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Abstract

The diffusiophoretic motion of a polyelectrolyte molecule or charged floc in an unbounded solution of a symmetrically charged el
with a uniform prescribed concentration gradient is analytically studied. The model used for the particle is a porous sphere in
density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The electrokinetic equat
govern the electrostatic potential profile, the ionic concentration distributions (or electrochemical potential energies), and the flui
field inside and outside the porous particle are linearized by assuming that the system is only slightly distorted from equilibriu
a regular perturbation method, these linearized equations are solved for a charged porous sphere with the density of the fixed
the small perturbation parameter. An analytical expression for the diffusiophoretic mobility of the charged porous sphere in close
obtained from a balance between its electrostatic and hydrodynamic forces. This expression, which is correct to the second order
charge density of the particle, is valid for arbitrary values ofκa andλa, whereκ is the reciprocal of the Debye screening length,λ is the
reciprocal of the length characterizing the extent of flow penetration inside the particle, anda is the particle radius. Our result to the fir
order of the fixed charge density agrees with the corresponding solution for the electrophoretic mobility obtained in the literature. I
the diffusiophoretic mobility of a porous particle becomes greater as the hindrance to the diffusive transport of the solute species
particle is more significant.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A colloidal particle can be driven to move by the applic
tion of a nonuniform solute concentration field that intera
with the surface of the particle. This phenomenon, kno
as diffusiophoresis [1–3], has been demonstrated experi
tally for both charged [4] and uncharged [5] solutes. Dif
siophoresis is of practical importance in some applicat
to particle analysis or separation and in certain latex-par
coating processes [1,6]. In a solution of nonionic solute,
solute molecules interact with the particle through the
der Waals/dipole forces. For charged particles in an e
trolyte solution, the particle-solute interaction is electrost
in nature and its range is the Debye screening lengthκ−1.
Particles with zeta potentials of orderkT /e (∼25 mV; e is
the elementary electric charge,k is Boltzmann’s constan
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andT is the absolute temperature) in electrolyte gradie
of order 1 M/cm will move by diffusiophoresis at speeds
several microns per second.

Using the classical model of the diffuse electric do
ble layer, Prieve [7] derived a formula for the diffusi
phoretic velocity of a nonconducting particle of arbitra
shape in a solution of a symmetrically charged electro
with a constant concentration gradient for arbitrary zeta
tential (ζ ) of the particle in the limit of thin double laye
(κa → ∞, wherea is the linear dimension of the part
cle). This formula agrees with that previously deduced b
more intuitive method [1]. Using a method of matched
ymptotic expansions with(κa)−1 as the small paramete
Prieve et al. [2] evaluated the effect of particle curvat
on the diffusiophoretic mobility of a spherical particle a
curate to O[(κa)−1]. When the double-layer distortion fro
equilibrium was taken as a small perturbation, Prieve
Roman [8] obtained a numerical solution for the diffus
phoresis of a dielectric sphere in concentration gradien
1:1 electrolytes (KCl or NaCl), which was applicable to

http://www.elsevier.com/locate/jcis
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broad range ofζ andκa. Later, analytical expressions for th
diffusiophoretic velocity of a dielectric sphere with a “th
but polarized” double layer were also derived [9,10]. R
cently, we have obtained analytical formulas in closed fo
for the diffusiophoretic mobility of a colloidal sphere [1
and cylinder [12] in symmetric electrolytes at low surfa
charge densityσ (valid for ζ up to 50 mV) and arbitraryκa.
All results of the above investigations show that the dif
siophoretic mobility of the particle in general decreases w
the increase of(κa)−1. Also, the particle can reverse the d
rection of its migration when the value of|ζ |, (κa)−1, or the
valence of the electrolyte increases.

A theoretical study of the electrokinetic phenomena
charged porous particles was first made by Hermans and
jita [13,14], who derived formulas for the electrophore
mobility of a porous sphere by introducing the Brinkm
equation [15,16] for the internal flow field of the particle a
assuming that the double layer remains spherically sym
ric in the presence of the applied electric field. The effec
the distortion of the counterion atmosphere around a ne
free-drained polyelectrolyte coil under an applied elec
field was examined theoretically by Imai and Iwasa [1
and their numerical results agree well with the experim
tal data [18]. Recently, general expressions were derive
the electrophoretic mobility of a composite spherical pa
cle which is a rigid colloidal sphere coated with a layer
porous substances or polymers at its surface [19–21].
mobility expression tends to a formula obtained by Herm
and Fujita [13] for a spherical polyelectrolyte when the h
core of the composite particle vanishes and the electric
tentials are low. However, the effects of particle charges
the diffusiophoretic velocity of porous particles have not
been investigated.

