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The steady diffusioosmotic flow of an electrolyte solution along a dielectric plane wall caused by an
imposed tangential concentration gradient is analytically examined. The plane wall may have either a
constant surface potential or a constant surface charge density of an arbitrary quantity. The electric double
layer adjacent to the charged wall may have an arbitrary thickness, and its electrostatic potential distribution
is determined by the Poisson-Boltzmann equation. The macroscopic electric field along the tangential
direction induced by the imposed electrolyte concentration gradient is obtained as a function of the lateral
position. A closed-form formula for the fluid velocity profile is derived as the solution of a modified Navier-
Stokes equation. The direction of the diffusioosmotic flow relative to the concentration gradient is determined
by the combination of the zeta potential of the wall and the properties of the electrolyte solution. For a
given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a
position in general increases with an increase in its electrokinetic distance from the wall, but there are
exceptions. The effect of the lateral distribution of the induced tangential electric field in the double layer
on the diffusioosmotic flow is found to be very significant and cannot be ignored.

1. Introduction

The electrokinetic flows of an electrolyte solution along
a charged solid surface are of much fundamental and
practical interest in various areas of science and engi-
neering. Perhaps the most familiar example of electro-
kinetic flows is electroosmosis, which results from the
interaction between an external tangential electric field
and the electric double layer adjacent to the charged wall.
Problems of fluid flow caused by this well-known mech-
anism have been studied extensively in the past.1-11

Another example of electrokinetic flows, which is termed
diffusioosmosis and has caught less attention, involves a
tangential concentration gradient of the electrolyte that
interacts with the charged wall. Same as in the case of
electroosmosis, the electrolyte-wall interaction in diffu-
sioosmosis is electrostatic in nature and its range is the
Debye screening length κ-1. The fluid motion caused by
diffusioosmosis has been analytically examined for flows
near a plane wall5,12-17 and inside a capillary pore.18-21

Some experimental results and interesting applications
concerning diffusioosmosis are also available in the
literature.22 Electrolyte solutions with a concentration
gradient of order 100 kmol/m4 ()1 M/cm) along solid
surfaces with a zeta potential of order kT/e (∼25 mV; e is
the charge of a proton, k is the Boltzmann constant, and
T is the absolute temperature) can flow by diffusioosmosis
at a velocity of order micrometers per second.

A tangential gradient of a dissociating electrolyte
produces fluid flow along a charged solid surface by two
mechanisms. The first involves the stresses developed by
the tangential gradient of the excess pressure within the
electric double layer (chemiosmotic effect), and the second
is based on the macroscopic electric field that is generated
because the tangential diffusive fluxes of the two elec-
trolyte ions are not equal (electroosmotic effect). Both
mechanisms were considered in previous investigations
for the diffusioosmotic flow parallel to a plane wall.5,12-17

In these studies, however, the effect of lateral distributions
of the counterions and co-ions (or of the electrostatic
potential) on the local electric field induced by the imposed
electrolyte concentration gradient in the tangential direc-
tion inside the double layer, which can be very important,
was neglected.

In this paper we present a comprehensive analysis of
the diffusioosmosis of an electrolyte solution with a
constant prescribed concentration gradient along a charged
plane wall. The zeta potential or surface charge density
of the wall is assumed to be uniform, but no assumption
is made concerning the magnitude of the electric potential
or the thickness of the double layer, and the lateral
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distribution of the induced tangential electric field is
allowed. Closed-form expressions for the fluid velocity
profile and the bulk-phase diffusioosmotic velocity are
obtained in eqs 27 and 31, respectively. These results show
that the effect of the deviation of the induced tangential
electric field in the double layer from its bulk-phase
quantity on the diffusioosmotic velocity of the fluid is
dominantly significant in most practical situations, even
for the case of a very thin double layer.

2. Electric Potential Distribution
We consider the diffusioosmotic flow of an infinitely

thick solution of a symmetrically charged binary elec-
trolyte of valence Z (where Z is a positive integer)
tangential to a dielectric plane wall of length L, as
illustrated in Figure 1, at the steady state. The discrete
nature of the surface charges, which are uniformly
distributed over the wall, is ignored. The applied elec-
trolyte concentration gradient ∇n∞ is a constant along the
tangential (z) direction, where n∞(z) is the linear con-
centration (number density) distribution of the electro-
lyte in the bulk solution phase far from the wall (with
y f ∞ or beyond the influence of the charged wall). It is
assumed that n∞ is only slightly nonuniform such that
L|∇n∞|/n∞(z ) 0) , 1, where z ) 0 is set at the midpoint
along the plane wall. Thus, the variations of the electro-
static potential and ionic concentrations in the electric
double layer adjacent to the wall with the tangential
position can be neglected in comparison with their
corresponding quantities at z ) 0.

