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Abstract--A boundary-collocation technique, used earlier by Chen and Keh [(1996) Aerosol Sci. 
Technol. 24, 21-35] in the study of the thermophoresis of N coaxial spheres along the line of their 
centers, is extended to describe the motion of an assemblage of N aerosol spheres arranged 
arbitrarily in three-dimensional space. The spheres are allowed to differ in radius, in thermal 
conductivity and in surface properties; they may move independently, or they may be linked by 
infinitesimally thin rods to form a rigid aggregate. The Knudsen numbers are assumed to be small so 
that the fluid flow is described by a continuum model with a thermal creep and a hydrodynamic slip 
at the particle surfaces. 

Results are presented in terms of pair-interaction coefficients for the thermophoretic velocities of 
the particles. For two-sphere systems• the translational and angular velocities of the particles at all 
orientations and separation distances agree very well with the exact solutions obtained by using 
spherical bipolar coordinates or the asymptotic solutions obtained by using a method of reflections. 
The particle-interaction parameters of linear chains of three spheres show that the existence of the 
third sphere can significantly affect the mobilities of the other two spheres, For the cases of a 
rigid dumbbell composed of two spheres, the numerical solutions for the particle velocities compare 
quite favorably with the formulas derived analytically. Finally, our numerical results for the 
interaction between two spheres are used to find the effect of volume fractions of particles of each 
type on the mean thermophoretic velocities in a polydisperse aerosol. Copyright © 1996 Elsevier 
Science Ltd. 
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particle radius (m) 
thermophoretic mobility of a sphere defined by equation (lb) (m 2 s-1 K - l )  

coefficients defined by equation (13) 

functions of ri, 01 and ~bj in equation (15) 

rectangular coordinates of the center of sphere i (m) 
functions of ri, Oi and q~i defined by equation (17) 
functions of r~, 01 and q5 i defined by equation (18) 
dimensionless coefficient accounting for the hydrodynamic slip 
dimensionless coefficient accounting for the thermal slip 
dimensionless coefficient accounting for the temperature jump 
unit vector directed from the center of sphere 1 toward the center of sphere 2 
unit vectors in rectangular coordinates 
unit vectors in the spherical coordinates originated from particle i 
undisturbed temperature gradient (K m-~) 
drag force acting on sphere i (N) 
function of r~ and/ t  i defined by equation (9) 
unit dyadic 
thermal conductivity of the fluid (W m-  1 K - 1 ) 
thermal conductivity of the particle (W m -  ~ K-  1 ) 
ratio of thermal conductivities between sphere i and the fluid 
the number of collocation rings on each particle surface 
dimensionless mobility parameters defined by equation (36) 
mean free path of the gas molecules (m) 
the number of terms reserved in the Fourier series 
dimensionless mobility tensors defined by equation (22) 

dimensionless mobility parameters defined by equation (31) 
the number of particles in an assemblage 
the associated Legendre function of order m and degree n 
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equal to Iro, I, distance between the hydrodynamic center of a rigid cluster and the center 
of its sphere i (m) 
distance between centers of sphere 1 and sphere 2 (m) 
spherical coordinates measured from the origin of sphere i 
position vector in spherical coordinates (ri, Oi, (Ji) (m) 
coefficients in the expression of equation (4a) for the temperature field of the fluid 
coefficients in the expression of equation (4b) for the temperature field of sphere i 
functions of ri, 0i and ~b i in equation (5) 
temperature field of the fluid (K) 
temperature field of sphere i (K) 
undisturbed temperature distribution (K) 
prescribed temperature at the plane x = 0 (K) 
prescribed temperature at the particle center (K) 
hydrodynamic torque on sphere i about its center (N m) 
therrnophoretic velocity at the origin of a rigid cluster (m s ~) 
translational velocity of sphere i (m s- 1 ) 
components of U~ in rectangular coordinates (m s 1) 
thermophoretic velocity of sphere j in the absence of all the other spheres (m s- ~ ) 
mean thermophoretic velocity of type i particles (ms 1 ) 
velocity field of the fluid (m s - 1 ) 
components of v in spherical coordinates (ri, Oi, ~i) (ms i) 
separation parameter defined by equation (44) 
rectangular coordinates (m) 

interaction coefficient defined by equation (42) 
viscosity of the fluid (kg m- 1 s 1 ) 

dimensionless coefficient defined by equation (41) 
equal to cos 01 
density of the fluid (kgm 3) 
viscous stress tensor of the fluid (N m 2) 
volume fraction of type i particles in a suspension 
solid harmonic functions of order n in spherical coordinates (r, 01, ~hi) 
angular velocity of sphere (s- 1 ) 
components of ~ in rectangular coordinates (s 1 ) 

1. I N T R O D U C T I O N  

T h e r m o p h o r e s i s  refers to the m o t i o n  of aeroso l  par t ic les  m response  to a t empera tu re  
gradient .  This p h e n o m e n o n  was first descr ibed  in 1870 by Tyndal l ,  who  observed  a dust-free 
zone in a dus ty  gas a r o u n d  a hot  b o d y  ( W a l d m a n n  and  Schmit t ,  1966). The  t he rmophore t i c  
effect can be expla ined  by appea l ing  to the kinet ic  theory  of gases (Kennard ,  1938). The  
h igher -energy  molecules  in the hot  region of the gas impinge  on the part icles  with 
grea ter  m o m e n t a  than  molecules  coming  from the cold  region,  thus  leading  to the migra t ion  
of the par t ic les  in the d i rec t ion  oppos i t e  to the t empe ra tu r e  gradient .  Being a mechan i sm for 
the cap tu re  of aeroso l  par t ic les  on cold  surfaces, t he rmophores i s  is of cons iderab le  impor t -  
ance in m a n y  prac t ica l  appl ica t ions ,  such as sampl ing  of aeroso l  par t ic les  (Fr ied lander ,  
1977), c leaning of  air  (Sasse e t  al . ,  1994), scale fo rma t ion  on surfaces of heat  exchangers  
(Montas s i e r  e t  al . ,  1991), modi f ied  chemical  v a p o r  depos i t ion  (Weinberg,  1982), micro-  
e lectronic  manufac tu r ing  (Ye e t  al. ,  1991), and  nuclear  reac to r  safety (Wil l iams and  Loya lka ,  
1991). 

Based on the a s sumpt ions  of small  K n u d s e n  number  ( l /a ,  where a is the radius  of the 
par t ic le  and  l the mean  free pa th  of  the gas molecules),  small  the rmal  Peclet  number  and 
small  Reynolds  n u m b e r  as well as the effects of  t empe ra tu r e  j ump ,  the rmal  creep and 
h y d r o d y n a m i c  slip at  the gas-par t ic le  surface, Brock  (1962) ob t a ined  the t he rmophore t i c  
veloci ty  of  an aeroso l  sphere in a cons tan t  t empera tu re  g rad ien t  V T ~  as 

U (°) = - -  A V T  .... ( la)  

where the t h e r m o p h o r e t i c  mobi l i ty  

A =  I 2C~(k+f~C,I/a) I ;_T 
(1 + 2 C,,~ I/a) (2k + ~ + 2k Ct l/a) " (lb) 



Thermophoresis of an arbitrary three-dimensional array 1037 

In equation (lb), p, q and k are the density, viscosity and thermal conductivity, respectively, 
of the gas; /~ is the thermal conductivity of the particle; T is the bulk-gas absolute 
temperature at the particle center in the absence of the particle (or the mean gas temper- 
ature in the vicinity of the particle); Cs, Ct and Cm are dimensionless coefficients accounting 
for the thermal creep, temperature jump and hydrodynamic slip phenomena, respectively, 
at the particle surface and must be determined experimentally for each gas-solid system. 
A set of reasonable kinetic-theory values for complete thermal and momentum accommo- 
dations appear to be C~ = 1.17, Ct = 2.18 and Cm = 1.14 (Talbot et al., 1980). Note that the 
negative sign in equation (la) indicates that the particle migration is in the direction of 
decreasing temperature and p T  in equation (lb) is a constant for an ideal gas at constant 
pressure. Brock's (1962) analysis was extended to spheroidal particles by using prolate and 
oblate spheroidal coordinate systems (Leong, 1984). 

In most real situations of thermophoresis, aerosol particles are not isolated and will move 
in the presence of neighboring particles. Through an exact representation in spherical 
bipolar coordinates, the thermophoretic motion of two separate, arbitrary spherical par- 
ticles along the line of their centers was recently examined (Chen and Keh, 1995). Numerical 
results of correction to equation (lb) for each particle were presented for various cases. On 
the other hand, the thermophoresis of two arbitrary spheres whose connecting axis is 
oriented arbitrarily relative to the temperature gradient was analyzed using a method of 
reflections (Keh and Chen, 1995). The particle velocities were determined in an approximate 
solution of increasing powers of r121 up to O(r~-27), where rl 2 is the center-to-center distance 
between the particles. Several important conclusions result from these investigations of the 
two-sphere interactions in thermophoresis. First, the particle interaction effects on ther- 
mophoresis in general are much weaker than on sedimentation, because the disturbance to 
the fluid velocity field caused by a thermophoretic sphere decays faster (as r-  3, where r is the 
distance from the particle center) than that caused by a settling sphere (as r-l) .  In 
sedimentation, there is a net gravitational force exerted on the particle and this force is 
balanced by a nonzero hydrodynamic force. In thermophoresis, however, there is no 
hydrodynamic force exerted on the particle. As a consequence, the disturbance velocity 
fields in the surrounding fluid for the two situations decay at different rates with r. Second, 
for the situation of two identical spheres aligned parallel to the prescribed temperature 
gradient, the interaction effects make each particle move faster than the velocity it would 
possess if isolated, while for the situation of two identical spheres undergoing thermophor- 
esis normal to the line of their centers, each particle migrates slower than its undisturbed 
velocity. Third, the thermophoretic velocity of each of two coexistent identical spheres, 
which can be arbitrarily oriented, is unaffected by the presence of the other in the case of 
[~/k -- 0 or Ctl/a ~ 0o. Fourth, the influence of the interactions between the particles in 
general is far greater on the smaller one than on the larger one. 

