus the relative the
conductivity of the particle for various values of the separation param
a/d . The solid curves represent the case ofC∗

t = 2C∗
m = 0, and the dashe

curves denote the case ofC∗
t = 2C∗

m = 0.2.

der the collocation scheme converge satisfactorily to at l
the significant figures shown in the table. The accuracy
convergence behavior of the truncation technique is pri
pally a function of the relative spacing(d − a)/a. For the
difficult case witha/d = 0.999, the numbers of collocatio
pointsN = 250 and 250 are sufficiently large to achieve t
convergence. As expected, the particle will move with
velocity that would exist in the absence of the wall, giv
by Eq. (30), asa/d = 0. In general, the wall effect on th
photophoresis of a particle can be quite significant in p
tical situations. It should be pointed out that the continu
assumption for the fluid flow in the gap between the pa
cle and the wall might have failed for the table and figu
asa/d > 0.99 in the case ofC∗

m = 0.01 and asa/d > 0.9 in
the case ofC∗

m = 0.1.
It is found that the normalized photophoretic mobil

U/U0 of the particle increases with an increase in the
ative conductivityk∗, keeping the other factors (C∗

t , C∗
m,

anda/d) unchanged. The increase in the particle mobi
becomes more pronounced asa/d increases. This behavio
is expected knowing that the temperature gradients on
particle surface near an isothermal plane wall increas
k∗ increases[23]. The value ofU/U0 becomes a sensitiv
function of k∗ if the value ofC∗

m or a/d is relatively large.
On the other hand, the normalized photophoretic mobility
the particle in general increases with an increase inC∗

m for
specified values ofk∗ anda/d , andU/U0 is not a sensitive
function ofC∗

m if the value ofC∗
m is small.
Examination of the results shown inTable 1andFig. 2
reveals an interesting feature. For the case of a sphere with
a relatively small value ofk∗, the photophoretic mobility of
Interface Science 289 (2005) 94–103

Fig. 4. Plots of the normalized velocity of a spherical particle w
C∗

t = 2C∗
m undergoing photophoresis perpendicular to a plane wall ve

the normalized frictional slip coefficient for various values of the sep
tion parametera/d . The solid curves represent the case ofk∗ = 0, and the
dashed curves denote the case ofk∗ = 10.

the particle near the plane wall is a monotonically decre
ing function ofa/d . For the case of a sphere with a relative
large value ofk∗, however, the photophoretic mobility of th
particle increases with an increase ina/d whena/d is small,
but decreases steadily from a maximum with increasinga/d

when a/d is sufficiently large, going to zero in the limi
The locations of the maximum shift to larger values ofa/d

as the parameterk∗ increases orC∗
m decreases. At the max

mum point, the particle can move much faster than it wo
at a/d = 0. For example, asC∗

t = 2C∗
m = 0.2, k∗ = 100,

anda/d = 0.9, the photophoretic velocity can be more th
seven times higher than the value with the wall far away fr
the particle. This interesting feature thatU/U0 may not be
a monotonic function ofa/d and can even be greater th
unity is understandable because the wall effect of hydro
namic (viscous) resistance on the particle is in competi
with the wall effect of thermal enhancement when the p
ticle with a relatively large value ofk∗ is undergoing pho
tophoretic motion perpendicular to an isothermal plate.
understood that the value ofl/(d − a) may be greater tha
unity for the case ofa/d → 1 (asC∗

t = 2C∗
m = 0.2 or 0.02),

where the continuum model for the fluid is not likely to
valid in practice. This limiting case is considered here
the sake of numerical comparison. Since the magnitud
U0 can be quite small at large values ofk∗ (to which the
particle surface temperature is almost uniform), the str
thermal enhancement on the particle velocity can make

value ofU/U0 much greater than unity. This unexpected be-
havior of wall enhancement on the particle migration also
occurs in the case of thermophoresis of an aerosol sphere
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Fig. 5. Plots of the normalized photophoretic mobility (solid curves, w
C∗

t = 2C∗
m and k∗ = 1) and sedimenting mobility (dashed curves) o

spherical particle migrating perpendicular to a plane wall versus the
aration parametera/d for different values ofC∗

m.

with a relatively large value ofk∗ normal to an isotherma
plane wall[24].