In this paper, we analytically study the diffusiophore
motion of a charged porous particle in an unbounded e
trolyte solution. The density of charged segments of
porous particle is assumed to be uniform, but no assu
tion is made for the thickness of the double layer rela
to the dimension of the particle. In the next section,
present the fundamental electrokinetic equations and bo
ary conditions which govern the electrolyte ion distributio
the electrostatic potential profile, and the fluid velocity fie
inside and outside the porous particle. These basic e
tions are linearized assuming that the ionic concentrati
the electric potential, and therefore the electrochemical
tential energies of the ionic species have only slight d
ations from equilibrium due to the motion of the partic
In Section 3, the axisymmetric diffusiophoretic motion
a charged porous sphere in a solution of a symmetric
charged electrolyte with a constant imposed concentra
gradient is considered. The linearized electrokinetic eq
tions are transformed into a set of differential equations
using a regular perturbation method with the density of
fixed charges inside the porous particle as the small
turbation parameter. The perturbed electrochemical po
tials of ions, the perturbed electric potential, and the fl
-

-

-

flow field are determined by solving this set of different
equations subject to the appropriate boundary conditi
A closed-form expression for the diffusiophoretic veloc
of the charged porous sphere is obtained from the bal
between its electrostatic and hydrodynamic forces. Fin
typical numerical results of the diffusiophoretic mobility f
the charged porous sphere are presented in Section 4.

2. Basic electrokinetic equations for the diffusiophoresis
of a charged porous particle

We consider the diffusiophoretic motion of a charg
porous sphere of radiusa immersed in an unbounded s
lution of a symmetrically charged binary electrolyte with
constant bulk concentration gradient∇n∞ in thez direction,
as illustrated in Fig. 1. The diffusiophoretic velocity of t
particle isUez, whereez is the unit vector in thez direc-
tion. The origin of the spherical coordinate system(r, θ,φ)
is taken at the center of the particle. Obviously, the pr
lem is axially symmetric about thez−axis (or the polar axis
θ = 0).

It is assumed that the prescribed electrolyte concentra
gradient is not high and hence that the system is only slig
distorted from equilibrium by the application of the gradie
Therefore, the ionic concentration distributionsn±(x) and
the electric potential distributionψ(x) can be expressed as

(1a)n± = n(eq)
± + δn±,

(1b)ψ =ψ(eq) + δψ,
wheren(eq)

± (x) andψ(eq)(x) are the equilibrium distribution
of ionic concentrations and electrostatic potential, resp
tively, andδn±(x) andδψ(x) are the small perturbations
the equilibrium state (in which no bulk concentration gra
ent or electric field is imposed). Here, the subscripts+ and
− refer to the cation and anion, respectively, andx is the
position vector. The equilibrium concentration of each io
species is related to the equilibrium potential by the Bo
mann distribution.

Fig. 1. Geometrical sketch for the diffusiophoresis of a charged po
sphere.
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It can be shown that the small perturbed quantitiesδn±
andδψ together with the fluid velocity fieldu(x) satisfy the
following set of linearized electrokinetic equations [11,21

∇2∇ × u − h(x)λ2∇ × u

(2)= − ε

4πη
∇ × (∇2ψ(eq)∇δψ + ∇2δψ∇ψ(eq)),

(3)∇ · u = 0,

(4)

∇2δµ± = ±Ze
kT

{
∇ψ(eq) · ∇δµ±

− kT

[1− (1−ω)h(x)]D±
∇ψ(eq) · u

}
,

(5)

∇2δψ = 4πZen∞(0)
εkT

[
exp

(
Zeψ(eq)

kT

)
(δµ− +Zeδψ)

− exp

(
−Zeψ

(eq)

kT

)
(δµ+ −Zeδψ)

]
.

Here,δµ±(x) is defined as a linear combination ofδn± and
δψ based on the concept of the electrochemical potentia
ergy [22],

(6)δµ± = kT δn±
n
(eq)
±

±Zeδψ;

η is the viscosity of the fluid (the available evidence [2
suggests that it is reasonable to assume the same valuη
inside and outside the porous particle);D± andωD± (with
ω � 1) are the diffusion coefficients of the ionic spec
outside and inside the porous particle, respectively;Z is
the valence of the symmetric electrolyte, which is posit
λ = (f/η)1/2, wheref is the hydrodynamic friction coeffi
cient inside the porous particle per unit volume of the fl
(which accounts for the hindrance to the convective trans
of the electrolyte caused by the frictional segments);h(x) is
a unit step function which equals unity ifx is inside the par
ticle, and zero otherwise;ε = 4πε0εr, whereεr is the relative
permittivity of the electrolyte solution andε0 is the permit-
tivity of a vacuum. We assume that the values ofη,f, ε,D±,
andω are constant.

For counterions in polyelectrolyte networks, a theory
the ionic self-diffusion [24] and some experimental data [
predict that the parameterω (which is the normalized diffu
sion coefficient of the small ions in the porous structure)
have a value as low as 0.25–0.31. Here,ω is taken to be the
same for both ionic species. Note thatf can be expresse
as 6πηaSNS in the free-draining limit, whereNS and aS
are the number density and the Stokes radius, respect
of the hydrodynamic frictional segments of the porous p
ticle, and the reciprocal of the parameterλ is the shielding
length characterizing the extent of flow penetration ins
the porous particle. For some model porous particles m
of steel wool (in glycerin–water solution) [26] and plas
foam slab (in silicon oil) [27], experimental values of 1/λ
can be as high as 0.4 mm, whereas in the surface regio
human erythrocytes [28], rat lymphocytes [29], and gra
,

f

polymer microcapsules [30] in salt solutions, values of 1/λ

were found to be about 3 nm. Note that 1/λ2 is the so-called
“permeability” of the porous medium, which is related to
pore size and porosity and characterizes the dynamic be
ior of the viscous fluid in it. Of course, the parameterω may
also depend on the pore size and porosity, especially w
the pore size is small down to the order of the ionic size.