In view of the fact that the interactions among multiple particles may be important and 
aggregates of particles can be formed in concentrated aerosol suspensions, in a previous 
article (Chen and Keh, 1996) we studied the axisymmetric thermophoretic motion of 
a string of N freely suspended or linked spherical particles along the line of their centers 
using a boundary collocation technique. In that analysis, the particles could differ in 
physical properties and in radius and they were allowed to be unequally spaced. The 
numerical results of particle interaction effects could be obtained with good accuracy even 
when the particles were touching one another. 

This paper is an extension of the previous work (Chen and Keh, 1996) to the situation of 
the thermophoretic motion of multiple spheres in an arbitrary configuration. Again, the 
spheres may differ in radius and in physical properties. The quasi-steady energy and 
momentum equations applicable to the system are solved by using the boundary collo- 
cation technique and the particle interaction parameters are obtained for various cases. For 
the simple case of thermophoresis of two spheres normal to the line of their centers, our 
numerical results for the particle velocities show excellent agreement with the asymptotic 
solution obtained by using the method of reflections. The combined analytical=-numerical 
solution method for the thermophoresis of freely suspended spheres is also employed to 
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examine the thermophoretic motion of a three-dimensional rigid cluster composed of 
N arbitrary spheres connected by thin rods of arbitrary lengths through their centers. 
The complete collocation results for the interaction effects between pairs of spheres are also 
used to evaluate the mean thermophoretic velocity in a bounded suspension of aerosol 
spheres. 

2. ANALYSIS FOR M U L T I P L E  SPHERES 

Consider the thermophoretic motion of N spherical particles in an infinite gaseous 
medium, which is assumed to be Newtonian and incompressible, in an arbitrary three- 
dimensional configuration as shown in Fig. 1. For  convenience, the Cartesian coordinate 
system (x, y, z) is established such that the center of the first sphere is at the origin and the 
uniform imposed thermal gradient VT~ equals Eo~ex, where e~ together with % and e= are 
the unit vectors in the coordinate system. The position of the center of particle i is 
represented by coordinates (bi, ci, de), and we have set bl -- Cl = dl = 0. The particles may 
be formed from different materials and have unequal radii. Our purpose here is to determine 
the correction to equation (1) for the motion of each particle due to the presence of the other 
ones in proximity. At first, the temperature distributions inside and outside the particles and 
the fluid velocity field must be solved. 

2.1. Tempera ture  distributions 

The thermophoretic motion of multiple particles is inherently unsteady. However, the 
problem can be considered quasi-steady if the Reynolds and Peclet numbers are small. The 
conduction equation governing the temperature distribution T (r) for the suspending fluid 
of constant thermal conductivity k is 

V2T = 0. (2a) 

For  the temperature field Ti ( r )  inside the particle i, one has 

VZT/= 0, i =  1,2 . . . .  ,N. (2b) 

The boundary conditions at the particle surfaces require that the normal heat fluxes be 
continuous and a temperature jump occur which is proportional to the normal temperature 
gradient (Kennard, 1938). Also, the fluid temperature must approach the linear prescribed 
field far from the particles and the temperature inside each particle is finite everywhere. 
Thus, one has 

(?T 
ri -- ae: T -- Ti  = Ctel  8r i  (3a) 

k ~ T  ~Te 
c~ri = ke Or---[' (3b) 

ri < ae: T i is finite, (3c) 

(X2 + y2 + 2.2)1/2 ~ O0 : T --* T ~  = To + E ~ x ,  (3d) 

for i = 1,2 . . . . .  N. Here, ai, ki and C,  are the radius, thermal conductivity and temperature 
jump coefficient of particle i respectively, l is the mean free path of the surrounding fluid, 
(re, 0i, q~e) are spherical coordinates measured from the center of particle i, and To is the 
temperature far from the particles at the plane x = 0. 

The fundamental solution of Laplace's equation that is capable of describing an arbitrary 
disturbance on the surface of a sphere consists of the internal and external solid spherical 
harmonic functions. For  N spherical particles dispersed in the temperature field, the general 



T h e r m o p h o r e s i s  o f  a n  a r b i t r a r y  t h r e e - d i m e n s i o n a l  a r r a y  1039 

Eooex 

(x,y,z) 

(ri ,OI ,~) 

© 

Z 

.S~ "d 

.J - - _ - ~  

r l  

(bi,Gi,di) 

.,.f_.~ ..__-_- - _ . . . . . . .  

Y 

al 

Fig.  1. G e o m e t r i c a l  ske tch  for  the  t h e r m o p h o r e s i s  o f  mul t ip le  a e ro so l  spheres .  

solution to equation (2) can be written as 

N 

T = Eo~ ~ ~ ~ rfn-lP~(ktj)[RjmnCOS(mqbj) + Simnsin(mq~j)] 
j = l  n = 0  m = 0  

+ Eo~ x + To, (4a) 

Ti = Eo~ ~ ~ rTP'~(l~i)[RimnCOS(mc~i) + S~m~sin(m~bi)] 
n = 0  m = 0  

+ E ~ x +  To, i = l , 2  . . . . .  N. (4b) 

Here P~ are the associated Legendre functions and ~ is used to denote cos 0~ for brevity. 
A solution of the form of equation (4) immediately satisfies boundary conditions (3c) and 
(3d). The unknown coefficients Rjmn, Sjran , R im  n and Sgm. are to be determined using the 
boundary conditions at the particle surfaces. It is understood that Sjm,, = S~,~ = 0 if m = 0. 

Application of the boundary conditions (3a) and (3b) along the surface of each sphere to 
equation (4) leads to 

~ ~ {Rj,~[rj-"-lP~(pj)cos(m(bj)]r,=,, + Sjmn[rT~-lP~(#j)sin(mqSj)],,=a,} 
j = l  n=O m=O 

- ~ ~ (a~' + na~-tk*Ct, l)P~(#,) [R,m,,Cos(mc~) + Simnsin(m~b,)] 
n=O ra=O 

= k* Ctil(1 - ~2)1/2 cos q~i, (5a) 

~, [ Rjm~ Rjim,.(ai, I~i, ~i) + SjmnSjimn(ai, 12i, (~i)] 
j =  1 n=O m=O 

- -  k* ~ ~ na'/-x P~(/~,)[/~,mncos(m~b,) + $1m~sin(mq~,)] 
n=O m=O 

= (k* - 1)(1 - #2)1/2 cos ~b,, (5b) 
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where k* = k j k ,  functions R~iim,(ri,//i, Oi) and Sji,,,(ri,//i, Oi) are defined by equation (2.7) of 
Keh and Yang (1991) and i --- 1, 2, ... , N. In equation (5a), the coordinates (rj, Oj, (o j) of an 
arbitrary position relative to the center of the j th  particle are related to the coordinates 
(r~, 0i, qS~) of the position relative to the center of the ith sphere by equation (2.8) of Keh and 
Yang (1991). To satisfy the boundary conditions (5a) and (5b) exactly along the entire 
surface of each particle would require the solution of the entire infinite arrays of unknown 
constants R j,.., S j,.., e i m n  and &m.- However, the boundary collocation method allows one 
to truncate the infinite series in equation (4) and then to enforce the boundary conditions at 
a finite number  of discrete points on the surface of each sphere (Hassonjee et al., 1988; Keh 
and Yang, 1991; Williams and Loyalka, 1991). 

To apply the collocation technique, the order of summation y."2 o ~ :  o in equations (4) 
and (5) is changed to y~,~= o Y"~,. without the loss of any terms in the series. Then the infinite 

0 6  • OC 
series Z.,  = o is truncated after the first M terms and the infinite series Z .  =m is truncated after 
its first K terms for each value o f j  or i. With this arrangement,  equation (4) becomes 

N M 1 m + K  1 

T = Eoc ~ ~ ~ rjn-lPmn(//j)[Rjmncos(rnOj) + Sj,nnsin(md?j)] 
j= 1 m=0 n = m  

+ E~ x + To, (6a) 
M 1 m + K  1 

Ti = E~, ~ ~ r'~ P~. (//i)[Rim,,Cos(m~i) +Sim. sin(m(gi)] 
m - O  n - m  

+ E . x +  To, i =  1,2 . . . . .  N, (6b) 

and equation (5) must be altered accordingly. 
Equation (6) leaves a total of 2NK(2M - 1) unknown coefficients R~,.., Sj.,., Rim. and 

S~,.. (Sjo. = ~7~o. = 0) to be determined. To generate the equations needed to evaluate these 
unknown constants, we multiply the truncated form of equation (5) by the function sets 
cos(re' ~bi) and sin(m' ~bi), integrate with respect to ~bi from 0 to 27z, and utilize the ortho- 
gonality properties of these functions in this interval to obtain 

~ M~lm+K-1 { f:r~ 
2 R J  mn [rf"- 1 p m ( / / j ) C O S ( m ( g j ) ] r i = a i  cos(m' 4 ) i ) d ~ i  

j=l m=0 n=m 

+ &m. [_rf" 1 PY(//j)sin(m4i)]~,=., cos(m'~b~)d4~ 

m ' + K - 1  

- rc y~ (a'i + na'i -1 k*Ctil)Rim,.P2'(/ / i)  
n = m '  

rc (a'~ + na~ 1 k* Cti l)Rio.P°(/ / i )  
n=0 

rrk*Ctil(1 --//?)1/2 

(m' = 0) 

(m' = 1) 

(m' = 2,3 . . . . .  M - 1), (7a) 

Rjm. [rj -n-1 Pm(//j) cos(mdpj)]ri=a, sin(m' 4~i)dQ)i 
, j= l  m=O n=m 

+ Sj.,. [r;-"- 1 p,~(l~i)sin(rn~b~)]r, =., sin(re' ~bi)dqSi 

m ' + K - 1  

- n ~ (a'd + na'~-lk*C.1)~gim,.P~'(//~) 
n ~ m '  

= 0  (m' = 1,2 . . . . .  M - l ) ,  (7b) 
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M-1 m+K-i { ~:n 
2 Z Rjmn Rjimn(ai,~i,~)i)cos(m'¢i)d~i 

j = l  m=O n:m 

+ Sjm. Sjim. (ai, Yi, ¢i) cos (m' ¢i) dqSi 

m'+K-1 
- rck* ~, na n - l -  m" Rim, .P.  (th) 

n=m ' 

K - 1  
rck* ~ n a ' 1 - 1 -  o RionPn (l, Li) 

n=O 

re(k* - 1)(1 - kt{) 1/2 

0 

(m' = 0) 

(m' = 1) 

(m' = 2,3 . . . . .  M -- 1), (7c) 

Z Rim n Rjimn (ai, ].ti, ~bi) sin (m '  ¢ i )  d~bi 
j = l  m=O n=m 

+ Sjm. S j im. (a i ,# i , c ) i ) s in (m'~bi )d¢ i  

m'+K-1 
~k* Z na'~- l - m" - Sim,.P. (]1i) 

n=m" 

= 0 (m' = 1,2, . . . , M - -  1), (7d) 

where i = 1, 2, . . . ,  N. The above boundary conditions are satisfied at K discrete values of 0i 
(rings) at the surface of each particle i. This results in a set of 2 N K ( 2 M  - 1) simultaneous 
linear algebraic equations, which is exactly equal in number to the unknown constants Rjm,,, 

Sjm,, /~im, and Si,.. in the truncated solution (6) for the temperature field. These 
2 N K ( 2 M -  1) equations can be solved using any standard matrix-reduction technique. 
Note that the definite integrals in equation (7) for each collocation ring must be performed 
numerically. 

