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Diffusioosmosis of Electrolyte Solutions in a Fine Capillary Tube

Huan J. Keh* and Hsien Chen Ma

Department of Chemical Engineering, National Taiwan UniVersity, Taipei 10617,
Taiwan, Republic of China

ReceiVed September 13, 2006. In Final Form: NoVember 29, 2006

A theoretical study is presented for the steady diffusioosmotic flow of an electrolyte solution in a fine capillary
tube generated by a constant concentration gradient imposed in the axial direction. The capillary wall may have either
a constant surface potential or a constant surface charge density of an arbitrary quantity. The electric double layer
adjacent to the charged wall may have an arbitrary thickness, and its electrostatic potential distribution is determined
by an analytical approximation to the solution of the Poisson-Boltzmann equation. Solving a modified Navier-Stokes
equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and
diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the axial
direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the
radial position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient
is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the
electrolyte solution, and other relevant factors. For a prescribed concentration gradient of an electrolyte, the magnitude
of fluid velocity at a position in general increases with an increase in its distance from the capillary wall, but there
are exceptions. The effect of the radial distribution of the induced tangential electric field and the relaxation effect
due to ionic convection in the double layer on the diffusioosmotic flow are found to be very significant.

1. Introduction

The electrokinetic flows of an electrolyte solution in a small
pore with a charged wall are of much fundamental and practical
interest in various areas of science and engineering. Perhaps the
most familiar example of electrokinetic flows is electroosmosis,
which results from the interaction between an external tangential
electric field and the electrical double layer adjacent to the charged
wall. Problems of fluid flow caused by this well-known
mechanism were studied extensively in the past.1-12

Another example of electrokinetic flows in a capillary pore,
which is termed diffusioosmosis (also known as capillary
osmosis5,13) and has caught less attention, involves a concentration
gradient of the electrolyte along the capillary that interacts with
the charged wall. Same as in the case of electroosmosis, the
electrolyte-wall interaction in diffusioosmosis is electrostatic
in nature and its range is the Debye screening lengthκ -1 (defined
right after eq 3). The fluid motion caused by diffusioosmosis has
been analytically examined for flows near a plane wall5,13-18and
inside a capillary pore.19-23 Some experimental results and
interesting applications concerning diffusioosmosis are also

available in the literature.24 Electrolyte solutions with a con-
centration gradient of order 100 kmol/m4 ()1 M/cm) along solid
surfaces with a zeta potential of orderkT/e (∼25 mV; e is the
charge of a proton,k is the Boltzmann constant, andT is the
absolute temperature) can flow by diffusioosmosis at a velocity
of several micrometers per second.

A tangential gradient of a dissociating electrolyte produces
fluid flow along a charged solid surface by two mechanisms.
The first involves the stresses developed by the tangential gradient
of the excess pressure within the electric double layer (chemi-
osmotic effect), and the second is based on the macroscopic
electric field that is generated because the tangential diffusive
and convective fluxes of the two electrolyte ions are not equal
(electroosmotic effect). Both mechanisms were considered to
some extent in previous investigations for the diffusioosmotic
flow.13-23 In these studies, however, either the effect of lateral
distributions of the counterions and co-ions (or of the electrostatic
potential) on the local electric field induced by the imposed
electrolyte concentration gradient in the tangential direction inside
the double layer or the effect of the ionic convection on it caused
by the diffusioosmotic flow was neglected. Moreover, the analyses
concerning the diffusioosmotic flow in capillary tubes22,23 are
subject to the severe restriction that the zeta potential is sufficiently
low (less than about 25 mV) for the Debye-Huckel approximation
to be acceptable. In practical applications, however, zeta potentials
as high as 100-200 mV are frequently encountered.

In this work we present a comprehensive analysis of the
diffusioosmosis of an electrolyte solution with a constant
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prescribed concentration gradient in the axial direction of a narrow
capillary tube. The zeta potential or surface charge density of the
capillary wall is assumed to be uniform, but no assumption is
made concerning the magnitude of the zeta potential or the
thickness of the double layer, and both the radial distribution of
the induced axial electric field and the effect of the ionic
convection on it are allowed. The Poisson-Boltzmann equation
governing the electrostatic potential within the capillary is solved
by an analytical approximation, which has been shown to yield
results differing only slightly from the exact numerical solution.6,25

Semianalytical results for the diffusioosmotic velocity profile
are obtained for various cases. These results show that the effect
of the deviation of the induced axial electric field in the double
layer from its bulk-phase quantity and the effect of the ionic
convection on the diffusioosmotic velocity of the fluid are very
significant in most practical situations, even for the case of a
very thin double layer.