For the electrolyte solution near the plane wall, let ψ(y)
be the electrostatic potential at a position y relative to
that in the bulk solution and n+(y, z) and n-(y, z) be the
local concentrations of the cations and anions, respectively.
Then the Poisson equation gives

with ε ) 4πε0εr, where εr is the relative permittivity of the
electrolyte solution and ε0 is the permittivity of a vacuum.

The local ionic concentrations can also be related to the
electrostatic potential by the Boltzmann equation,

Substitution of eq 2 into eq 1 leads to the well-known
Poisson-Boltzmann equation,

where κ ) [8π(Ze)2n∞(z ) 0)/εkT]1/2 is the Debye screening
parameter.

2.1. Case of Constant Surface Potential. For
the case of constant surface potential, the boundary

conditions for ψ are

where the constant ú is the zeta potential at the shear
plane of the wall adjacent to the electrolyte solution having
a uniform bulk concentration n∞(z ) 0). The effects of the
Stern layer between the solid surface and the diffuse part
of the electric double layer are neglected. The solution to
eqs 3 and 4 is the well-known Gouy-Chapman result,5-7

where γ ) tanh (Zeú/4kT).
2.2. Case of Constant Surface Charge Density. If

the constant surface charge density σ, instead of the
surface potential ú, is known at the plane wall, the
boundary condition specified by eq 4a should be replaced
by the Gauss condition,

Now, the solution for ψ given by eq 5 is still valid, with

2.3.CaseofLowElectricPotential.When the surface
potential ú is small (say, Ze|ú|/kT e 2), eq 3 can be
linearized (known as the Debye-Huckel approximation),
and eqs 5 and 7 reduce to

and

Both eq 7 and eq 9 indicate that σ increases with an
increase in κ for the case of constant surface potential and
ú decreases with an increase in κ for the case of constant
surface charge density.

3. Induced Electric Field Distribution
The ionic concentrations n+ and n- in the fluid under-

going diffusioosmosis along the plane wall are not uniform
in both tangential (z) and normal (y) directions, and their
gradients in the tangential direction can give rise to a
“diffusion current” distribution. To prevent a continuous
separation of the counterions and co-ions, an electric field
distribution E(y) along the tangential direction arises
spontaneously in the electrolyte solution to produce
another electric current distribution which exactly bal-
ances the diffusion current.12-17 This induced electric field
generates an electroosmotic flow of the fluid parallel to
the plane wall, in addition to the chemiosmotic flow caused
by the electrolyte gradient directly.

3.1. General Analysis. The flux of either ionic species
can be expressed by the Nernst-Planck equation,

where D+ and D- are the diffusion coefficients of the cations
and anions, respectively, and the principle of superposition

Figure 1. Geometrical sketch for the diffusioosmotic flow
tangential to a plane wall due to an applied concentration
gradient of electrolyte.

d2ψ
dy2

) - 4πZe
ε

[n+(y, 0) - n-(y, 0)] (1)

n( ) n∞ exp(- Zeψ
kT ) (2)

d2ψ
dy2

) κ
2kT
Ze

sinh Zeψ
kT

(3)

y ) 0: ψ ) ú (4a)

y f ∞: ψ ) 0 (4b)

ψ ) 2kT
Ze

ln [1 + γ exp(-κy)
1 - γ exp(-κy)] (5)

y ) 0: dψ
dy

) - 4πσ
ε

(6)

ú ) 2kT
Ze

sinh-1(2πZeσ
εκkT ) (7)

ψ ) ú exp(-κy) (8)

ú ) 4πσ
εκ

(9)

J( ) -D([∇n( ( Ze
kT

n((∇ψ - E)] (10)
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for the electric potential is used. To have no net current
arising from the cocurrent diffusion and electric migration
of the cations and anions, one must require that J+ ) J-
) J (the normal component of J vanishes and the ionic
fluxes induced by ∇ψ in eq 10 are balanced by the normal
components of the diffusive ionic fluxes as required by the
Boltzmann distribution given by eq 2). Applying this
constraint to eq 10, one obtains

where

The coefficients G+ and G- defined by the above equation
reflect the fact of an increase in the tangential diffusive
flux of the counterions and a decrease in the flux of the
co-ions inside the electric double layer. Evidently, the
induced electric field E given by eq 11 depends on the
local electrostatic potential ψ.