The conditions inside the porous particle are

(7a–7c)u, δµ±, andδψ are finite.

The conditions far from the particle become

(8a)r → ∞: u → −Uez,

(8b)δµ± → kT (1∓ β)α r
a

cosθ,

(8c)δψ → −kT
Ze
βα
r

a
cosθ,

whereα = a|∇n∞|/n∞(0) and β = (D+ − D−)/(D+ +
D−). Expression (8c) for the induced potential field, wh
arises spontaneously due to the imposed electrolyte gra
and the difference in mobilities of the cation and anion
the electrolyte, is derived from the requirement that the
tal fluxes of cations and anions are balanced in order to
no electric current generated in the electrically neutral b
solution [1,7,31]. Equations (7a) and (8a) take a refere
frame that the particle is at rest and the velocity of the fl
at infinity is the particle velocity in the opposite direction

The boundary conditions at the particle surfaceS are

(9a)u|S+ = u|S−,

(9b)n · σ |S+ = n · σ |S−,

(9c)δµ±|S+ = δµ±|S−,

(9d)∇δµ±|S+ = ω∇δµ±|S−,

(9e)δψ|S+ = δψ|S− ,

(9f)∇δψ|S+ = ∇δψ|S− .

Here, the superscripts+ and− to S represent the extern
and internal sides, respectively, to the surface of the part
n is the unit vector outwardly normal to the particle surfa
andσ is the hydrodynamic stress of the fluid. Equations (
and (9b) are the continuity requirement of the fluid veloc
and stress tensor at the particle surface which are physi
realistic and mathematically consistent boundary condit
for the present problem [23,32,33]. Equations (9c) and
state that the concentrations and fluxes of the ionic spe
must be continuous. Equations (9e) and (9f) indicate tha
potential and electric field are also continuous. The co
nuity of the electric field results from the assumption t
the relative permittivity of the solution takes the same va
both inside and outside the porous particle. In the pre
system, the total fluid stress, which consists of the hy
dynamic stress and the Maxwell stress, is continuous a
particle surface. The boundary condition for the continu
of hydrodynamic stress given by Eq. (9b) comes from
fact of continuous Maxwell stress that can be deduced f
Eqs. (1b) and (9f) [20].



Y.K. Wei, H.J. Keh / Journal of Colloid and Interface Science 269 (2004) 240–250 243

con
r-

the
). It
ym-
with
,

e

n
d
ues
n).

t
ote
l

ec-

ions

t
-
an
in-

nd-

a se
for

ults

f
e

un-
be
hy-

he

the
the

us

io-
m-
ne
3. Solution for the diffusiophoretic velocity

The equilibrium electric potentialψ(eq) satisfies the
Poisson–Boltzmann equation and appropriate boundary
ditions (taking finiteψ(eq) inside the charged porous pa
ticle, continuous electric potential and electric field at
particle surface, and zero potential far from the particle
is easy to show that, for an unbounded solution of a s
metric electrolyte surrounding a charged porous sphere
a uniform fixed charge densityQ inside the porous particle

(10)ψ(eq)(r)=ψeq1�Q+ O(�Q 3).

Here, �Q = 4πZeQ/εκ2kT is the nondimensional charg
density of the porous particle, and

(11a)ψeq1= kT

Ze

[
1− (κa+ 1)e−κa

sinh(κr)

κr

]
if r � a,

(11b)ψeq1= kT

Ze

[
κa cosh(κa)− sinh(κa)

]e−κr
κr

if r � a,

where the Debye screening parameterκ = [8πZ2e2n∞(0)/
εkT ]1/2. Expression (10) forψ(eq) as a power series i
�Q up to O(�Q) is the equilibrium solution for the linearize
Poisson–Boltzmann equation that is valid for small val
of the electric potential (the Debye–Hückel approximatio
That is, the fixed charge densityQ of the particle mus
be small enough for the potential to remain small. N
that ψ(eq) and n(eq)

± depend onr only due to spherica
symmetry, and the contribution from the effects of O(�Q 2)

to ψ(eq) disappears only for the case of symmetric el
trolytes.

To solve the small quantitiesu, δµ±, andδψ in terms of
the particle velocityU when the parameter�Q is small, these
variables can be written as regular perturbation expans
in powers of�Q,

(12a)u = u1 �Q+ u2 �Q 2 + · · · ,
(12b)δµ± = µ0± +µ1± �Q+µ2± �Q 2 + · · · ,
(12c)δψ =ψ0 +ψ1 �Q+ψ2 �Q 2 + · · · ,
(12d)U =U1 �Q+U2 �Q 2 + · · · ,

where the functionsui , µi±, ψi , andUi are independen
of �Q. The zeroth-order terms ofu and U disappear be
cause an uncharged particle will not move by imposing
electrolyte concentration gradient if only the electrostatic
teraction is considered.