2. Electrostatic Potential Distribution
In this section, we consider the radial distribution of the

electrostatic potential in the fluid solution of a symmetrically
charged electrolyte of valenceZ (whereZ is a positive integer)
undergoing diffusioosmosis in a straight capillary tube of radius
Rand lengthL with R, L, as illustrated in Figure 1, at the steady
state. The discrete nature of the surface charges, which are
uniformly distributed over the capillary wall, is ignored. The
applied electrolyte concentration gradient∇n∞ is a constant along
the axial (z) direction in the capillary, wheren∞(z) is the linear
concentration (number density) distribution of the electrolyte in
the bulk solution phase in equilibrium with the fluid inside the
capillary. The electrolyte ions can diffuse freely in the capillary,
so there exists no regular osmotic flow of the solvent. The end
effects are neglected. It is assumed thatn∞ is only slightly
nonuniform such thatL|3n∞|/n∞(0) , 1, wherez ) 0 is set at
the midpoint through the capillary. Thus, the variation of the
electrostatic potential (excluding the macroscopic electric field
induced by the electrolyte gradient, which will be discussed in
section 3) and ionic concentrations in the electric double layer
adjacent to the capillary wall with the axial position can be
neglected in comparison with their corresponding quantities at
z ) 0.

If ψ(r) represents the electrostatic potential at a point with
distancer from the axis of the capillary tube relative to that in
the bulk solution, andn+(r,z) and n-(r,z) denote the local
concentrations of the cations and anions, respectively, then the
Poisson equation gives

In this equation,ε ) 4πε0εr, whereεr is the relative permittivity
of the electrolyte solution andε0 is the permittivity of a vacuum.

The local ionic concentrations can also be related to the
electrostatic potential by the Boltzmann equation

where ψh ) Zeψ/kT is the dimensionless potential profile.
Substitution of eq 2 into eq 1 results in the well-known Poisson-
Boltzmann equation

whereκ) [8π(Ze)2n∞(0)/εkT]1/2is the Debye screening parameter.
2.1. The Case of Constant Surface Potential.For the case

of constant surface potential, the boundary conditions forψ are

where the constantúh ) Zeú/kTis the dimensionless zeta potential
at the shear plane of the capillary wall adjacent to the electrolyte
solution having a uniform bulk concentrationn∞(0).

Since there is no simple analytical solution of eq 3 available
for the case of cylindrical symmetry, we follow a previous
approach6,25 and use an approximation to provide a good
representation of sinhψh throughout the rangeψh g 0

and replace eq 3 by a pair of equations

Only the positive values ofψh are considered here without the
loss of generality.

In this approach, we have divided the capillary into two
hypothetical concentric regions such thatψh ) 1 ( sinhψh ) 1.175
andeψh /2 ) 1.359) at their junctionr ) r*, where the subscripts
L and H designate the inner (or low potential) and outer (or high
potential) regions, respectively, as shown in Figure 1. Ifúh e1,
then region L comprises the whole of the capillary tube. Ifψh (0)
g1, then region H occupies the whole tube. In other cases, eq
6 is subject to eq 4 and the additional boundary conditions

which together ensure that the calculatedψh (r) profile, albeit
approximate, will be a smooth continuous function in the
neighborhood ofr ) r*.

The relation among the dimensionless parametersκr*, úh, and
κR is displayed in Figure 2 and the analytical solutions forψh L(r)
andψh H(r) are outlined below in terms of several subdomains.

(25) Philip, J. R.; Wooding, R. A.J. Chem. Phys.1970, 52, 953.

Figure 1. Geometrical sketch for the diffusioosmosis in a capillary
tube due to an axially applied concentration gradient of electrolyte.
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In subdomain I (úh e 1), the low potential region fills the capillary
entirely, and the electrostatic potential distribution is

whereIn is the modified Bessel function of the first kind of order
n. As expected, Figure 2 illustrates thatr* ) R asúh ) 1.

In subdomain IIA (r* > r0*, wherer0* is a critical value of
r* used to provide ranges for the subdomains), the solution of
eqs 6, 7, and 4 results in

whereC is an integration constant dependent on the parameter
κr*

The above equation givesC < 0 (and a meaningful solution in
eq 9b) for r* > r0* and C ) 0 at r* ) r0* (the junction of
subdomains IIA and IIB), whereκr0* ) 2.15852; in the latter
case eq 9b becomes

In the subdomain IIB ( 0< r* < r0* and 0< C < 4), ψh L is
also given by eq 9a, while eq 9b is replaced by

where

In the subdomain III (r* ) 0,C) 4, andψh H(0)g1), the region
of the potentialψh H fills the capillary entirely, and

Here, the quantityψh H(0) can be determined as a function of the
parametersúh andκR from the above equation settingr ) Rand
ψh H(R) ) úh.