The accuracy of this boundary-collocation, truncated-series solution technique can be 
improved to any degree by taking sufficiently large values of M and K. Naturally, the 
truncation error reduces to zero as M ~ ~ and K ~ ~ .  In general cases, the series in 
equation (6) converge quite rapidly, and very good accuracy can be achieved with only 
a small number of terms in the Fourier series (M) and collocation rings on each particle (K). 

One special case of the general three-dimensional theory described above is the case with 
planar symmetry, i.e. the centers of all the spheres lie in the plane y = 0. For  these planar 
symmetric configurations, the constants S j,., and Si,,~ are all zero and equations (7b) and 
(7d) become trivial. So the number of unknowns (Rim. and/~ , , ,  only) is reduced to 2 N K M  
and they can be determined by an equal number of equations in the form of equations (7a) 
and (7c) satisfied at K discrete rings on the surface of each sphere. Furthermore, there are 
two special cases which can be deduced from the planar case: a string of spheres oriented 
parallel to the prescribed thermal gradient (the centers of all spheres lie on x-axis) and 
a string of spheres oriented normal to the applied field (the centers of all spheres lie along 
the z-axis). The temperature distributions for the former case are axisymmetric about the 
x-axis and were solved in a previous article (Chen and Keh, 1996). 

For  the configuration of a finite chain of spheres located on the z-axis, we have ¢~ = ¢, 
bi = ci = 0 (i = 1, 2 . . . .  , N) ,  and only the coefficients for m = 1 will be nonzero. Thus, the 
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truncated form of equation (5) can be simplified as 

N K K 

~'~ R jx . [ r f " - l  PX.(ktj)]r,=., - ~'~ (aT + na']-' k*Ctil)ff.ilnP2(~i) = k* Ctil(1 --  ] . /2)1/2  
j = l  n = l  n = l  

(Sa) 

(8b) 
N K K 

~ Ria.Gj,.(a,,p,) - k* ~ n a n - l R i l n e l ( 1 2 i )  ~- (k* - 1)(1 - #2),/2, 
j = l  n = l  n = l  

where 

Gji~(r~,p~)= r ~ - 4 { - - ( n  + 1)[r~ + l a ~ ( d i - d j ) ] r j p l ( p j ) - ( 1 -  I t2)(di-dj)r~dPd~J) }, 

(9) 

and the dependence on q5 factors out. Instead of using equation (7) one can apply equation 
(8) at K discrete values of 0~ along the surface of each of the N particles and the numerical 
integration with respect to the variable ~b is not needed. This generates a set of 2NK linear 
algebraic equations for the 2NK unknown coefficients Rj~, a n d / ~ , .  Once these coefficients 
are determined by a matrix-reduction technique, the temperature distributions for this 
special case are completely solved. 

2.2. Fluid velocity distribution 

With knowledge of the solution for the temperature field, we can now proceed to find the 
fluid velocity distribution. Due to the low Reynolds numbers encountered in thermo- 
phoretic motion, the fluid velocity is governed by the Stokes equations 

qV2v -- Vp = 0, (10a) 

v.v_ = o, (10b) 

where v(r,) is the velocity field for the fluid flow and p(£) is the corresponding pressure 
distribution. Owing to the thermal creep velocity and the frictional slip velocity along the 
particle surfaces as well as the fluid at rest far from the particles, the boundary conditions 
for the fluid velocity are 

~ Cmil(I C, 11 
= - e~ e~.)e~ :r + si-=--V~T, ri -~ ai: ~ Ui  + a i ~ i  × e p i + T ~ . . . .  Z p T  i ( l la )  

(x2 + y2 + z2) l /2- -~  00: ~---~Q, ( l lb)  

T ~ - - T o  + E~ bi, which is the prescribed temperature at the 

n - 2  ~21"7~(j )  
2rtn(2n -- 1) "i , ,v- , , -1 + 

n + l . r.p(J~ ] 
tln~n - 11-' - " - ' ~ '  

(12) 

for i = 1,2, ... ,N. Here, 
position of the center of particle i; ~ (=  t/IVy + (Vv) T]) is the viscous stress tensor for the 
fluid; er, is the radial unit vector in the spherical coordinates measured from the center of 
particle i; / is the unit dyadic; Cmi and Csl are the hydrodynamic slip and thermal slip 
coefficients, respectively, about the surface of particle i; Ui( = Uixex + Uiyey + U~ez) and 
~ ( = f~ixex + f~rey + f~zez) are the translational and angular velocities of particle i to be 
determined. The tangential temperature gradient, Vs T = ~ - er,er,)" VT, can be obtained 
from equation (6a) with coefficients determined from equation (7). The validity of the 
expression for the thermal creep velocity in equation (1 la) is based on the assumption that 
the fluid is only slightly nonuniform in the undisturbed temperature on the length scale of 
the particle radii. 

The general solution to equation (10) is 
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where ~((--J)--l, ~b(--J)-i and p~,)_ 1 are the solid spherical harmonic functions of order 
- (n + 1) which depend on the spherical coordinates (r~, 0~, ~bj) originating at the center of 

particle j and r~ = r~e~. These functions can be expressed as 

~)(J)-i I = ?.j-n-1 ~" pnm([.lj) 

P(J)- l  J m:O 
Cim, [ cos(rn¢i) + Djm, 

Ejm . F~,,, 

sin(me j) (13) 

The boundary condition (1 lb) is immediately satisfied by a solution of this form and the 
unknown coefficients At,,., B i . . . . . .  , and Fir,. remain to be determined from equation (1 la). 
In the construction of solution (12), the superposition of Lamb's general solution (Happel 
and Brenner, 1983) to equation (10) as written from N different origins can be utilized owing 
to the linearity of the governing equations. 

Substituting equation (13) into equation (12) and applying equations (2.8), (2.23) and 
(2.24) of Keh and Yang (1991) for the coordinate transformation leads to an expression for 
the fluid velocity field in terms of spherical coordinates measured from the center of the ith 
particle: 

v = v,,(ri, Oi, (bi)£,, + Vo, (ri, Oi, ~Pl)£o, + ve~,(ri, Oi, ~bi)£o,, (14) 

where 

n . (2) [ (2) 2) 
Vo, = ~ Arm. A jim,, + Bjm, B~im. + "'" + Fjmn "" , 

j = l  n = l  0 (3) / | R  ~3) / 
v4,, A~im, I L x.njimn J 

(15) 

and i = 1,2 . . . . .  N. The functions (z) (o ~) -4~im. (r~,/~i ,  4~) ,  B)imn (ri, lti, ~91) . . . .  and F(jimn (ri, pli, ~i) 
with l =  1,2 and 3 in equation (15) are defined by equation (2.27) of Keh and Yang 
(1991). 

Application of boundary condition ( l la)  to equation (14) can be accomplished by 
utilizing the collocation technique presented in the previous subsection for the solution of 
the temperature distributions. First, the order of summation Y~,~I ~ ,  = 0 in equation (15) is 
changed to ~ = o  ~,~, , , .  ~ o without loss of any terms in the series. Then the infinite series 
y.m~=o and ~ , ~ , .  ¢ o are truncated after M* and K* terms, respectively, for each value ofj. 
Substitution of equations (14) and (6a) after this arrangement into equation ( l la)  yields 
three algebraic formulas which leave a total of 3 N K *  (2M* - 1) unknown constants Arm., 
Bj . . . . . . .  and Fj,,. to be determined (equation (13) gives Bj0. = D~o, = Fjo, = 0). Multiply- 
ing these formulas by the function sets cos (m' q~i) (m' = 0, 1, 2 . . . .  , M* - 1) and sin (m' ~bi) 
(m '=  1,2 . . . . .  M * - 1 ) ,  integrating with respect to ~bi from 0 to 2n, and utilizing the 
orthogonality properties of these functions in this interval allow one to obtain 3(2M* - 1) 
equations which are similar in form to equation (7). These equations can be satisfied at 
K* discrete values of 01 (rings) along the surface of each of the N particles to result in a 
set of 3 N K *  (2M* - 1) linear algebraic equations, which can be solved by a matrix- 
reduction method to obtain the equal-number unknown constants in terms of the particle 
velocities U~ and ~ .  Once these constants are determined, the fluid velocity field is 
completely solved. 