Substituting the expansions given by Eq. (12) andψ(eq)

given by Eq. (10) into the governing Eqs. (2)–(5) and bou
ary conditions (7)–(9), and equating like powers of�Q on
both sides of the respective equations, we can obtain
of linear differential equations and boundary conditions
each set of the functionsui ,µi±, andψi with i equal to 0, 1,
and 2. After solving these perturbation equations, the res
for ther andθ components ofu (to the order of�Q 2), δµ±,
-

t

andδψ (to the order of�Q) can be written as

ur =
{[
U1F0(r)− kT

ηa2
βαF1(r)

]
�Q

(13a)+
[
U2F0(r)+ kT

ηa2
αF2(r)

]
�Q 2

}
cosθ,

uθ = − 1

2r

d

dr

{
r2

[
U1F0(r)− kT

ηa2βαF1(r)

]
�Q

(13b)+ r2
[
U2F0(r)+ kT

ηa2αF2(r)

]
�Q 2

}
sinθ,

(14)δµ± = kT (1∓ β)α[Fµ0(r)∓ Fµ1(r)�Q
]
cosθ,

(15)δψ = kT

Ze
α
[−βFψ0(r)+ Fψ1(r)�Q

]
cosθ.

Here,Fi(r) (with i equal to 0, 1, and 2),Fµ0(r), Fψ0(r),
Fµ1(r), andFψ1(r) are dimensionless functions ofr defined
in Appendix A. Note that the solutions forδµ± andδψ to
the order of�Q, which will be sufficient for the calculation o
the particle velocity to O(�Q 2), do not contain the influenc
of the fluid motion.

The total force exerted on a charged porous sphere
dergoing diffusiophoresis in an electrolyte solution can
expressed as the sum of the electrostatic force and the
drodynamic friction force. The electric force acting on t
porous sphere is defined by

(16)Fe = −
∫
r�a

Q∇ψ dx.

Substituting Eqs. (1b) and (15) into Eq. (16), and using
fact that the net electric force acting on the particle at
equilibrium state is zero, one has

(17)

Fe = ε

3

(
κakT

Ze

)2

α
[
βFψ0(a)�Q
− Fψ1(a)�Q 2 + O(�Q 3)

]
ez.

The hydrodynamic friction force acting on the poro
sphere is given by

(18)Fh =
∫
r�a

fu(x) dx.

Substitution of Eq. (13) into the above equation results in

(19)

Fh = 4π

3
ηλ2a3

{[
U1F0(a)− kT

ηa2
βαF1(a)

]
�Q

+
[
U2F0(a)+ kT

ηa2αF2(a)

]
�Q 2

}
ez.

At steady state, the total force acting on the diffus
phoretic particle is zero. Applying this constraint to the su
mation of Eqs. (17) and (19) for a symmetric electrolyte, o
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(20a)U1 = εβα

4πηa

(
kT

Ze

)2

(κa)2H1,

(20b)U2 = εα

4πηa

(
kT

Ze

)2

(κa)4H2,

whereH1 andH2 are dimensionless functions ofκa andλa
defined by

(21a)H1 = 4π(Ze)2

εakT

1

(κa)2

F1(a)

F0(a)
− 1

(λa)2

Fψ0(a)

F0(a)
,

(21b)H2 = −4π(Ze)2

εakT

1

(κa)4

F2(a)

F0(a)
+ 1

(κaλa)2

Fψ1(a)

F0(a)
.

From Eqs. (12d) and (20), the diffusiophoretic velocity
the charged porous sphere can be expressed as

(22)

U = εα

4πηa

(
kT

Ze

)2[
β(κa)2H1 �Q
+ (κa)4H2 �Q 2 + O(�Q 3)

]
.

Note that(κa)2 �Q(= 4πa2ZeQ/εkT ) is independent ofκ
or n∞(0) for a constant fixed charge densityQ. Since the
solutions forδµ± andδψ given by Eqs. (14) and (15) ar
not influenced by the fluid flow, the effect of the polarizat
(or relaxation) of the diffuse ions in the electric double la
surrounding the particle is not included in Eq. (20) up to
order �Q 2.

For the limiting case of a charged porous sphere w
λa → ∞ (very high density of the hydrodynamic friction
segments) andω = 1 (equal ionic diffusivities inside an
outside the particle), Eq. (21) reduces to

(23a)H1 = 2

3
(κa)−3e−κaγ (κa),

H2 = 1

9
(κa)−3γ (κa)

[
E5(κa)−E3(κa)

]
(23b)+ 1

12
(κa)−6e−2κa[γ (κa)]2

,

where

(24)En(x)=
∞∫

1

t−ne−xt dt

andγ (x) is defined by Eq. (A.5a) in Appendix A. On th
other hand, whenκa = 0 andω = 1, Eq. (21) reduces to

(25)H1 = [
9Aγ (λa)(λa)2

]−1

andH2 = 0.