Substitution of eqs 11 and 12 into eq 10 leads to a net
flux distribution of the electrolyte,

where the position-dependent net diffusivity is

which is always positive. Equations 11 and 13 indi-
cate clearly that both E and J are collinear with and
proportional to the tangentially imposed electrolyte
gradient ∇n∞. For the special case of an uncharged wall
(ú ) 0), both E and D at any location y are identical to
their corresponding bulk-phase quantities.

When Ze|ψ|/kT f ∞, the ratio (G+ - G-)/(G+ + G-) in
eq 11 approaches the value -ú/|ú| (whose magnitude is
unity) and the induced electric field E becomes inde-
pendent of the ionic diffusion coefficients. In this limit,
the net diffusivity D given by eq 14 will vanish asymp-
totically as 2G+ if ú > 0 and as 2G- if ú < 0.

3.2. Case of Low Electric Potential. When the
magnitude of electrostatic potential ψ is small, a Taylor
expansion applies to eq 12, and eqs 11 and 14 can be
expressed as

and

where â is the difference between cation and anion
diffusivities normalized by their sum,

Evidently, -1 e â e1, with the upper and lower bounds
occurring as D-/D+ f 0 and ∞, respectively.

Note that, even if the cation and anion diffusivities are
identical (i.e., â ) 0), the O(ψ) term in eq 15 for the induced
electric field E and the O(ψ2) term in eq 16 for the net
diffusivity D still exist, due to the adsorption of the
counterions and depletion of the co-ions near the plane
wall. For the limiting case of â ) (1 (one of the ionic
diffusion coefficients vanishes), the induced electric field
at any location is independent of the local electrostatic
potential and equals its bulk-phase quantity, as shown
by either eq 11 or eq 15.

In previous studies of the diffusioosmosis of electrolyte
solutions along a plane wall,5,12-17 only the first term in
the brackets of eq 15, which is a constant, was considered
for E (the bulk-phase electrostatic potential ψ ) 0 is taken
everywhere), and, thus, the effect of the lateral distribution
of the induced electric field on the fluid velocity was
excluded.

4. Fluid Velocity Distribution

We now consider the steady diffusioosmotic flow of a
symmetric electrolyte solution along a plane wall under
the influence of a constant concentration gradient ∇n∞ of
the electrolyte prescribed tangentially. The momentum
balances on the incompressible Newtonian fluid in the y
and z directions give

where u(y) is the fluid velocity profile relative to the plane
wall in the direction of decreasing electrolyte concentration
(i.e., direction of -∇n∞), p(y, z) is the pressure distribution,
η is the fluid viscosity, and E(y) is the macroscopic electric
field induced by the concentration gradient of the elec-
trolyte given by eq 11.

With the assumption that |E| , κ|ú| [or â|∇n∞|/
κn∞(z ) 0) , Ze|ú|/kT], a scaling argument applied to the
continuity equation shows u to be the only significant
velocity component.14 The boundary conditions for u at
the no-slip wall and at infinity are

4.1. General Analysis. After the substitution of eq 2
into eq 18a (based on the assumption that the equilibrium
ionic distributions are not affected by the net diffusive
flux J, the induced electric field E, and the fluid velocity
u, which is warranted if |∇n∞|/κn∞(z ) 0) , 1, the pressure
distribution can be determined as

Here, p∞ is the pressure far away from the wall, which is
a constant in the absence of applied pressure gradient,
and the electric potential distribution ψ(y) is given by eq
5.

Substituting the ionic concentration distributions of eq
2, the electrostatic potential distribution of eq 5, the
pressure profile of eq 20, and the induced electric field

∂p
∂y

+ Ze(n+ - n-) dψ
dy

) 0 (18a)

η d2u
dy2

) ∂p
∂z

- Ze(n+ - n-)|E| (18b)

y ) 0: u ) 0 (19a)

y f ∞: du
dy

) 0 (19b)

p ) p∞ + 2n∞(z)kT(cosh Zeψ
kT

- 1) (20)

E ) kT
Ze

G+ - G-

G+ + G-

∇n∞

n∞(z ) 0)
(11)

G( ) D( exp(- Zeψ
kT ) (12)

J ) -D∇n∞ (13)

D )
2G+G-

G+ + G-
)

2D+D-

G+ + G-
(14)

E ) kT
Ze[â - (1 - â2)Zeψ

kT
-

â(1 - â2)(Zeψ
kT )2

+ O(ψ3)] ∇n∞

n∞(z ) 0)
(15)