For the case of planar symmetry, i.e. the centers of all the spheres lie in the plane 
y = 0, U~ r = fl~x = fl~ = 0, the coefficients Ajmn, Dim n and Fjm n a r e  all zero and the 
integration of three algebraic formulas after multiplication by sin(m' <pg) with respect to 
~b~ from 0 to 2n is trivial. Thus, the number of unknown coefficients (Bjm,, Cjm, and Ej,. .)  is 
reduced to 3 N K * M *  and they are determined by an equal number of collocation 
equations. 
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Similar to the previous subsection, two special cases can be deduced from the planar case. 
The fluid velocity field about a chain of spheres undergoing thermophoretic motion along 
the line of their centers (x-axis) is axisymmetric and was solved by employing the 
Stokes stream function (Chen and Keh, 1996). For  the case of a string of spheres oriented 
normal to the prescribed thermal gradient (the centers of all the spheres lie on the z-axis), 
one has ~bi = ~b, b i = cl  = 0 and Uix = Ui= = Qix = ~i= = 0 (i = 1,2 . . . . .  N), and only the 
coefficients for m = 1 will be nonzero. Thus, the three algebraic formulas obtained by 
substituting equations (14) (after truncation) and (6a) into equation (1 la) can be simpli- 
fied to 

N K* 
Y, Y" [Bj,.dj..(ai,') . i ,  4') + Cj , .  " ( ' )  "~ji~.tai, ~'i, 40 + E:j,. E~,,.(ai,(') Ui, 4')] 

j = l  n= l  

= Uix(1 - ,2)1/2 COS ~b, (16a) 

N K* 
Z Z [Bj,.B~j~.(ai,l~i,(a) + CjlnCjln(ai,]Ai,~)) Ji- Ejlnejln(~i,~li,~))] 

j = l  n= l  

~- (Uixfli + ai[~iy )COS gb 

_ Csi ~EOOpTi tlil [ n=l ~ Riln("n -~ Ylan- l kt Ct i l ) (1- ]Ai2)l/2dpl (~li)d.i 

- (ai + k *  Ctil)#i]cos~) , (16b) 

N K* 

Z 2 ** jln )i.(ai,fli ,q)~J [ B j l , B j i , ( a i , , i , O ) + C j l . C j * * ( a i , # i , * ) + E  E** . . . .  
j = l  n= l  

= - (Ui~ + a i~ i r , i ) s in  ~b 

Cs' rlE°° l Ti al .= ~1Rnn(a'] + na'~- l k * Ca l ) ( 1 -  'u{ )l/2 p l  (ffl ) + ai + k* C'i l ] sin c~' 

(16c) 

where 

[BS*.(r,,.,,4~i)] i~.j,,.r~(2) lj [ I l <,2',° l----Cmll rl 
r, 

L.~Ji,. j 

.(2) ] r.(2) 

v(2) ~ | v t  2) 
• ~ j i , . j  /~ . . , °  

[ ~(1) ] 

-- (1 __ . ? ) 1 / 2  ~ /  ~jiln | 
~!?-) / 
k'flln J 

(17) 

 ,ln, ,' Jilnr 'i' 1 ** emil (~ / .(3 '  / __ /~ j j~ ;n /  (1 .12) -1/2 ~ ~/--,(1) Ic:,,,(r,,,,i,*i)t=lTZ'l--z - - . . , , .  

[_--,j,l,, j .-,..,,, j L- , , l , ,  j 

(18) 

Note that the dependence on q~ in equation (16) will factor out for this special case. 
Application of equation (16) at K* discrete values of 01 on the surface of each particle i can 
generate a set of 3 N K *  linear algebraic equations for the 3NK*  unknown coefficients Bjl,, 
Cjl, and Ejl , .  
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2.3. Velocities o f  f ree  spheres 

The force exerted by the fluid on the ith sphere and the hydrodynamic torque experienced 
by the sphere about its center are given by (Happel and Brenner, 1983) 

Fi = - 4rcV [rap(_°2], (19a) 

T~ = - 8zrrlV [r/a • ~)2 ], (19b) 

which shows that only the lowest-order solid spherical harmonic functions contribute to the 
force and torque on each particle. Substitution of equation (13) into equation (19) leads to 

Fi = -- 4rr(Eilxex + F i l l e y  + Emlez), (20a) 

Ti = -- 8~rl(Aill  ex  q- Billey q- Aiol£z),  (20b) 

where the six coefficients for each of the N spheres are known from the collocation solution. 
Because the particles are freely suspended in the surrounding fluid, the net force and 

torque exerted by the fluid on each sphere must vanish. Applying this constraint to equation 
(20), one has 

A i o l  - -  A i l  l = Bill = Eiol = Ell 1 = Fil 1 = 0 ,  i = 1, 2 . . . .  , N. (21) 

To determine the instantaneous translational and angular velocities U~ and ~ of the 
N particles (6N components in total), the above 6N equations must be solved simulta- 
neously. The result can be expressed as 

N 

= U m~ (22a) 2 , 
j = l  

N 
1[ (0) ai~)i = E N~j" = j  , i = 1,2 . . . . .  N, (22b) 

j = l  

with 

U~ °~ = - A j V  Too, (23) 

which is the thermophoretic velocity of sphere j in the absence of all the other ones. Aj is 
used to represent the value of A defined by equation (lb) for the undisturbed ther- 
mophoretic mobility of particle j. The dimensionless mobility tensors Mij and N~j are 
functions of the physical properties (k*, Ct~, Cml), sizes, orientations and separation ~listan- 
ces of the particles. It can be shown that M~j and N~j are independent of the thermal slip 
coefficients (Cs~) of the particles. When the  ith sphe're is separated by an infinite distance 
from all of the others, it is evident that 

Mii = I ,  

Mi j  = 0 ( j  = 1,2 . . . . .  N b u t j  ~ i), 

Nij  --- 0 ( j  = 1,2 . . . .  N), 

(24a) 

(24b) 

(24c) 

for i = l, 2, ... , o r N .  

2.4. Velocity o f  a rigid cluster o f  spheres 

We now consider the thermophoretic motion of a rigid cluster of N spheres connected 
through their centers with rigid rods of arbitrary lengths. The connecting rods are assumed 
to be infinitesimally thin compared to the sphere sizes; hence they make neither thermal nor 
hydrodynamic contributions but only serve to ensure the rigid-body motion of the cluster. 
Here, our aim is to explore the thermophoresis of aggregates formed by flocculation of 
aerosol particles. 
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For  such a rigid cluster of spheres undergoing thermophoresis, all of the equations in the 
previous subsections except for equations (21) and (24) still apply. Since the angular velocity 
of a rigid body is independent of the choice of origin, one has 

~ = ~,  i = 1,2 . . . . .  N,  (25) 

where ~ is the angular velocity of the cluster. The translational velocity of each sphere in the 
rigid cluster can be written as 

U,= U o + g X r o , ,  i =  1,2 . . . . .  N, (26) 

where Uo refers to the translational velocity of a point on the cluster designated as the 
origin and roi is the position vector of the center of sphere i measured from the origin. Using 
equations (25) and (26) in Section 2.2, the set of unknown constants {Aj,,,, Bj . . . . . . .  Fj,,. } or 
{Bj~,, C~I,, Eil,} can be solved in terms of the components of the cluster velocities Uo and 

by the same collocation method. 
To determine U0 and ~ the constraint that the net force and net torque exerted by the 

fluid on the rigid cluster are zero is needed. Since the force acting on a rigid body is 
independent of the choice of origin, the net force on the cluster can be expressed in terms of 
the forces exerted on the individual spheres as 

N 

F =  ~ F , = 0 .  (27) 
/ = 1  

The net torque about the cluster's origin can also be expressed in terms of the forces and 
torques acting on the N spheres as 

N 

To = ~ (7", + £o, x F,) = 0. (28) 
i = 1  

Substitution of equation (20) into equations (27) and (28) leads to 

N 

E,11 = 0, (29a) 
/ = 1  

N 

F i l l  = 0, (29b) 
' = 1  

N 

E Eiol =- 0 ,  (29c) 
i = 1  

N 

(2qA,11 + YoiE,ol  - z o i F i l l )  = 0, (30a) 
/ = 1  

N 

(2qBnl + zoiEil l  -- xoiEiol) -~ 0 ,  (30b) 
/ = 1  

N 

(2q Am1 + xoiF,11 --  y o , E ,  1) = 0, (30c) 
, = 1  

where Xo,, Yoi and Zo, are the components of vector ro, in Cartesian coordinates. The 
translational and angular velocities Uo and ~2 (each having three components) can be 
determined by solving the above six equations simultaneously. 

3. RESULTS FOR TWO FREE SPHERES 

In this section we consider the thermophoretic motion of two freely suspended spheres 
which are oriented arbitrarily relative to the direction of the prescribed temperature 



Thermophoresis of an arbitrary three-dimensional array 1047 

Table 1. The mobility parameters for the thermophoresisoftwoidenticalspheres normal to the line of their 
centers with Ct I/a = 0.2 and Cm l/a = 0.1 (the values in parentheses are calculated from the approximate 

formulas obtained by the method of reflections for comparison) 

~,, 11 + MiD2 N i l  NI2 NH 4- N12 

1 0.2 1.0000 0.0005 0.9996 (0.9996) 3.1E-7 - 3.4E-8 2.7E-7 (2.7E-7) 
0.4 1.0005 0.0040 0.9965 (0.9965) 4,3E-5 - 4.2E-6 3.9E-5 (3.4E-5) 
0.6 1.0017 0.0135 0.9881 (0.9881) 8.8E-4 - 4.2E-5 8.4E-4 (6.4E-4) 
0.8 1.0054 0.0325 0.9729 (0.9717) 8.8E-3 6.2E-4 9.4E-3 (4.4E-3) 
0.9 1.0112 0.0468 0.9643 (0.9596) 0.0260 0.0048 0.0307 (9.9E-3) 
0.95 1.0175 0.0553 0.9623 0.0468 0.0128 0.0596 
0.99 1.0280 0.0612 0.9667 0.0849 0.0345 0.1194 
1.0 1.128 - 0.034 1.161 0.565 0.509 1.075 

10 0.2 0.9996 0.0005 0.9991 (0.9991) 3.1E-7 3.1E-7 6.2E-7 (6.0E-7) 
0.4 0.9965 0.0040 0.9925 (0.9925) 4.4E-5 4.5E-5 8.9E-5 (7.7E-5) 
0.6 0.9884 0.0132 0.9753 (0.9750) 9.3E-4 9.6E-4 1.9E-3 (1.3E-3) 
0.8 0.9744 0.0287 0.9457 (0.9417) 0.0099 0.0106 0.0205 (9.8E-3) 
0.9 0.9671 0.0356 0.9315 (0.9180) 0.0297 0.0330 0.0627 (0.0224) 
0.95 0.9650 0.0357 0.9293 0.0528 0.0600 0.1127 
0.99 0.9662 0.0305 0.9357 0.0897 0.1040 0.1937 
1.0 0.985 0.010 0.975 0.190 0.207 0.398 