4. Results and discussion

Because all the governing equations and boundary
ditions in this analysis have been linearized, diffusiopho
sis of a charged porous particle in an electrolyte solu
can be considered as a linear combination of two effe
(i) chemiphoresis due to the nonuniform adsorption of co
terions and depletion of co-ions over the external and in
nal surfaces of the particle, which is analogous to diffu
phoresis in nonionic media [3,10], and (ii) electrophore
due to the macroscopic electric field generated by the e
trolyte concentration gradient given by Eq. (8c). In Eq. (
for the diffusiophoretic velocity, the O(�Q) term (involving
parameterβ) results from the contribution of electrophor
sis, while the O(�Q 2) term represents the chemiphoretic co
tribution. Note that, whenω = 1, the functionH1 given by
Eq. (21a) is the same as that obtained by Hermans and
jita [13] for the electrophoretic mobility of a porous sphe

Figs. 2–4 show plots of the first-order coefficientH1 in
Eq. (22) for the diffusiophoretic velocity of a charged poro
sphere calculated using Eq. (21a) as a function of the p

(a)

(b)

Fig. 2. Plots of the coefficientH1 given by Eq. (21a) for the diffusio
phoretic/electrophoretic velocity of a charged porous sphere versusκa at
fixed values ofλa: (a)ω= 1; (b)ω= 0.25. The dashed curve is plotted f
an impermeable sphere having the same total charge (on its surface
porous sphere of equal radius.
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Fig. 3. Plots of the coefficientH1 given by Eq. (21a) for the diffusio
phoretic/electrophoretic velocity of a charged porous sphere versusλa at
fixed values ofκa: (a)ω= 1; (b)ω= 0.25.

Fig. 4. Plots of the coefficientH1 given by Eq. (21a) for the diffusio
phoretic/electrophoretic velocity of a charged porous sphere versusκa for
various values ofω at λa = 1.
metersκa,λa, andω. As expected,H1 is always a positive
value and thus the direction of the particle motion cau
by electrophoresis is determined by the sign of the prod
of the parameterβ (which determines the direction of th
induced electric field according to Eq. (8c)) and the fix
charge densityQ. Also, H1 increases monotonically wit
decreasingλa for given values ofκa andω.

For the diffusiophoretic velocity of an impermeable (no
porous) dielectric sphere with a uniform charge distribut
at its (external) surface, an expansion solution in the fo
of Eq. (22) (in which�Q can be taken as the dimensionle
surface charge density(σ̄ = 4πZeσ/εκkT ) or zeta potentia
(ζ̄ =Zeζ(κa+1)/κakT ) of the impermeable sphere havin
the same total fixed charge as a porous sphere of equal r
(i.e., takingσ =Qa/3)) was developed [11]. The coefficie
H1 for the impermeable charged sphere as a function oκa
is drawn by a dashed curve in Fig. 2a for comparison. It
be seen that the values ofH1 for the impermeable sphere a
comparable with those for the porous sphere (takingω = 1)
with λa → ∞ whenκa < 0.3 or >100 but are equivalen
to those for the porous sphere withλa = 10 whenκa ≈ 0.1
or 25. Note that, although the coefficientH1 for the imper-
meable sphere decreases with increasingκa, its conventiona
dimensionless electrophoretic mobility in an external el
tric field, which equals 3(κa+1)H1, is a monotonic increas
ing function ofκa [11,34].

Whenω= 1, as shown in Figs. 2a and 3a, the value ofH1
for the diffusiophoresis/electrophoresis of a charged po
sphere decreases monotonically with an increase inκa (as
for the case of an impermeable dielectric sphere) for a sp
fied value ofλa, the dependence ofH1 onκa becomes weak
if λα < 1, andH1 → (λa)−2 asλa→ 0 orκa→ ∞ (which
can be derived from Eq. (21a)). Whenω < 1, such as for the
case ofω = 0.25 illustrated in Figs. 2b and 3b,H1 is still a
monotonic decreasing function ofκa for a large given value
of λa (say,λa > 3), but becomes a monotonic increasi
function ofκa for a small fixed value ofλa (say,λa < 0.5).
For an intermediate value ofλa, such as the case ofλa = 1
given in Fig. 4,H1 decreases first, reaches a minimum, a
then increases monotonically asκa increases from zero t
infinity. The location of the minimum shifts to smallerκa as
ω decreases. It can be seen that, for given values ofκa and
λa, the coefficientH1 increases with a decrease in the va
of ω (i.e., the electrophoretic mobility of a charged poro
sphere becomes greater as the hindrance to the diffu
transport of the electrolyte inside the particle is more sig
icant). The dependence ofH1 onω can be strong asκa > 1,
but becomes quite weak asκa < 0.1 (or asλa is large).

The fact that the coefficientH1 is hardly dependent onω
at smallκa can be physically explained. At smallκa, the
porous particle behaves electrically like a point charge
the detail of what happens (such as the diffusion of io
inside the particle is unimportant for the determination
its mobility by a balance between the electrostatic and
hydrodynamic forces. This argument applies to the seco
order coefficientH2 in Eq. (22) as well.
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Fig. 5. Plots of the coefficientH2 given by Eq. (21b) for the diffusio
phoretic velocity of a charged porous sphere versusκa at fixed values of
λa: (a) ω = 1; (b) ω = 0.25. The dashed curve is plotted for an imperm
able sphere having the same total charged (on its surface) as a porous
of equal radius.