Usually an analytical solution of the Poisson-Boltzmann
equation in the form of eq 3 is obtained either for a small zeta
potentialúh or for a large electrokinetic radiusκR. An advantage

of the above analysis is the method to find the potential distribution
ψh for any values ofúh andκR.

2.2. The Case of Constant Surface Charge Density.If the
constant surface charge densityσ, instead of the surface potential
ú, is known at the capillary wall, the boundary condition specified
by eq 4b should be replaced by the Gauss condition

The solutions forψ given by eqs 8-14 still hold for this condition,
with the connection betweenú andσ for an arbitrary value of
κR as

where σj ) 4πRZeσ/εkT is the dimensionless surface charge
density. Equation 16 indicates that, for a given electrolyte solution
in a capillary tube with a specified radius,σ increases (almost
linearly) with an increase inκ or [n∞(0)]1/2for the case of constant
surface potential, andú decreases with an increase inκor [n∞(0)]1/2

for the case of constant surface charge density.

3. Induced Electric Field Distribution

The ionic concentrationsn+ andn- in the fluid undergoing
diffusioosmosis in the capillary are not uniform in both axial (z)
and radial (r) directions; hence their prescribed gradients in the
axial direction can give rise to a “diffusion current” distribution
on a cross section of the capillary. To prevent a continuous
separation of the counterions and co-ions, an electric field
distribution along the axial direction arises spontaneously in the
electrolyte solution to produce another electric current distribution
which exactly balances the diffusion current.13-18 This induced
electric field generates an electroosmotic flow of the fluid in the
capillary, in addition to the chemiosmotic flow caused by the
prescribed electrolyte gradient directly. Both the chemiosmotic
and the electroosmotic flows also generate an electric current
distribution by the ionic convection (known as the relaxation

ψL(r) ) ú
I0(κr)

I0(κR)
for 0 e r e R (8)

ψL(r) )
I0(κr)

I0(κr*)
for 0 e r er* (9a)
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for r* e r e R
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I1(κr*)

I0(κr*)]2

- (κr*) 2e (10)
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xer0*
- κr

2
ln

r
r0*) (11)

for r* e r e R
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ψH(r) ) ψH(0) - 2 ln[1 -
(κr)2

16
eψH(0)]
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Figure 2. Map showing the relation among the dimensionless
parametersκr*, úh, andκRand displaying the fundamental subdomains
for the solution ofψh (r).
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effect), and alternately, this secondary “convection current” again
needs to be balanced by the electric current contributed from the
induced electric field.

The total flux of either ionic species can be expressed as the
general form

whereu ) u(r)ez is the fluid velocity in the axial direction of
decreasing electrolyte concentration (i.e.,ez is the unit vector in
the direction of-∇ n∞),D + andD- are the diffusion coefficients
of the cations and anions, respectively,E ) E(r)ez is the
macroscopic electric field induced by the prescribed concentration
gradient of the electrolyte, and the principle of superposition for
the electric potential is used. To have no net electric current
arising from the cocurrent diffusion, electric migration, and
diffusioosmotic convection of the cations and anions, one must
require thatJ + ) J- ) J (obviously, the radial component of
J vanishes and the ionic fluxes induced by3ψ in eq 17 are
balanced by the radial components of the diffusive ionic fluxes
as required by the Boltzmann distribution given by eq 2).

Applying the constraintJ+ ) J- to eq 17, we obtain26

where

which is a characteristic value of the diffusioosmotic velocity

andη is the fluid viscosity. As it is defined by eq 20,-1 e â
e1, with the upper and lower bounds occurring asD-/D+ f 0
and∞, respectively.

Typical values of the physical quantities in eqs 18-21 areU*
) 10 -5 m/s,D( ) 10-9 m2/s, n∞(0)/|3n∞| ) 10-4 m, and Pe
of order unity. The induced electric fieldE given by eq 18 in
a self-consistent way depends on the local electrostatic potential
ψ and fluid velocityu. It indicates thatE is collinear with and
proportional to the axially imposed electrolyte gradient3n∞.