For the creeping motion of a spherical aerosol part
with a frictional (but isothermal) slip surface on which
constant body forceF ez (e.g., a gravitational field) is ex
erted perpendicular to an infinite plane wall, exact result
the particle velocity have been obtained by using sphe
bipolar coordinates[25]. A comparison of the boundary e
fects on the motion of an aerosol sphere under gravity
which U0 = (F/6πηa)(1 + 3C∗

m)/(1 + 2C∗
m)) and on the

photophoresis of the particle (withk∗ = 1, so that the effec
of heat conduction will not be important) is given inFig. 5.
Similar to the case of photophoresis, the wall effect on
particle motion in a gravitational field is stronger when
value ofC∗

m becomes smaller. Evidently, the wall effect
a photophoretic particle in general is much weaker than
on a sedimenting particle.

4. Concluding remarks

In this work, the quasisteady photophoresis of a sph
cal particle in a gaseous medium normal to a plane wall
been analyzed by using the boundary collocation meth
On the basis of the assumption of small Knudsen, Peclet
Reynolds numbers, the temperature and fluid flow fields
this axisymmetric motion are solved and the wall-correc
particle velocity is obtained. This photophoretic velocity r
ative to its undisturbed value increases monotonically w
an increase in the relative thermal conductivityk∗ of the

∗
particle. When the value ofk is sufficiently large, the pho-
tophoretic mobility of a particle near a wall may not be a
monotonic decreasing function of the separation parameter
Interface Science 289 (2005) 94–103 101

a/d , and the wall effect can speed up or slow down the p
ticle velocity with respect to its isolated value. This behav
reflects the competition between the weak hydrodyna
retardation exerted by the neighboring wall on the part
migration and the possible relatively strong thermophor
enhancement due to the thermal interaction between the
ticle and the wall. The results show that the boundary ef
of the plane wall on the photophoretic motion of an aero
particle can be significant in some situations. In pract
aerosol systems, the boundary effect on photophoresis
particle in general is weaker than that on the particle mo
driven by gravity.

In the previous section, we have presented the res
of wall-corrected photophoretic mobility calculated from
simplified model for a completely opaque sphere whose
sources are concentrated on the illuminated part of the
ticle surface. A calculation according to the Lorenz–M
theory showed bad applicability of this model even for la
strongly absorbing spherical particles[26]. Evidently, if we
perform a corresponding calculation for a model transp
ent sphere with heat sources concentrated completely o
rear half of the particle surface, the same results but with
posite direction (negative photophoresis) will be obtained
one uses a more consecutive energy-absorbing model
that defined by Eq.(32) for the asymmetry factorJ given
by Eq.(31)based on the Lorenz–Mie theory, it is expecta
that the resulted photophoretic mobility of the sphere will
qualitatively similar to but quantitatively smaller than th
obtained from using Eq.(32).

It is worth repeating that our results for the photophore
velocity are obtained on the basis of a continuum mode
the gas phase with slip-flow boundary conditions at the
ticle surface. For a perfect gas, the kinetic theory pred
that the mean free path of gas molecules is inversely pro
tional to the pressure[27]. As examples, the mean free pa
of air molecules at 25◦C is about 67 nm at 1 atm and is abo
51 µm at 1 Torr. Therefore, our results obtained with the
sumption of small Knudsen number can be used for a b
range of particle sizes around atmospheric pressure bu
only applicable to relatively large particles at low pressur
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Appendix A. Definitions of some functions in Section 2

For conciseness the definitions of some functions in S
tion 2 are listed here:

α′
n(ρ, z) = ρ

[
An(ρ, z) − An(ρ,2d − z)

]

− (n + 1)z

[
B ′′

n+1(ρ, z) + B ′′
n+1(ρ,2d − z)

]
,

(A.1a)
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α′′
n(ρ, z) = z

[
An(ρ, z) − An(ρ,2d − z)

]
+ (n + 1)ρ

[
B ′′

n+1(ρ, z) + B ′′
n+1(ρ,2d − z)

]
,

(A.1b)

β ′
n(ρ, z) = B ′

n(ρ, z) − B ′
n(ρ,2d − z)

(A.2a)+ 2(n + 1)(d − z)B ′
n+1(ρ,2d − z),

β ′′
n(ρ, z) = B ′′

n(ρ, z) − B ′′
n(ρ,2d − z)

(A.2b)− 2(n + 1)(d − z)B ′′
n+1(ρ,2d − z),

δ′
n(ρ, z) = D′

n(ρ, z) − D′
n(ρ,2d − z)

− (2/n)(n − 1)(n − 3)(d − z)B ′
n−1(ρ,2d − z)

(A.3a)+ 2(2n − 3)d(d − z)B ′
n(ρ,2d − z),

δ′′
n(ρ, z) = D′′

n(ρ, z) − D′′
n(ρ,2d − z)