The coefficientH2 for the diffusiophoretic velocity of a
charged porous sphere can be calculated using Eq.
and its results as a function of the parametersκa,λa, and
ω are plotted in Figs. 5–7. The corresponding results
an impermeable dielectric sphere [11] having the same
tal charge (on its surface) as a porous sphere of equa
dius (taking �Q = 3σ̄ /κa in Eq. (22)) as a function ofκa
are also displayed in Fig. 5a for comparison. Analogou
(but slightly different from) the case withH1, the values of
H2 for the impermeable sphere are comparable with th
for the porous sphere (takingω = 1) with λa → ∞ when
κa < 0.1 and are close to those for the porous sphere
λa = 5 whenκa > 1. Although the coefficientH2 for the
impermeable sphere is not a monotonic function ofκa, its
conventional dimensionless chemiphoretic mobility, wh
equals 72(κa + 1)2H2, increases monotonically with an in
crease inκa [11]. Again,H2 increases monotonically wit
re

)

-

(a)

(b)

Fig. 6. Plots of the coefficientH2 given by Eq. (21b) for the diffusio
phoretic velocity of a charged porous sphere versusλa at fixed values of
κa: (a)ω= 1; (b)ω= 0.25.

Fig. 7. Plots of the coefficientH2 given by Eq. (21b) for the diffusiophoreti
velocity of a charged porous sphere versusκa for various values ofω at
λa = 100.
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a decrease inλa for fixed values ofκa andω. Note that the
value ofH2 is about two orders of magnitude smaller th
that ofH1.

For specified values ofλa andω, as shown in Fig. 5, the
value ofH2 (the normalized chemiphoretic mobility of th
porous sphere) is maximal at some value ofκa between 0.1
and 2, and fades out as the value ofκa gets small or large
Both the limitsκa→ 0 andκa→ ∞ result inH2 = 0 (but
the contribution from the chemiphoretic effect vanishes o
for the case ofκa→ 0). Interestingly, when the value ofλa
is sufficiently large (e.g.,λa > 10 for the case ofω= 1),H2
decreases first, reaches a minimum which is negative,
then increases monotonically to zero asκa increases from
the value at the maximal point ofH2 to infinity. The loca-
tions of the minimum (if it exists) and maximum inH2 shift
to smallerκa asλa increases. Fig. 6 indicates that, for giv
values ofκa andω, the value ofH2 approaches infinity in
proportion to(λa)−2 asλa→ 0. For fixed values ofκa and
λa, as illustrated in Fig. 7, the coefficientH2 increases with
decreasing value ofω, similar to the trend of the coefficien
H1, and the locations of the maximum and minimum inH2
shift to greaterκa asω decreases.

For the diffusiophoresis/electrophoresis of a porous
ticle, the diffusion of the solute species in the fluid solut
affects the particle’s movement through two mechanis
Obviously, the concentration gradient of the solute alo
the external surface of the particle leads to a diffusio
motic/electroosmotic flow, which drives the porous parti
to move in the same direction as that for the correspon
motion of an impermeable particle under an otherwise id
tical condition. On the other hand, the diffusion of the sol
species inside the porous particle drags the surrounding
which then drives the porous particle to move in a direct
opposite to that for the diffusiophoresis/electrophoresi
the impermeable particle. The combination of the two me
anisms results in the fact that both the coefficientsH1 and
H2 increase with a decrease in the parameterω (the relative
diffusion coefficient of the solute species in the porous st
ture). Evidently, for some cases of the part of chemipho
sis (as the value ofκa has the order of unity), the contr
bution from the diffusion of the solute inside the poro
particle can be dominant over the contribution from the
motic flow along the external surface of the particle so t
the value ofH2 is negative. On the other hand, the co
ficient H2 becomes hardly dependent on the parameteω
when the value ofκa gets large or small, as it is shown
Fig. 7.

In Fig. 8, the dependence of the diffusiophoretic vel
ity of a charged porous sphere on its dimensionless fi
charge density(κa)2 �Q = 4πa2ZeQ/εkT at various values
of κa,λa, andω for the case that the cation and anion dif
sivities are equal(β = 0) is shown. The magnitude of th
diffusiophoretic velocity is normalized by a characteris
value given by

(26)U∗ = εα
(
kT

)2

.

4πηa Ze
(a)

(b)

Fig. 8. Plots of the normalized diffusiophoretic mobility of a charged por
sphere in a symmetric electrolyte solution withβ = 0 versus the dimen
sionless fixed charge density: (a)λa = 1; (b) κa = 1. The solid and dashe
curves denote the cases ofω= 1 andω= 0.25, respectively.

Only the results at positive�Q are displayed in Fig. 8 sinc
the particle velocity, which is due to the chemiphoretic
fect entirely for the caseβ = 0, is an even function of�Q as
illustrated by Eq. (22). Because our analysis is based on
assumption of small electric potential or fixed charged d
sity, the magnitudes of(κa)2�Q considered are less than 1
which is equivalent to the case of an impermeable dielec
sphere withκa in the order of unity having the magnitud
of its normalized zeta potential(Zeζ/kT ) less than 2. Evi-
dently, in this range of(κa)2 �Q, the reduced diffusiophoreti
velocityU/U∗ increases monotonically with an increase
(κa)2 �Q for given values ofκa,λa, andω, with a decrease in
λa for specified values ofκa,ω, and�Q, and with a decreas
in ω for constant values ofκa,λa, and�Q. For fixed values of
λa,ω, and(κa)2 �Q, the value ofU/U∗ is maximal at a finite
value ofκa, and decreases asκa increases or decreases fro
this finite value. There is no chemiphoretic motion of the p
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Fig. 9. Plots of the normalized diffusiophoretic mobility of a charged por
sphere in a symmetric electrolyte solution withβ = −0.2 versus the dimen
sionless fixed charge density: (a)λa = 1; (b) κa = 1. The solid and dashe
curves denote the cases ofω= 1 andω= 0.25, respectively.

ticle for the limiting cases of�Q= 0, κa = 0, orκa→ ∞. If
the magnitude ofλa is sufficiently large, the value ofU/U∗
may become negative (the particle reverses its directio
movement) at some values ofκa.