If we consider the situation thatκR . 1, then, at a position
r , R, ψ f 0 and eq 18 for the induced electric field caused
by the imposed electrolyte concentration gradient reduces to its
bulk-phase quantity

For the special case of an uncharged wall (ú ) 0), E at any
locationr is also identical to this bulk-phase quantity. Note that

E∞ is linearly proportional to the parameterâ, but E(r) is not
necessarily to vanish ifâ ) 0, even as Pe) 0, as shown in eq
18.

4. Fluid Velocity Distribution

We now consider the steady diffusioosmotic flow of a
symmetric electrolyte solution in a capillary tube under the
influence of a constant concentration gradient of the electrolyte
prescribed axially. The momentum balances on the incompressible
and Newtonian fluid in ther andz directions give

wherep(r,z) is the dynamic pressure distribution. The boundary
conditions foruat the axis and at the no-slip wall of the capillary
tube are

After the substitution of eq 2 into eq 23a based on the
assumption that the equilibrium ionic distributions are not affected
by the net electrolyte fluxJ, which is warranted if|3n∞|/κn∞(0)
, 1, the pressure distribution can be determined as

Here,p0 is the pressure on the axis of the capillary tube, which
is a constant in the absence of the applied pressure gradient, and
the electric potential distributionψh (r) is given by eqs 8-14.

Substituting the ionic concentration distributions of eq 2 and
the pressure profile of eq 25 into eq 23b and then performing
the integration with respect tor twice subject to the boundary
conditions in eq 24, we obtain

After the substitution of eq 26 foru and eqs 8-14 for ψh into
eq 18, the induced electric field distributionEcan be numerically
solved as a function of the dimensionless parametersκR, úh, â,
and Pe. With the known results ofψh andE, the diffusioosmotic
velocity distribution of the electrolyte solution as a function of
κR, úh, â, and Pe can be determined from eq 26 with the numerical
integrations. As expected, eq 26 yieldsu/U* ) 0 (sinceψh ) 0)
everywhere ifú ) 0. It is understood that, for given values of
κR, Pe, andr/R, the quantityu/U* with specified values-úh and
â is equal to that with the valuesúh and-â.

5. Results and Discussion
5.1. Method of the Numerical Calculation.The distribution

of the macroscopic electric fieldE(r) induced by the concentration
gradient of a symmetric electrolyte prescribed axially in a capillary
tube can be numerically determined after substituting the fluid
velocity u(r)/U* in the form of eq 26 and the electric potential
ψh (r) calculated from eqs 8-14 into eq 18. A simple method of
this numerical calculation is to make an initial guess of the fluid
velocity distributionu1(r/R)/U* for a given combination of the(26) Ma, H. C.; Keh, H. J.J. Colloid Interface Sci.2006, 298, 476.
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r/R R
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dimensionless parametersúh, â, Pe, andκR, and to obtain the
resulting induced electric fieldE1(r/R) from eq 18. Then, the
next result of the velocity distributionu2(r/R)/U* can be
determined from the double integral involvingE1(r/R) in eq 26.
If the difference betweenu2(r/R) and u1(r/R) is beyond the
tolerable error, thenu2(r/R)/U* is used in eq 18 to obtainE2(r/R),
and the same procedure will be repeated until an acceptable
result of the velocity distribution is obtained.

5.2. Induced Electric Field Distribution. The induced electric
field caused by the axially prescribed electrolyte gradient in the
capillary tube normalized by its quantity at the axis,E(0), as a
function of the normalized coordinater/R is plotted in Figures
3 and 4 for several values of the parametersúh, â, Pe, andκR.
Note that each curve with specified values of-úh andâ in the
figures would be identical to that with the valuesúh and-â. As
expected, the magnitude of the normalized induced electric field
in general is a sensitive function ofr/R and can deviate much
from its bulk-phase value. This fact plays an important role on
the electroosmotic contribution to the fluid velocity.23

When Pe) 0, the effect of the ionic convection on the induced
electric field is not involved, as indicated in eq 18. In this case,

E(r)/E(0) is positive and its value increases with an increase in
r/Rfrom unity at the axis of the tube to a maximum at the capillary
wall, increases with an increase inκR, decreases with an increase
in |úh|, equals unity in the limitsâú /|ú| ) (1, and increases with
an increase inâú /|ú| if it is not too close to unity (depending
on the value ofκR), for an otherwise specified condition.