100 0.2 0.9994 0.0005 0.9989 (0.9989) 3.1E-7 4.4E-7 7.5E-7 (7.3E-7) 
0.4 0.9956 0.0040 0.9916 (0.9916) 4.4E-5 6.4E-5 1.1E-4 (9.3E-5) 
0.6 0.9853 0.0131 0.9722 (0.9719) 9.5E-4 1.4E-3 2.3E-3 (1.6E-3) 
0.8 0.9674 0.0275 0.9399 (0.9348) 0.0104 0.0147 0.0251 (0.0120) 
0.9 0.9573 0.0317 0.9256 (0.9086) 0.0315 0.0444 0.0759 (0.0273) 
0.95 0.9534 0.0288 0.9246 0.0558 0.0788 0.1346 
0.99 0.9524 0.0195 0.9329 0.0927 0.1313 0.2240 
1.0 0.944 0.025 0.919 0.063 0.107 0.170 

1000 0.2 0.9994 0.0005 0.9989 (0.9989) 3.1E-7 4.6E-7 7.7E-7 (7.5E-7) 
0.4 0.9955 0.0040 0.9915 (0.9915) 4.4E-5 6.7E-5 1.1E-4 (9.6E-5) 
0.6 0.9850 0.0130 0.9719 (0.9716) 9.5E-4 1.4E-3 2.4E-3 (1.6E-3) 
0.8 0.9666 0.0273 0.9393 (0.9340) 0.0105 0.0153 0.0257 (0.0123) 
0.9 0.9562 0.0311 0.9250 (0.9076) 0.0318 0.0460 0.0778 (0.0279) 
0.95 0.9521 0.0278 0.9243 0.0563 0.0815 0.1378 
0.99 0.9579 0.0180 0.9328 0.0932 0.1351 0.2283 
1.0 0.938 0.027 0.911 0.045 0.093 0.138 

gradient. For this simple case, equations (22a) and (22b) for the translational and rotational 
velocities of the particles become 

N 
~ r M ( P ) e e  ~r!.")(t _ ee)]"  t7 ~.°) (31a) U i  = 2 t_ ij _ _  '[- - , - t j  ~,~ ~,,j , 

j = l  

N 

ai~i = --  2 N i j e x  U~ °', (31b) 
j = l  

where N = 2, i = 1 or 2, and e is the unit vector directed from the center of particle 1 toward 
the center of particle 2. Using a method of reflections, the formulas for the mobility 
parameters "'(Pl .,(,) - M q , Jvlij ano Nq were derived in power series ofri-z 1 up to O(ri-27), where r12 is 
the center-to-center distance between the two spheres (Keh and Chen, 1995). 

On the other hand, the exact solution of the mobility parameters M]~, ~,,A~(P)t2, Mt2~ and 
M(P~ for the thermophoresis of two arbitrary spheres along the line of their centers was 22 
presented by utilizing spherical bipolar coordinates (Chen and Keh, 1996). The combined 
analytical-numerical solution of these particle interaction parameters, resulting from using 
the boundary collocation technique for the axisymmetric motion of multiple spheres, was 
also obtained (Chen and Keh, 1996). It was found that the collocation results agree very well 
with the exact solution for various sizes, spacings and physical properties of the two 
particles. In this section the numerical results of the remaining eight parameters (Mt~"l, M~2 ) , 
M(n) air(n) N1 N 1 2 ,  N21, and N22), obtained by using the boundary-collocation, trun- 21, ~*'l 22, 1, 
cated-series method described in the previous section, will be presented. The accuracy 
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Table 2. The mobility parameters M~ ) and N~j for the thermophoresis of two spheres of unequal radii with the same 
physical properties (k* = 100, Gl/a~ = 0.2 and  Cml/al = 0.1) 

02 a 1 + a2 M~"~ -- M~"~ -- M~"~ M~")z N1, N l z  - Nz,  - N22 
al rl2 

0.5 0.2 0.9999 0.0001 0.0012 0.9987 2.5E-7 3.4E-7 1.3E-7 1.6E-7 
0.4 0.9992 0.0012 0.0095 0.9894 3.3E-5 4.5E-5 2.0E-5 2.3E-5 
0.6 0.9976 0.0036 0.0319 0.9644 0.0006 0.0008 0.0005 0.0006 
0.8 0.9960 0.0062 0.0754 0.9150 0.0055 0.0076 0.0077 0.0079 
0.9 0.9972 0.0042 0.1069 0.8762 0.0152 0.0211 0.0285 0.0274 
0.95 1.0001 - 0.0002 0.1249 0.8506 0.0261 0.0362 0.0576 0.0531 
0.99 1.0064 -- 0.0104 0.1423 0.8197 0.0458 0.0648 0.1145 0.1067 
0.995 1.01 - 0.01 0.14 0.82 0.05 0.06 0.12 0.11 

2 0.2 0.9983 0.0009 0.0001 0.7856 1.4E-7 1.5E-7 5.4E-7 2.2E-7 
0.4 0.9862 0.0074 0.0012 0.7847 2.1E-5 2.4E-5 7.2E-5 3.0E-5 
0.6 0.9535 0.0250 0.0035 0.7825 0.0005 0.0006 0.0014 0.0006 
0.8 0.8902 0.0582 0.0052 0.7797 0.0076 0.0082 0.0119 0.0051 
0.9 0.8433 0.0800 0.0017 0.7797 0.0275 0.0287 0.0314 0.0139 
0.95 0.8161 0.0896 - 0.0035 0.7810 0.0550 0.0555 0.0513 0.0230 
0.99 0.7955 0.0926 - 0.0112 0.7832 0.1048 0.0997 0.0780 0.0351 
1.0 0.73 - 0.08 - 0.05 0.90 0.17 0.00 0.14 - 0.17 

5 0.2 0.9960 0.0017 1.8E-5 0.7428 1.4E-7 1.8E-8 1.9E-7 6.5E-8 
0.4 0.9680 0.0137 0.0001 0.7427 3.1E-6 3.2E-6 2.2E-5 8.3E-6 
0.6 0.8921 0.0464 0.0003 0.7425 0.0001 0.0001 0.0004 0.0001 
0.8 0.7431 0.1105 - 0.0002 0.7425 0.0022 0.0022 0.0034 0.0012 
0.9 0.6299 0.1584 - 0.0020 0.7430 0.0118 0.0112 0.0082 0.0029 
0.95 0.5602 0.1860 - 0.0038 0.7437 0.0308 0.0280 0.0129 0.0047 
0.99 0.5013 0.2051 - 0.0065 0.7446 0.0806 0.0658 0.0191 0.0071 

of this solution technique will be tested by comparing the results with the asymptotic 
solution given in Keh and Chen (1995). 

The details of the collocation scheme used for this work are given in Keh and Yang (1991) 
and a DEC 3000/600 AXP workstation was utilized to perform the calculations. All of the 
numerical results presented in Tables 1-5 converge to at least the digits as shown with 
reasonable choices of K and K*. A number of collocation solutions of the interaction 
parameters ~v,A~t")11, ~*,Ast")12, N 11 and N12 for the thermophoretic motion of two identical spheres 
(a 1 = a 2 ----- a, Ctl = Ct2 = Ct, Cml = Cm2 = Cm, k~ = k~ = k* a n d  A 1 = A2)  w i t h  var ious  
relative thermal conductivities and spacings are presented in Table 1. The two identical 
spheres will translate at the same velocity (because M~2"~ = M]"2 ) , M~2"2 ) = M]"~ and 
utO) = U ~0)) and rotate with angular velocities equal in magnitude but opposite in direction 2 
(since N22 = -- N i l  and N21 = - N12). Note that the spheres are still allowed to rotate 
freely when they are touched with each other (2a/r~2 = 1). The asymptotic solutions for 
Mtl"~ + Mtt"2 ) and N l l  + N12 accurate to O(r(27) obtained by using the method of reflections 
are also listed (in the parentheses) in Table 1 for comparison. It can be seen that these 
method-of-reflections results agree quite well with the collocation results so long as the 
particle surfaces are more than ~ of the sum of the radii apart (i.e. 2a/ra2 <~ 0.6). However, 
the accuracy of the asymptotic solutions (especially for Ni~) deteriorates rapidly, as ex- 
pected, when the particles get close to each other. While the reflection results accurate to 
O(r~ -7) always underestimate the value of M]~ + M]~ (Keh and Chen, 1995), they also 
underestimate the values of M]"~ + M(~"2 ) and N l l  + N 1 2 .  Note that, the direction of 
rotation (relative to the direction of translation) of two spheres undergoing thermophoresis 
is opposite to that of two settling spheres. 

Some numerical values of the mobility parameters M~i~ ) and Ni~ for the thermophoretic 
motion of two different-sized spheres with the same physical properties Ctx = C,2 = Ct, 
Cma = Cm2 = Cm and k* = k~' = k*) are listed in Table 2. Also, in Fig. 2, the normalized 
translational and rotational velocities of particle 1 of two spheres which have the same 
physical properties and experience thermophoresis perpendicular to the line through their 
centers are plotted as a function of (al + a2)/r12 with a2/al as a parameter. The results in 
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Fig. 2, Plots of the normalized translational and rotational velocities of two spheres of identical 
thermal conductivities and surface properties with k* = 100, Ctl/al = 0.2 and Cml/al = 0.1 under- 
going thermophoresis perpendicular to the line of their centers versus the separation parameter 

(al + a2)/r12 with a2/al as a parameter. 
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Tables 1 and 2 and Fig. 2 illustrate that the particles' interaction decreases rapidly, for all 
values of k* and a2/al,  with an increase in the gap between them (i.e. decreasing 
(a~ + az)/r12). However, the interaction between particles can be strong when the 
surface-to-surface spacing approaches zero. The effect of the interaction, in general, is 
greater on the smaller of the spheres than on the larger one for given values of k* and 
(a~ + az)/r12. Note that the translational and rotational velocities of the particles are not 
necessarily a monotonic increasing functions of the separation parameter (al + a2)/r~2. 
These complex results are generated from the combined effects of particle interactions on 
local temperature and fluid velocity fields. 