D )
2D+D-

D+ + D-
[1 + â Zeψ

kT
- (12 - â2)(Zeψ

kT )2
+ O(ψ3)]

(16)

â )
D+ - D-

D+ + D-
(17)
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profile of eq 11 into eq 18b yields

where

and the diffusioosmotic velocity is normalized by a
characteristic value given by

Integration of eq 21 from y f ∞ to y ) y using eq 19b
leads to

where

The diffusioosmotic velocity profile of the electrolyte
solution parallel to the plane wall can be solved by
integrating eq 25 from y ) 0 to y ) y subject to the boundary
condition in eq 19a, with the result

where

i ) x-1, and Li2 is the polylogarithm function of order

2, also known as the Euler dilogarithm function.23 In eq
28, m ) 1 if x g ω g 1 or x e ω e 1, and m ) 0 otherwise.

Equations 27-30 predict that the normalized fluid
velocity u/U* is only a function of the dimensionless
parameters γ (or Zeú/kT), ω (or â), and κy. Evidently, u/U*
) 0 everywhere if ú ) 0 (or γ ) 0). It is understood that,
for a given value of κy, the quantity u/U* with specified
values -Zeú/kT and â is equal to that with the values
Zeú/kT and -â.

4.2. Bulk Fluid Velocity. If we consider the situation
that κy f ∞, the fluid velocity at a large distance from the
plane wall caused by the imposed electrolyte concentration
gradient can be evaluated from eq 27. The result of this
bulk-phase diffusioosmotic velocity, denoted by u∞, is

regardless of the thickness of the electric double layer.
For the diffusioosmosis of electrolyte solutions in a straight
capillary tube or slit with κR f ∞, where R is the radius
of the tube or half thickness of the slit, the fluid velocity
at a large distance from the capillary wall (with κy . 1)
can also be evaluated by eq 31.

In previous studies of the diffusioosmosis of electrolyte
solutions along a plane wall,5,12-17 the constant bulk-phase
quantity of the induced electric field E given by eq 11
taking ψ ) 0 everywhere was used in eq 18b, and its
solution gives

The difference between eq 31 and eq 32 is quite obvious,
and their comparison will be graphically displayed in the
next section. Note that, in eq 32, the electroosmotic
contribution represented by the first term on the right-
hand side and the chemiosmotic contribution denoted by
the second term are decoupled as a result of the assumption
of constant E.

4.3. Case of Low Electric Potential. When the
Debye-Huckel approximation is used, eqs 2 and 20 for
the concentration and pressure distributions can be
expressed by their Taylor expansions in Zeψ/kT, and eqs
5 and 11 for the electrostatic potential and induced
tangential electric field reduce to eqs 8 and 15. With this
simplification, eqs 27, 31, and 32 become

respectively.
Equations 33-35 illustrate that both the effect of the

lateral distribution of the induced electric field and the
chemiosmotic effect (always directs the fluid toward lower
electrolyte concentration) are of the order ú2. The two
effects contribute to the fluid flow in opposite directions,

(23) Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I. Integrals and
Series; Gordon and Breach Science Publishers: New York, 1990; Vol.
3.

u∞

U*
) F(1) - F(1 + γ

1 - γ) (31)

u∞

U*
) âZeú

kT
+ 4 ln cosh(Zeú

4kT) (32)

u
U*

) âZeú
kT

[1 - exp(-κy)] +

[18 - 1
4

(1 - â2)](Zeú
kT )2

[1 - exp(-2κy)] + O(ú3) (33)

u∞

U*
) âZeú

kT
+ [18 - 1

4
(1 - â2)](Zeú

kT )2
+ O(ú3) (34)

u∞

U*
) âZeú

kT
+ 1

8(Zeú
kT )2

+ O(ú3) (35)

d
dx[(x2 - 1)

d(u/U*)
dx ] )

4(x2 - ω4)

x4 + ω4
(21)

x )
1 + γ exp(-κy)
1 - γ exp(-κy)

(22)

ω ) (1 + â
1 - â)1/4

) (D+

D-
)1/4

(23)

U* ) ε|∇n∞|
4πηn∞(0)(

kT
Ze)2

) 2kT
ηκ

2
|∇n∞| (24)

d(u/U*)
dx

) 2
x2 - 1

[g(x) - g(1)] (25)

g(x) ) 1
x2ω[(1 - ω2) tan-1 x2ωx

ω2 - x2
+

1
2

(1 + ω2) ln x2 - x2ωx + ω2

x2 + x2ωx + ω2] (26)

u
U*

) F(x) - F(1 + γ
1 - γ) (27)