Fig. 9 is drawn for the normalized diffusiophoretic velo
ity of the porous sphere as a function of(κa)2�Q at various
values ofκa,λa, andω for a case where the cation and a
ion have different diffusion coefficients(β = −0.2). In this
case, both the electrophoretic and the chemiphoretic ef
contribute to the motion of the particle and the net dif
siophoretic velocity is neither an even nor an odd func
of �Q. Again, for given values ofλa,ω, and(κa)2 �Q, the nor-
malized diffusiophoretic velocityU/U∗ is not a monotonic
function of κa. In the limits of κa = 0 andκa → ∞, the
chemiphoretic contribution disappears and Eq. (22) for
particle velocity leads to straight lines in Fig. 9a due to
electrophoretic contribution only. For some intermediate
ues of κa, the normalized particle velocityU/U∗ is not
necessarily a monotonic function of(κa)2 �Q. Some of the
curves in Fig. 9 show that the particle might reverse dir
tion of movement more than once as its dimensionless fi
charge density varies from negative to positive values.
reversals occurring at the values of(κa)2 �Q other than zero
result from the competition between the contributions fr
electrophoresis and chemiphoresis. Note that the situa
associated with Figs. 8 and 9 (takingZ = 1) are close to the
diffusiophoresis in the aqueous solutions of KCl and Na
respectively.

5. Concluding remarks

In this paper, the steady-state diffusiophoresis o
charged porous sphere with arbitrary values of the para
tersκa, λa, andω in an unbounded solution of a symmet
electrolyte with a uniform imposed concentration gradi
is analyzed. The porous particle is treated as a solv
permeable and ion-penetrable object in which fixed-cha
groups and frictional segments are distributed at unif
densities. Solving the linearized continuity equations
ions, Poisson–Boltzmann equation, and modified Stok
Brinkman equations applicable to the system by a reg
perturbation method, we have obtained the ion conce
tion (or electrochemical potential energy) distributions,
electric potential profile, and the fluid velocity field. The
quirement that the total force exerted on the particle be
leads to Eqs. (21) and (22) for the diffusiophoretic veloc
of the charged porous sphere as a function of the param
κa,λa, andω correct to the order�Q 2.

Equations (21) and (22) are obtained on the basis o
Debye–Hückel approximation for the equilibrium poten
distribution around the porous sphere. A similar formula
the electrophoretic velocity of an impermeable sphere w
a low zeta potential was shown to give an excellent app
imation for the case of reasonably high zeta potential (w
errors less than 4% for|ζ |e/kT � 2) [35]. Also, comparing
with the numerical solution for the diffusiophoretic mobili
of an impermeable sphere in KCl and NaCl aqueous s
tions obtained by Prieve and Roman [8] valid for an arbitr
value of zeta potential, we found that the expansion form
for the sphere with low zeta potential is also quite accu
for the entire range of|ζ |e/kT � 2 [11]. Therefore, our re
sults in Eqs. (21) and (22) might be used tentatively for
situation of high electric potentials. On the other hand,
decay of the density distributions of frictional segments
fixed charges in the porous particle with the distance f
the particle center has not been considered in our calc
tions. In order to see whether our theory can be reason
extended to the higher values of electric potential or to
nonuniform density distributions of frictional segments a
fixed charges, we propose to obtain a numerical solutio
the electrokinetic differential equations with no assump
on the magnitude of electric potential allowing the use
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arbitrary distributions of fixed charge and fluid drag com
nents in the porous particle and compare it with the app
imate solution.
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Appendix A

For conciseness the definitions of some functions in S
tion 3 are listed here. In Eq. (13),

(A.1a)F0(r)= −3Aγ (λa)− 6Aγ (λr)

(
a

r

)3

if r < a,

(A.1b)

F0(r)= −1+ 3(λa)2Aγ (λa)
a

r
−AB

(
a

r

)3

if r > a,

Fi(r)= Ci1 +Ci2γ (λr)
(
a

r

)3

+ 2

3λ2

[ r∫
0

Gi(r) dr − 1

r3

r∫
0

r3Gi(r) dr

]

+ 2

λ5r3

[
γ (λr)

r∫
0

δ(λr)Gi(r) dr

(A.2a)− δ(λr)
r∫

0

γ (λr)Gi(r) dr

]
if r < a,

Fi(r)= Ci3a
r

+Ci4
(
a

r

)3

+ 1

15r3

r∫
∞
r5Gi(r) dr

− 1

3r

r∫
∞
r3Gi(r) dr + 1

3

r∫
∞
r2Gi(r) dr

(A.2b)− r2

15

r∫
∞
Gi(r) dr if r > a,

for i = 1 and 2, where

Ci1 =A
{
a2[λa cosh(λa)+ sinh(λa)