4. RESULTS FOR T H R E E  COAXIAL FREE SPHERES 

In the previous section solutions for the thermophoresis of two spherical particles based 
on the collocation technique have been presented and were shown to be in good agreement 
with the method-of-reflection results. This section will examine the solutions for the 
thermophoretic motion of three spheres using the same collocation method. Since the 
number of particle interaction parameters in the general problem of three spheres is so 
great, here we only consider the motion of three coaxial spheres with the same physical 
properties in a symmetric configuration that the two end particles have the same radius and 
distance from the central one (al = a3 and r12 = r 2 3 ) .  For this linear and symmetric case, 
equation (31) for the translational and rotational velocities is still valid (now with N = 3 and 
i = 1,2 or 3) and one has U1 = U 3 ,  ~'~1 = - ~ 3  and ~'~2 = 0, or 

M]P/"~ = M~3P~ "', (32a) 

= m (p'"I (32b) m ~  n) 32 , 

M~2~"' = M~2P/"', (32c) 

M~3P/") = M(P'13 ") , (32d) 

N11 = - N33, (32e) 

N12 = - N3E, (32f) 

N 2 3  = - -  N 2 1  , (32g) 

N31 = - N 1 3 ,  (32h) 

N 2 2  = 0 .  (32i) 

One may wonder what the shielding effect of neighboring particles on thermophoresis is. 
For  the particle-interaction effects on the motion of a sphere (say, sphere 1) in an aerosol, 
the contribution of the closest neighbors should be carried in terms of parameters M]v~ ") and 
the contribution of the next layer of neighbors is conducted through parameters M(tP~ ") for 
the above-mentioned linear and symmetric case. A comparison between the magnitudes of 
M ~  ") and M ~  "~ gives the shielding effect. The numerical solution _c ~,(p) o,  1vl ij for this case, 
resulting from using the collocation method for the axisymmetric motion of three spheres, 
was obtained by Chen and Keh (1996). These collocation results compare quite favorably 
with the formulas analytically derived. 

In Table 3, numerical results of the mobility parameters MI~ -) and N o for the thermo- 
phoretic motion of three coaxial spheres are presented for three cases of relative radii. The 
normalized translational and rotational velocities of these particles undergoing thermo- 
phoresis perpendicular to the line through their centers are also listed in the same table. In 
general, the particle interactions decrease with increasing gap thickness between two 
neighboring particles. However, similar to the case of two particles, the mobility parameters 
or normalized particle velocities are not necessarily a monotonic function of the separation 
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parameter (al + a2)/rxz. The collocation results for the more general case of three coaxial 
spheres, such as ax ~ a3, r12 ¢ r23 or the situation that the physical properties of the 
particles are different, can be obtained without any further difficulty. However, all 27 
mobility parameters, instead of 14, are required to compute the particle velocities. 

For the thermophoretic motion of three identical spheres along the line of their centers, it 
was found that the presence of an end sphere is to enhance the two-particle interaction effect 
on the other two spheres (Chen and Keh, 1996). One may be interested to see how 
significantly the existence of a third collinear sphere affects the thermophoretic velocities of 

Table 3. The mobility parameter ~!~-) and N~s for the thermophoresis of three coaxial spheres with the same ~ - *  13 

physical properties (k* = 100, Ctl/a 1 = 0.2 and C,.,,I/al = 0.1) for the symmetric case of al  = a3 and r12 = r23 

al + a2 
al :az:a3 _ M(~)2 A,H"J ~("~ A~") A~( " )  U1/U~ °) UE/U~2 °) - -  a r l  2 3  - -  a r l  3 1  ~ v l  1 1  ~ v ~ 2 2  

r 1 2  

1 : 1 : 1 0.2 0.0005 0.0005 0.0001 0.9994 0.9989 0.9988 0.9979 
0.4 0.0040 0.0040 0.0005 0.9950 0.9912 0.9906 0.9832 
0.6 0.0133 0.0130 0.0019 0.9837 0.9707 0.9685 0.9447 
0.8 0.0301 0.0270 0.0064 0.9640 0.9352 0.9276 0.8811 
0.9 0.0391 0.0304 0.0126 0.9528 0.9160 0.9011 0.8552 
0.95 0.0416 0.0262 0.0186 0.9482 0.9099 0.8879 0.8576 
0.99 0.0404 0.0143 0.0268 0.9461 0.9116 0.8788 0.8831 
1.0 0.0442 0.0090 0.0295 0.9434 0.9118 0.8697 0.8937 

1 : 2:1 0.2 0.0018 0.0001 0.0000 0.9982 0.9997 0.9974 0.9992 
0.4 0.0095 0.0012 0.0002 0.9860 0.9974 0.9796 0.9939 
0.6 0.0321 0.0035 0.0007 0.9531 0.9919 0.9310 0.9814 
0.8 0.0769 0.0041 0.0037 0.8887 0.9859 0.8339 0.9734 
0.9 0.1095 - 0.0020 0.0088 0.8383 0.9896 0.7566 0.9957 
0.95 0.1274 - 0.0112 0.0145 0.8040 0.9985 0.7047 1.0320 
0.99 0.14 -- 0.03 0.02 0.77 1.01 0.65 1.09 

2:1 : 2 0.2 0.0001 0.0012 0.0001 0.9997 0.9974 0.9994 0.9955 
0.4 0.0012 0.0094 0.0012 0.9979 0.9789 0.9952 0.9644 
0.6 0.0037 0.0316 0.0041 0.9933 0.9293 0.9843 0.8808 
0.8 0.0077 0.0726 0.0108 0.9861 0.8332 0.9653 0.7219 
0.9 0.0087 0.0992 0.0172 0.9836 0.7611 0.9550 0.6092 
0.95 0.0080 0.1121 0.0224 0.9842 0.7159 0.9514 0.5442 
0.99 0.0053 0.1202 0.0285 0.9876 0.6717 0.9522 0.4875 
1.0 - 0.04 - 0.14 -- 0.02 0.87 0.32 0.94 0.54 

al  + a2 
al:az:a3 N12 N23 N3x N i l  - a l O a / U ]  °~ 

1 " 1 2  

1 : 1 : 1 0.2 6.9E-8 4.6E-7 2.3E-7 3.2E-7 1.5E-7 
0.4 2.1E-5 6.6E-5 2.7E-5 4.5E-5 3.9E-5 
0.6 7.5E-4 1.4E-3 3.9E-4 9.5E-4 1.3E-3 
0.8 0.0109 0.0146 0.0024 0.0104 0.0189 
0.9 0.0366 0.0428 0.0047 0.0315 0.0634 
0.95 0.0681 0.0743 0.0058 0.0558 0.1180 
0.99 0.1185 0.1199 0.0049 0.0926 0.2063 
1.0 0.1179 0.0805 - 0.0019 0.0929 0.2128 

1:2:1 0.2 5.1E-8 5.4E-7 1.1E-7 1.8E-7 9.6E-8 
0.4 1.9E-5 7.2E-5 1.2E-5 2.6E-5 2.7E-5 
0.6 7.7E-4 1.4E-3 1.7E-4 6.9E-4 1.0E-3 
0.8 0.0134 0.0120 8.4E-4 0.0100 0.0181 
0.9 0.0509 0.0324 1.2E-3 0.0349 0.0676 
0.95 0.1015 0.0540 6.0E-4 0.0661 0.1331 
0.99 0.18 0.08 0.00 0.12 0.24 

2:1 : 2 0.2 4.6E-8 1.6E-7 1.9E-7 2.7E-7 1.4E-7 
0.4 1.0E-5 2.5E-5 2.2E-5 3.5E-5 2.6E-5 
0.6 2.9E-4 6.3E-4 3.3E-4 6.6E-4 7.1E-4 
0.8 0.0038 0.0085 0.0021 0.0058 0.0086 
0.9 0.0119 0.0294 0.0046 0.0159 0.0269 
0.95 0.0220 0.0563 0.0068 0.0269 0.0489 
0.99 0.0395 0.1011 0.0090 0.0440 0.0864 
1.0 0.22 0.00 - 0.04 -- 0.27 0.06 
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its two nearby particles when the temperature gradient is imposed normal to the line of their 
centers. In Fig. 3, the normalized translational and rotational velocities of three identical 
spheres with equal spacings undergoing thermophoresis perpendicular to the line of their 
centers are plotted by solid curves as a function of separation parameter 2a/r12. The 
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2o/ r la  
Fig. 3. Plots of the normalized translational and rotational velocities of three identical coaxial 
spheres of radius a with equal spacings undergoing thermophoresis perpendicular to the line of their 
centers versus the separation parameter 2a/r~2: (a) translational velocity of particle 1 (or particle 3); 
(b) translational velocity of particle 2; (c) rotational velocity of particle 1 (or particle 3). For 
comparison, the dashed curves are plotted for the particle velocities when only two spheres are 
present. For curves (a) and (c), Ctl/a = 0.2, Cml/a = 0.1 and k* = 100; for curves (b) and (d), 

Cilia = 0.02, Cml/a = 0.01 and k* = 100. 

corresponding values of the first and second spheres when the third one is not present are 
plotted by dashed curves in the same figure for comparison. Similar to the case of the 
motion of three spheres parallel to the line of their centers, the existence of the third sphere 
in general is to increase the two-particle interaction effect on the thermophoretic migration 
velocities of the other two spheres. On the other hand, the existence of the third sphere is to 
decrease the two-particle interaction effect on the rotational velocities of the other two 
spheres, with exceptions when the spacing between two neighboring spheres gets close to 
zero. For  small to moderate values of 2a/r12, the thermophoretic velocity of the central 
sphere is smaller than that of the end ones. However, when the particles are close together, 
the central sphere migrates faster than the end ones. On the contrary, the migration velocity 
of the central sphere is always smaller than that of the end ones for the thermophoresis of 
three identical spheres along the line through their centers (Chen and Keh, 1996). Note that 
the shielding effect of neighboring spheres on thermophoresis can also be observed from 
Fig. 3a. 