On the other hand, when the value of Pe is finite, the value
of E(r)/E(0) is larger than that for the case of Pe) 0 if the
magnitude ofúh is small (depending on the values ofκR andâ),
but it may not be a monotonic function ofr/R and may become
negative if the magnitude ofúh is large. In general, the effect of
the electrolyte convection on the local induced electric field in
the electric double layer adjacent to the capillary wall can be
quite significant, not only quantitatively but also qualitatively,
even for the case of low zeta potential at the wall.

5.3. Fluid Velocity Distribution. The dimensionless diffu-
sioosmotic velocity distributionu(r)/U* of an electrolyte solution
in a capillary tube numerically calculated using eq 26 with the
known distributions ofψh andE is plotted in Figures 5 and 6 for
several values of the parametersúh, â, Pe, andκR. This
diffusioosmotic velocity can be either positive or negative and

Figure 3. Plots of the normalized electric field induced by an
electrolyte gradient in the axial direction of a capillary tube versus
the dimensionless coordinater/Rfor the case ofκR) 1 with various
values of the parameterâ: (a) úh ) 1; (b) úh ) 6. The solid curves
represent the case Pe) 1 and the dashed curves denote the case Pe
) 0.

Figure 4. Plots of the normalized electric field induced by an
electrolyte gradient in the axial direction of a capillary tube versus
the dimensionless coordinater/R for the case ofâ ) 0 with various
values of the parameterκR: (a) Pe) 0; (b) Pe) 1. The solid curves
represent the caseúh ) 1, and the dashed curves denote the caseúh
) 6.

Diffusioosmosis of Electrolyte Solutions Langmuir, Vol. 23, No. 5, 20072883



is a monotonic increasing function ofâú /|ú|. In general, the
magnitude ofu/U* decreases monotonically with an increase in
the normalized coordinater/R(there are exceptions), but it is not
necessarily a monotonic function ofκR for given values ofâ,
Pe, andr/R.

When Pe) 0 andâú/|ú| is not too close to unity,u is negative,
meaning that the diffusioosmotic flow is in the direction of
increasing electrolyte concentration, and the magnitude ofu/U*
increases with an increase in|úh| and with a decrease inâú/|ú|,
for an otherwise specified condition. When Pe) 0 andâú/|ú|
approaches unity, the fluid flows against the electrolyte con-
centration gradient (u is positive) andu/U* is a monotonic
increasing function of|úh|.

When the value of Pe is finite, the dependence ofu on r/R is
similar to that for the case of Pe) 0 if the value of|úh| is small,
butu can be positive for any given value ofâ if the value of|úh|
is large. In general, the value ofu/U* increases monotonically
and remarkably with an increase in the value of Pe (the relaxation
effect due to ionic convection on the diffusioosmotic flow is
very significant) for specified values ofκR, úh, andâ except for
the situation that the value ofâú/|ú| is close to unity. In the limit

of Pef ∞, u/U* is finite. Note that the case with Peg10, which
are not likely to exist in practice, is exhibited in Figure 6a for
the sake of numerical comparison.

5.4. Fluid Velocity at the Axis of the Tube.In Figure 7, the
normalized diffusioosmotic velocityu(0)/U* of the electrolyte
solution at the axis of the capillary tube is plotted versus the
parametersκRandúh at specified values of Pe andâ. Maps showing
the direction of this velocity for a typical value ofκR are also
drawn in Figure 9. The dependence ofu(0)/U* on úh, â, κR, and
Pe is quite similar to that ofu/U* for a given value ofr/R, and
it is not necessarily a monotonic function ofκR for given values
of â and Pe.

When Pe) 0 and the product ofú andâ is negative (inside
the second and fourth quadrants in Figure 8a),u(0) is negative
and the electrolyte solution flows toward higher concentration.
When Pe) 0 and the product ofú andâ is positive (inside the
first and third quadrants in Figure 8a), the diffusioosmotic velocity
u(0) may reverse its direction from against the concentration
gradient to along with it as|úh| increases not much from zero for
all practical cases ofâ (in addition to a reversal occurring atúh
) 0), or as|â| decreases from 1 to 0 for a small magnitude of
úh.

Figure 5. Plots of the normalized diffusioosmotic velocity in a
capillary tube versus the dimensionless coordinater/R for the case
of κR ) 1 with various values of the parameterâ: (a) úh ) 1; (b)
úh ) 6. The solid curves represent the case Pe) 1 and the dashed
curves denote the case Pe) 0.