] a∫
∞
Gi(r) dr

+ γ (λa)
a∫
r2Gi(r) dr + 2

λ2

a∫
γ (λr)Gi(r) dr
∞ 0
− 2λ

3
cosh(λa)

a∫
0

r3Gi(r) dr

}

(A.3a)− 2

3λ2

a∫
0

Gi(r) dr,

Ci2 = 2A

{ a∫
∞
r2Gi(r) dr + 1

λ5a3

[
2(λa)3 sinh(λa)

+ 3δ(λa)
] a∫

0

γ (λr)Gi(r) dr

−
(
a2 + 3

λ2

) a∫
∞
Gi(r) dr + 1

λ2a3

a∫
0

r3Gi(r) dr

}

(A.3b)− 2

λ5a3

a∫
0

δ(λr)Gi(r) dr,

Ci3 =A
{
a2B

3

a∫
∞
Gi(r) dr − γ (λa)

[
(λa)2

a∫
∞
r2Gi(r) dr

+ 1

a

a∫
0

r3Gi(r) dr

]
− 2a2

a∫
0

γ (λr)Gi(r) dr

}

(A.3c)+ 1

3a

a∫
∞
r3Gi(r) dr,

Ci4 =A
{
B

3

a∫
∞
r2Gi(r) dr − 1

5λ2

[
(λ2a2 + 5)B

+ 3(λa)2γ (λa)− 2(λa)4 sinh(λa)
] a∫
∞
Gi(r) dr

+ 2

(
a2 + 3

λ2

) a∫
0

γ (λr)Gi(r) dr

− 1

a

[
λa cosh(λa)+ sinh(λa)

] a∫
0

r3Gi(r) dr

}

(A.3d)− 1

15a3

a∫
∞
r5Gi(r) dr,

(A.4a)G1(r)= εκ2a2

4πZer
Fµ0(r)

dψeq1

dr
,

(A.4b)

G2(r)= − εκ2a2

4πZer

[
Fµ1(r)+ Ze

kT
ψeq1(r)Fµ0(r)

]
dψeq1

dr
,

(A.5a)γ (x)= x coshx − sinhx,

(A.5b)δ(x)= x sinhx − coshx,
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(A.6a)A= {[
3λa + 2(λa)3

]
cosh(λa)− 3 sinh(λa)

}−1
,

(A.6b)

B = [
6λa + (λa)3]cosh(λa)− 3

[
2+ (λa)2]sinh(λa).

In Eqs. (14) and (15),

(A.7a)Fµ0(r)= r

a
+ 1−ω

2+ω
a2

r2
if r > a,

(A.7b)Fµ0(r)= 3

2+ω
r

a
if r < a;

Fψ0(r)= r

a
+ 1−ω

2+ω
a2

r2

− 3
1−ω
2+ω

a2

r2 (1+ κr)e−κ(r−a)γ (κa)

×
{
(κa)3 cosh(κa)+ [

(κa)3 − 2κa− 2
]
sinh(κa)

(A.8a)+ 2(1+ κa)sinh(κr)
}−1

if r > a,

Fψ0(r)= 3

2+ω
r

a

− 3
1−ω
2+ω

a2

r2
γ (κr)(1+ κa)

{
(κa)3 cosh(κa)

+ [
(κa)3 − 2κa− 2

]
sinh(κa)

(A.8b)+ 2(1+ κa)sinh(κr)
}−1

if r < a;

Fµ1(r)= 1

2+ω
Ze

kT

{
r

a

a∫
r

dψeq1

dr
dr

+
(
a

r

)2 r∫
0

(
r

a

)3dψeq1

dr
dr

− r

a

a∫
∞

[
1− 2

1−ω
2+ω

(
a

r

)3
]
dψeq1

dr
dr

(A.9a)− 2
1−ω
2+ω

a∫
0

(
r

a

)3dψeq1

dr
dr

}
if r < a,

Fµ1(r)= Ze

3kT

{
− r
a

r∫
∞

[
1− 2

1−ω
2+ω

(
a

r

)3
]
dψeq1

dr
dr

+
(
a

r

)2 r∫
a

(
r

a

)3
[

1− 2
1−ω
2+ω

(
a

r

)3
]
dψeq1

dr
dr

−
(
a

r

)21−ω
2+ω

a∫
∞

[
1− 2

1−ω
2+ω

(
a

r

)3
]
dψeq1

dr
dr

+ 9ω

(2+ω)2
(
a

r

)2 a∫
0

(
r

a

)3dψeq1

dr
dr

}

(A.9b)if r > a;
Fψ1(r)= − 1

κr2

{
(κr + 1)e−κr

r∫
0

γ (κr)

[
Fµ1(r)

+ Ze

kT
ψeq1(r)Fµ0(r)

]
dr

+ γ (κr)
∞∫
r

(κr + 1)e−κr
[
Fµ1(r)

(A.10)+ Ze

kT
ψeq1(r)Fµ0(r)

]
dr

}
.
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