The normalized translational and rotational velocities of three identical spheres with 
equal spacings undergoing thermophoresis perpendicular to the line of their centers are 
plotted versus the conductivity ratio k* in Fig. 4 with C,I/a and Cml/a as parameters for the 
case of 2a/r12 = 0.8. It can be found that the particle interaction effect in general is more 
significant if the value of k* becomes greater or the values of Ctl/a and Cml/a become 
smaller (with exceptions for the rotation of the end spheres). In the limit k* -- 0 or in the 
limit Ctl/a --* oo, our collocation results show that the thermophoretic velocity of each of 
these three identical spheres is unaffected by the presence of the others; i.e. each sphere 
translates in the same velocity as it is isolated with no rotation. 
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5. R E S U L T S  F O R  A R I G I D  C L U S T E R  O F  T W O  S P H E R E S  

The translational and angular velocities of a rigid cluster of spheres undergoing thermo- 
phoresis can also be determined by the procedure described in Section 2. For conciseness, 
here we only consider the motion of a dumbbell, the cluster composed of two spheres 
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Fig. 4. Plots of the normalized translational and rotational velocities of three identical coaxial 
spheres of  radius a with equal spacings undergoing thermophoresis  perpendicular to the line of their 
centers versus the thermal conductivity ratio k* with Ctl/a and Cml/a as parameters (2a/r12 = 0.8): 
(a) translational velocity of particle 1 (or particle 3); (b) translational velocity of particle 2; 
(c) rotational velocity of particle 1 (or particle 3). For  curve (a), Ct l/a = 0.2 and C,,,I/a = 0.1; for curve 

(b), Ctl/a = 0.02 and CmUa = 0.01; for curve (c), CtUa = Cml/a = O. 

connected by an infinitesimally thin and rigid rod. For this case, equation (31) can still be 
used to describe the translational and rotational velocities of two spheres; but now, the 
mobility parameters to account for the two-sphere interactions must reconcile with the 
relations given by equations (25) and (26). 

Applying equation (26) for the two spheres and eliminating U o, one has 

U2 ---- - U1 -+- 9 x r x 2 e .  (33)  

Using the fact that 91 ----~ 92  = 9 and substituting equation (31) into equation (33) yield 

M ~  ~(v) (34a) 1r121 , 

M(p) ~,v(v) (34b) 12 ----- lvJ 22, 

M(n) aat(n) /'12 
11 . . . .  21 + - -  N i l ,  (34c) 

a l  

M(~2 ) = M(2,2 ) + r12 NIe, (34d) 
a l  

Nil =--al N21, (34e) 
a2  

N 1 2  = a-!1 N22. (34f) 
a2  

Although the angular velocity ~ of the rigid dumbbell is independent of the location of its 
origin, the choice of the origin will affect the presentation of the results for the translational 
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velocity Uo. Here we place the origin of the dumbbell at its center of hydrodynamic stress. 
The center of hydrodynamic stress is the unique point for bodies of revolution at which 
there is no coupling between translation and rotation (Happel and Brenner, 1983). For the 
dumbbell this point lies along the line connecting the centers of the spheres a distance 
rol from the center of sphere 1. The detailed procedure to determine the ratio rol /r l  2 was 
provided by Fair and Anderson (1991) and its results for various values of Cml I/al, Cm2 I/a2, 
a2/al  and (al + a2)/r12 can be obtained by using the collocation method to solve for the 
hydrodynamic interactions between two aerosol spheres. Applying equation (26) for sphere 
1 and using equation (33) to eliminate ~,  one can express the translational velocity Uo of the 
dumbbell in terms of the translational velocities of the two spheres as 

U o = ( 1 - r ° l ~ U 1  +r°--~lU2. (35) 
r 1 2 / ~  p l  2 

Substitution of equations (31a) and (34) into equation (35) leads to the expression 

2 

Uo = ~ [M~f)ee  + K!".)(I - e£)] '  U ~.°), (36) 
j = l  

where i can be either 1 or 2, and 

K~ 7 = M~] ~ -- r°---5 N l j  , (37a) 
a l  

2j = N2j. (37b) 
a2 

Using equations (34c-f) and (37), one obtains 

K~,I) y,, <n) (38a) = a ,L21 ~ 

Kin) ~( .)  (38b) 1 2  = a ' 2 2 "  

In the limit (al + az)/r12 ~ O, it can be shown by the linearity of the Stokes equations that 
the dumbbell velocities 

- T~(0) r r ( o )  
a x A 1 u  1 + a2,~.2 ,.Z_ 2 

Uo --* , (39a) 
a~21 + a 2 2 2  

~ 1 rrr(°) U (°)1 (39b) - - e X L ~ 2  - -  ~ 1  b 
-- E l  2 -- 

or the mobility parameters 

M]~) = K].~ _ ro2 _ al )q  (40a) 
rl2 a121 + a222' 

M ] ~  = K]")2 - rol az,t2 (40b) 
r12 a12t + a 2 , ~ 2  ' 

where 

a l  
N l l  = - -  N 1 2  - , ( 4 0 c )  

l ' 1 2  

1 + 2Cmi l/ai 
2i - 1 + 3 Cml l/ai i 1 or 2. (41) 

lr(O) iT(o~ In equation (39), z i and z 2 are the thermophoretic velocities of sphere 1 and sphere 2, 
respectively, in the absence of the other, as given by equation (23). 

(p) 
To evaluate the mobility parameters M x 1 and M ~ ,  the axisymmetric thermophoresis of 

the dumbbell along the line connecting the sphere centers must be considered. For this case, 
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the au thors  have derived the expression for the drag force exerted on each sphere in terms of 
the velocities of the spheres in a previous article (Chen and  Keh, 1996). Using the fact that  

U 1 - -  U 2 =  Uo (since QM~ = 0) and  F1 + F2 = 0, one can solve for the thermophore t ic  
velocity (and hence, and  Mtl~) of the dumbbel l .  O n  the other  hand,  the t rans la t ional  
and  angula r  velocities of the dumbbe l l  undergo ing  thermophores is  perpendicular  to the line 
th rough the sphere centers need to be ob ta ined  to compute  the mobi l i ty  parameters  M ~  (or 
K(")~ A,~t") (or K(a~), N11 and  N12. Similarly to the previous sections, equat ions  (8) and  (16) 1 1 1 ,  ar~t 1 2  

can be used to determine the u n k n o w n  coefficients for the tempera ture  and  fluid velocity 
d is t r ibut ions  in this case. However,  equat ions  (29) and  (30), instead of equa t ion  (21), should 
be employed to solve the dumbbel l  velocities. 

We have calculated the t rans la t ional  and  angula r  velocities of a dumbbel l  in prescribed 
tempera ture  gradients  parallel  and  norma l  to the line of its sphere centers for various cases 
using the same numerica l  procedure  presented in the previous sections. The results of the 

~c~") and  K(I~ and  the ratio rol/r12 "'¢~v) M]~  ), M(I~, M(I~, U l , ,  N12, "~11 mobi l i ty  parameters  ~,, ~ 1, 
for a case of spheres having the same physical propert ies with various values of a2/a~ and  
(al q- a2)/r12 are given in Table  4. Fo r  the simplest case of the thermophore t ic  mot ion  of 
a dumbbe l l  having  two identical spheres, the center of hydrodynamic  stress of the dumbbel l  
is in the middle  of the connect ing  rod (rol/rl2 = 0.5), and  the dumbbel l  will move wi thout  
ro ta t ion  (N~I + N~2 = 0 or ~ = 0). The value of M ~  ~ + M ~  (equal to the t rans la t ional  
velocity of the dumbbe l l  normal ized  by the undis tu rbed  velocity of either of its two spheres, 

T (0) Uo/tJ 1 , when the tempera ture  gradient  is prescribed a long the connect ing  rod) is the same 
as that  for the s i tua t ion in which these two spheres are suspended freely and  are separated 
by the same distance (Chen and  Keh, 1996). However,  the value of M(x"~ ) + M( ~  (equal to 
K(~"~ + K(~  or Uo/U(~ °) of the dumbbe l l  when the tempera ture  gradient  is applied no rma l  to 
the connec t ing  rod) is slightly smaller than  that  for the s i tuat ion of freely-suspended spheres, 
as can be found in the compar i son  of Tables 1 and  4. Note  that  the value of M~)  + M (")12 for 

Table 4. The mobility parameters M~ ), Mt~, NIj and ~'~") • ~ xs and the ratio rol/r~2 for the thermophoresis of a rigid 
dumbbell composed of two spheres having the same physical properties with k*= 100, Ctl/al = 0.2 and 

Cml/al = 0.1 

a..22 al + a2 M ~  M~ M~I M~ -- N,, N,2 K~ K ~  r°---L1 
a l  r 1 2  r 1 2  

1 0.0 0.5000 0.5000 0.0000 1.0000 0.0000 0.0000 0.5000 0.5000 0.5000 
0.2 0.5011 0.5011 0.0089 0.9900 0.0981 0.0981 0.4995 0.4995 0.5000 
0.4 0.5081 0.5081 0.0263 0.9652 0.1878 0.1878 0.4958 0.4958 0.5000 
0.6 0.5241 0.5241 0.0397 0.9324 0.2678 0.2678 0.4861 0.4861 0.5000 
0.8 0.5454 0.5454 0.0390 0.8980 0.3436 0.3436 0.4685 0.4685 0.5000 
0.9 0.5551 0.5551 0.0307 0.8838 0.3839 0.3839 0.4572 0.4572 0.5000 
0.95 0.5591 0.5591 0.0239 0.8791 0.4062 0.4062 0.4515 0.4515 0.5000 
0.99 0.5616 0.5616 0.0170 0.8773 0.4258 0.4258 0.4472 0.4472 0.5000 
1.0 0.5621 0.5621 0.0146 0.8772 0.4310 0.4310 0.4462 0.4462 0.5000 

2 0.0 0.3255 0.6745 - 0.0000 2.0725 0.0000 0.0000 0.3255 0.6745 0.6745 
0.2 0.3022 0.7000 - 0.0384 2.0361 0.0341 0.1311 0.3124 0.6873 0.6859 
0.4 0.2798 0.7358 - 0.0615 1.9671 0.0676 0.2409 0.2924 0.7060 0.6980 
0.6 0.2619 0.7817 - 0.0819 1.9104 0.0963 0.3318 0.2601 0.7320 0.7103 
0.8 0.2459 0.8300 - 0.1088 1.8893 0.1199 0.4155 0.2162 0.7631 0.7228 
0.9 0.2367 0.8510 - 0.1246 1.9016 0.1300 0.4611 0.1915 0.7805 0.7294 
0.95 0.2314 0.8596 - 0.1318 1.9196 0.1345 0.4879 0.1794 0.7905 0.7328 
0.99 0.2267 0.8652 - 0.1345 1.9457 0.1371 0.5141 0.1711 0.7997 0.7356 
1.0 0.2232 0.8712 - 0.1351 1.9583 0.1372 0.5229 0.1680 0.8033 0.7363 