Figure 6. Plots of the normalized diffusioosmotic velocity in a
capillary tube versus the dimensionless coordinater/R for the case
of úh ) 6: (a) κR ) 1; (b) Pe) 1. The solid curves represent the
caseâ ) -0.2, and the dashed curves denote the caseâ ) 0.
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When the value of Pe is finite, as indicated in Figure 8b, the
probability of the diffusioosmotic flow of the electrolyte solution
in the direction toward higher concentration for a combination
of â andúh is greatly reduced, due to the effect of the electrolyte
convection. Again, this relaxation effect is very significant,
irrespective of the thickness of the electric double layer adjacent
to the capillary wall.

5.5. Accuracy of the Approximation for the Potential
Distribution. Throughout this work we have adopted the
mathematical approximation presented in section 2 for the solution
of the electrostatic potential distribution on a cross section of the
capillary tube. To check the accuracy of this approximation for
the resulting diffusioosmotic velocity profile, in some typical
cases, we numerically solve eqs 3 and 4 forψh (r), curve fit its
values in terms of a tenth-order polynomial, and then substitute
it into eqs 18 and 26 to numerically determine the “exact” solution
for the diffusioosmotic velocityu(r).

Figure 9 gives a comparison of the approximate solution with
the “exact” solution. It can be found that the difference between
the two solutions foru(r) increases with an increase in the
normalized coordinater/Rbut is less than 5% ifr/R< 0.9. This

outcome means that the mathematical approximation presented
in section 2 for the solution ofψh (r) is generally acceptable in
the evaluation of the diffusioosmotic velocity of electrolyte
solutions in a fine capillary tube, as it has been made in this
work, when compared with the relevant experimental data.

6. Concluding Remarks

A theoretical study of the steady diffusioosmotic flow of
solutions of symmetric electrolytes in a capillary tube is presented
in this work. It is assumed that the fluid is only slightly nonuniform
in the electrolyte concentration along the axial direction, but no
assumption is made about the thickness of the electric double
layer adjacent to the capillary wall. Both the effect of the radial
distribution of the electrolyte ions (or of the electrostatic potential)
and the effect of ionic convection caused by the diffusioosmotic
flow itself (relaxation effect) on the axial electric field induced
by the applied electrolyte concentration gradient are taken into
account. The capillary wall may have either a constant surface
potential or a constant surface charge density of an arbitrary
quantity.

When the Poisson-Boltzmann equation in an approximate
form and the modified Navier-Stokes equation applicable to
the system are solved, the electrostatic potential distribution, the

Figure 7. The normalized diffusioosmotic velocity at the axis of
a capillary tube for various values of the parameterâ: (a) plots vs
κR for the case ofúh ) 6; (b) plots vsúh for the case ofκR ) 1. The
solid curves represent the case Pe) 1 and the dashed curves denote
the case Pe) 0.

Figure 8. Maps showing the direction of the diffusioosmotic velocity
at the axis of a capillary tube for the case ofκR ) 1: (a) Pe) 0;
(b) Pe ) 1. The shadeless portion denotes flow toward lower
electrolyte concentration.
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induced electric field distribution, and the dynamic pressure
distribution under the influence of the imposed electrolyte gradient
are determined either analytically or semianalytically. Numerical
results for the local diffusioosmotic velocity on a cross section
of the capillary tube as functions of relevant parameters are
presented in detail. The results show that the effect of the deviation

of the local induced tangential electric field inside the double
layer from its bulk-phase quantity and the relaxation effect due
to electrolyte convection are very important and cannot be
neglected in the evaluation of the diffusioosmotic velocity of
electrolyte solutions in the axial direction of the capillary tube,
even for the case of a very thin double layer.

It is worth repeating that all the results in this study are obtained
on the basis of a small external gradient of the electrolyte
concentration in the axial direction of the capillary tube. If the
imposed concentration gradient|3n∞| is relatively large, then
the effect of variation of the electrostatic potentialψ in the double
layer adjacent to the capillary wall with the tangential position
may not be neglected. However, it is reasonable for one to expect
that this effect will lead to quantitatively rather than qualitatively
different results.

A recent report27emphasizes that an electric double layer very
often cannot be characterized only with a zeta potential, because
there is an additional surface conductivity associated with the
surface current caused by the external electric field within a thin
layer between the particle surface and the slipping shear plane.
When this surface conductivity effect is important, a modification
of our analysis will be demanded.
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Figure 9. The normalized diffusioosmotic velocity distribution in
a capillary tube for the case ofúh ) 6,κR) 1, and Pe) 1. The dashed
curves represent the result obtained by using the mathematical
approximation for the evaluation ofψh (r) in section 2 and the solid
curves denote the numerical “exact” solution.
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