+ 2(n − 2)(d − z)B ′′
n−1(ρ,2d − z)

(A.3b)− 2(2n − 3)d(d − z)B ′′
n (ρ,2d − z),

where

An(ρ, z) = nz2 − (n + 1)ρ2

ρ(ρ2 + z2)(n+3)/2
Pn

[
z

(ρ2 + z2)1/2

]

− nz

ρ(ρ2 + z2)(n+2)/2
Pn−1

[
z

(ρ2 + z2)1/2

]
,

(A.4)

(A.5a)B ′
n(ρ, z) = n + 1

ρ(ρ2 + z2)n/2
G

−1/2
n+1

[
z

(ρ2 + z2)1/2

]
,

(A.5b)B ′′
n(ρ, z) = 1

(ρ2 + z2)(n+1)/2
Pn

[
z

(ρ2 + z2)1/2

]
,

D′
n(ρ, z) = n + 1

ρ(ρ2 + z2)(n−2)/2
G

−1/2
n+1

[
z

(ρ2 + z2)1/2

]

− 2z

ρ(ρ2 + z2)(n−1)/2
G

−1/2
n

[
z

(ρ2 + z2)1/2

]
,

(A.6a)

D′′
n(ρ, z) = 2

(ρ2 + z2)(n−1)/2
G

−1/2
n

[
z

(ρ2 + z2)1/2

]

(A.6b)+ 1

(ρ2 + z2)(n−1)/2
Pn

[
z

(ρ2 + z2)1/2

]
.

In the above equations,Pn is the Legendre polynomial o
ordern andG

−1/2
n is the Gegenbauer polynomial of the fir

kind of ordern and degree−1/2.

Appendix B. Nomenclature

An functions ofρ andz defined by Eq.(A.4) (m−n−2)
a particle radius (m)
B(ζ, θ) dimensionless electric field distribution functio
defined by Eq.(4)
Bn,Dn coefficients in Eqs.(25) and (26)for the flow field
B ′

n,B
′′
n functions ofρ andz defined by Eqs.(A.5) (m−n−1)
Interface Science 289 (2005) 94–103

Cm coefficient accounting for the frictional slip at th
particle surface

C∗
m = Cml/a

Cs coefficient accounting for the thermal slip at t
particle surface

Ct coefficient accounting for the temperature jump
the particle surface

C∗
t = Ctl/a

D′
n,D

′′
n functions ofρ andz defined by Eqs.(A.6) (m−n+1)

d distance between the particle center and the p
wall (m)

E2 the Stokes operator defined by Eq.(18) (m−2)
G

−1/2
n the Gegenbauer polynomial of the first kind of o

dern and degree−1/2
Hn coefficients in Eq.(11) for the internal temperatur

field
I intensity of the incident light beam (W m−2)
J the photophoretic asymmetry factor of the parti

defined by Eq.(31)
Jn the Bessel function of the first kind of ordern

k thermal conductivity of the fluid (W m−1K−1)
kp thermal conductivity of the particle (W m−1K−1)
k∗ = kp/k

l mean free path of the gas molecules (m)
Pn the Legendre polynomial of ordern
r radial spherical coordinate (m)
Sn(ζ ) function ofζ defined by Eq.(12)
T temperature distribution in the fluid phase (K)
Tn coefficients in Eqs.(10) and (13)for the external

temperature field
Tp temperature distribution inside the particle (K)
T0 temperature of the bulk gas and the plane wall (
U photophoretic velocity of a particle (m s−1)
U0 photophoretic velocity of an isolated particle

(m s−1)
vr , vθ components of the fluid velocity in spherical coo

dinates (m s−1)
vρ, vz components of the fluid velocity in cylindrical co

ordinates (m s−1)
z axial cylindrical coordinate (m)

Greek letters

α′
n,α

′′
n functions ofρ andz defined by Eqs.(A.1) (m−n−1)

β ′
n,β

′′
n functions ofρ andz defined by Eqs.(A.2) (m−n−1)

δ′
n, δ

′′
n functions ofρ andz defined by Eqs.(A.3) (m−n+1)

ζ = r/a

η viscosity of the fluid (kg m−1s−1)
θ,φ angular spherical coordinates
λ the wavelength of the incident light beam (m)
υ,κ real and imaginary parts of the complex refract

indexN of the particle
ρ radial cylindrical coordinate (m)

ρf density of the fluid (kg m−3)
Ψ Stokes stream function for the fluid flow (m3s−1)
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