5 0.0 0.1584 0.8416 -- 0.0000 5.3145 0.0000 0.0000 0.1584 0.8416 0.8416 
0.2 0.1310 0.8707 - 0.0758 4.9161 0.0086 0.1581 0.1449 0.8594 0.8553 
0.4 0.1055 0.9049 -- 0.1038 4.1835 0.0174 0.2524 0.1231 0.8927 0.8692 
0.6 0.0834 0.9405 -- 0.1058 3.5639 0.0226 0.2973 0.0939 0.9366 0.8837 
0.8 0.0620 0.9705 -- 0.0979 3.1378 0.0234 0.3198 0.0600 0.9792 0.9000 
0.9 0.0509 0.9808 - 0.0902 2.9906 0.0221 0.3290 0.0438 0.9951 0.9098 
0.95 0.0452 0.9840 - 0.0839 2.9401 0.0209 0.3352 0.0369 1.0026 0.9152 
0.99 0.0406 0.9852 - 0.0752 2.9257 0.0192 0.3440 0.0318 1.0080 0.9198 
1.0 0.0389 0.9877 -- 0.0701 2.9344 0.0187 0.3481 0.0332 1.0110 0.9209 
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Fig. 5. P lo t s  of the d imens ion less  t r ans la t iona l  and  ro ta t iona l  velocit ies of a r igid dumbbe l l  n o r m a l  
to the l ine connec t ing  its two spheres  versus the sepa ra t ion  p a r a m e t e r  wi th  var ious  values  of a2/al 
and  k*. The sol id  curves  are p lo t t ed  for the case a2/al = 2, whereas  the dashed  curves are p lo t ted  for 

the case of a2/al = 5. In  all  cases, C,l/al = 0.2 and  Cml/al = 0.1. 
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the dumbbell decreases monotonically as the separation parameter 2a/r12 increases, while 
this value for two freely suspended spheres is not a monotonic function of 2a/r12. 

Since flocculation of different-sized particles can occur in an aerosol, it might be 
important to investigate the thermophoretic motion of such a dumbbell. Results of the 
mobility parameters and ro~/r~2 for a dumbbell composed of two spheres with a2/a~ = 2 
and 5 are also listed in Table 4. Examination of these data indicates that equation (40) is 
very well satisfied as (a~ + a2)/r12 ~ 0 for all cases considered. In a previous article (Chen 
and Keh, 1996), the normalized thermophoretic velocity of a dumbbell with a2/al = 2 and 
5 along its connecting rod were plotted versus (aa + a2)/ra2 in a figure for various values of 
k*. The corresponding plot for a dumbbell undergoing thermophoresis normal to its 
connecting rod is given in Fig. 5. It can be seen that the translational velocity of the 
thermophoretic dumbbell is not necessarily a monotonic function of (al + a2)/ra2. 

6. C O N C E N T R A T I O N  D E P E N D E N C E  OF T H E R M O P H O R E T I C  VELOCITY 

In practical applications of thermophoresis, collections of aerosol particles in bounded 
systems are usually encountered. Therefore, it is necessary to determine the dependence of 
the mean thermophoretic mobility of an aerosol on particle concentration. Based on 
a microscopic model of particle interactions in a polydisperse dispersion which involves 
both statistical and low Reynolds number hydrodynamic concepts (Batchelor, 1972; Reed 
and Anderson, 1980), the mean thermophoretic velocity of type i particles (having radii 
a~ and physical properties Cs~, C,,  Cm~ and k*) in a bounded suspension of particles that 
have a distribution in both radius and physical properties can be expressed as (Keh and 
Chen, 1995) 

( U , ) = U ~ ° ) [ l + ~ j c p ~ + O ( c p 2 ) ] ~ ,  , (42) 
J 

where U (°~ is defined in equation (23) and 

Aj 1 - k* + k* Ctj I/ai 
ctlj = Ai 2 + k* + 2k*Ctfl /aj  

+ 1 + - -  [ M ( ~ + 2 M ( ~ " I - 3 ] + - - c E M ~ + 2 M ~ ) 2 ]  w-4dw (43) 
a j /  

with 

al + a2 
w = - -  (al = al and a2 = aj). (44) 

F12 

Here, ~0j is the volume fraction of type j particles (having radius aj and physical properties 
Ctj, Cmj, C~j and k j* ) in the aerosol, (p is the volume fraction of all particles (=  Y~ rpi), and 

(n) (n) ,,,~Ar(P)11, I,,A~(P)12, M l l  and M l 2  a re  the mobility parameters defined by equation (31a) for 
two-sphere thermophoresis. For a dispersion of identical spheres (monodisperse system), 
equation (42) for the mean thermophoretic velocity reduces to 

( U )  = U(°)[1 + a~o + O(cp2)], (45) 

where coefficient c~ equals the value of ~ij with al = a j, Ct~ = Ctj, Cmi ~- Cmj, ki = kj and 
Ai = Aj.  

In deriving equation (43), it has been assumed that the particles are hard spheres without 
long-range pair potential and the two-particle radial distribution function has its equilib- 
rium values. The mean particle velocities are calculated for a reference frame in which the 
net particle and fluid flux is zero and the volume average of the temperature gradient field 
over a representative sample of the suspension is E ®. Note that equations (42) and (45) are 
valid for a bounded system when the cloud of particles is far from any walls. 
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Table 5. The results of coefficients % for a suspension of aerosol 
spheres having the same physical properties with Ctl/a~ = 0.2 and 

Cml/al = 0.1 at various values of k* and a i/ai 

- -  o~ij 

aj k* Collocation Method of 
ai technique reflections 

0.5 1000 0.886 2.144 
100 0.864 2.095 
10 0.780 1.794 

1 0.848 1.476 
o. 1 1.062 1.429 
0.01 1.071 1.412 

1 1000 0.418 0.901 
100 0.430 0.905 
10 0.528 0.960 
1 0.810 1.287 
0.1 1.187 1.475 
0.01 1.251 1.498 

2 1000 - 0.108 0.010 
100 - 0.064 0.063 
10 0.258 0.374 
1 0.978 1.168 
0.1 1.371 1.530 
0.01 1.431 1.579 

The collocation results of  M~"I and M~I"~ as a function of w for two spheres having the 
same physical properties with various values of  Ct I/a l, Cm l/a l, k* and aa/al were presented 
in Section 3, while the cor responding  numerical  solutions of M ~q~ and M ~"2 ) were obtained in 
previous studies (Chen and Keh, 1995, 1996). Thus, the integrat ion in equat ion (43) can be 
performed numerically using these data, and the results of  the interaction coefficient eij for 
a suspension of  aerosol particles of the same material at various value of k* and a/ai  are 
listed in Table 5 for the case of  Ctl/a~ = 0.2 and Cm l/a~ = 0.1. The corresponding results of  
e~j, computed  from the analytical formula derived by using the method  of reflections (Keh 
and Chen, 1995), are also listed in the last column of  the same table for comparison.  It shows 
that  the approximate  results of eo obtained from the method  of  reflections always overesti- 
mate  its exact values and the error  can be quite significant. In general cases (and in 
monodisperse  systems), coefficient eij is negative and the mean thermophore t ic  velocity in 
an aerosol will be smaller when the volume fraction of the particles is increased. However,  
the value of eij can become positive if bo th  the values of k* and aj/ai are large. 

7. C O N C L U D I N G  R E M A R K S  

In this work  the thermophoresis  of  a finite assemblage of aerosol spheres in an arbi t rary 
configurat ion is studied by a combined  analyt ical -numerical  method.  The spheres may 
differ in size and in physical properties. No t  only the particle interactions among  free 
spheres but  also the movement  of  a rigid cluster of  connected spheres has been examined. 
A boundary-co l loca t ion  technique has been used to obtain  the temperature distribution 
inside and outside the spheres and the velocity field for the sur rounding fluid. The results for 
the particle-interaction parameters  indicate that  the solution procedure  converges rapidly 
and solutions can be obtained to the satisfactory degree of  accuracy for various cases even 
when the spheres are touching one another.  

In  Section 2, the linear algebraic formulas to solve the general problem of thermophoret ic  
mot ion  of  multiple spheres were derived and the procedure  of the application of  the 
col locat ion technique was given. The numerical  results to correct  equat ion (1) for systems of 
two free spheres, of  three free spheres, and of a rigid cluster of two spheres were obtained for 
various cases in Sections 3-5. Due  to the fact that  the number  of relevant variables in the 



Thermophoresis of an arbitrary three-dimensional array 1061 

genera l  p r o b l e m  of  m u l t i p l e  spheres  is very  great ,  we d id  n o t  p resen t  the  resul ts  for sys tems 
h a v i n g  m o r e  t h a n  three  spheres.  Howeve r ,  the  s o l u t i o n  t e c h n i q u e  used  in  this  w o r k  can  also 
p rov ide  the  n u m e r i c a l  c a l cu l a t i ons  for the  t h e r m o p h o r e s i s  of  four  or  m o r e  spheres.  In  
a s imi la r  p r o b l e m  for the  m o t i o n  of  par t ic les  d r i v e n  by  gravi ty ,  resul ts  of  par t ic le  in te r -  
ac t ions  were o b t a i n e d  us ing  the  s a m e  c o l l o ca t i on  m e t h o d  for t h r e e - d i m e n s i o n a l  c lusters  of  
u p  to 64 spheres  (Hasson jee  et al., 1988). In  Sec t ion  6, the co l l oca t i on  so lu t i ons  for the 
i n t e r a c t i o n  be t we en  two  spheres  were used  to ca lcu la te  the  m e a n  t h e r m o p h o r e t i c  veloci ty  in  
a b o u n d e d  s u s p e n s i o n  of  ae roso l  spheres.  
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