F(x) ) [1 - ω2

x2ω
mπ + g(x) - g(1)] ln x - 1

x + 1
+

1 + i

2x2ω
{(ω2 - i)[h0+(x) - h1+(x) + h1-(x)] +

(1 - iω2)[h0-(x) - h2+(x) + h2-(x)]} (28)

h0((x) ) ln
x2ω + (1 ( i)

x2ω - (1 ( i)
ln(x2 ( iω2) (29)

h1((x) ) Li2[x2ω + (1 - i)x

x2ω ( (1 - i) ] + Li2[x2ω - (1 - i)x

x2ω ( (1 - i) ]
(30a)

h2((x) ) Li2[x2ω + (1 + i)x

x2ω ( (1 + i) ] + Li2[x2ω - (1 + i)x

x2ω ( (1 + i) ]
(30b)
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and the former is dominant in most practical situations.
Note that the O(ú) and O(ú2) terms in eqs 33 and 34 may
act either in concert or in competition to produce the net
diffusioosmotic flow, depending on the sign of âú(2â2 - 1).

5. Results and Discussion

5.1. Induced Electric Field Distribution. The
distribution of the macroscopic electric field E(y) in-
duced by a concentration gradient of a symmetric elec-
trolyte prescribed parallel to a plane wall is expressed
by eq 11. This induced electric field normalized by its
bulk-phase quantity, (G+ - G-)/(G+ + G-)â [equal to
(ω4 - x4)(ω4 + 1)/(ω4 + x4)(ω4 - 1)], as a function of the
electrokinetic distanceκy from the wall is plotted in Figure
2 for several values of the dimensionless parameters Zeú/
kT and â. As expected, the value of the normalized induced
electric field equals unity in the limit of â ) (1 and its
magnitude becomes infinity for the special case of â ) 0,
irrespective of the parameters Zeú/kT and κy, which are
expected from eq 15.

The normalized induced electric field approaches unity
as κy g 5, with a typical value at the wall (with κy ) 0)

as -ú/|ú|â if Ze|ú|/kT . 1. The magnitude of (G+ - G-)/
(G+ + G-)â - 1 (or the deviation of the induced electric
field from its bulk-phase quantity) decreases with an
increase in κy, increases with an increase in Ze|ú|/kT, and
decreases with an increase in |â|, for an otherwise specified
condition.

5.2. Position-Dependent Electrolyte Diffusivity.
The profile of the net diffusivity D(y) of a symmetric
electrolyte in the direction parallel to a plane wall is given
by eq 14. Figure 3 shows this net diffusivity normalized
by its bulk-phase quantity, (D+ + D-)/(G+ + G-) [equal to
(ω4 + 1)x2/(ω4 + x4)], as a function of the electrokinetic
position κy with Zeú/kT and â as parameters. Note that
each curve with specified values of -Zeú/kT and â in
Figures 2 and 3 would be identical to that with the values
Zeú/kT and -â.

When the product of ú and â is negative, the normalized
net diffusivity increases with an increase in κy, decreases
with an increase in Ze|ú|/kT, and decreases with an
increase in |â|, for an otherwise fixed condition. When úâ
is positive, the value of the normalized net diffusivity at
a position near the wall can be much greater than unity
and its dependence on κy is not necessarily monotonic,
depending on the combination of Zeú/kT and â.

For a constant value ofκy, the normalized net diffusivity
increases with an increase in â for the case of ú > 0 but
decreases with it for the case of ú < 0. As expected, the

Figure 2. Plots of the normalized electric field induced by an
electrolyte gradient along a plane wall as calculated from eq
11 versus the electrokinetic coordinate κy for various values of
the parameter â. The solid curves represent the case Zeú/kT )
6, and the dashed curves denote the case Zeú/kT ) 2.

Figure 3. Plots of the normalized net diffusivity of the
electrolyte tangential to a plane wall as calculated from eq 14
versus the electrokinetic coordinate κy for various values of the
parameter â. The solid curves represent the case Zeú/kT ) 6,
and the dashed curves denote the case Zeú/kT ) 2.

Figure 4. Plots of the normalized diffusioosmotic velocity along
a plane wall as calculated from eqs 27 (solid curves) and 33
(dashed curves) versus the electrokinetic coordinate κy for
various values of the parameter â: (a) Zeú/kT ) 2; (b) Zeú/kT
) 6.
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value of (D+ + D-)/(G+ + G-) gets close to unity as κy g
5 and vanishes at the wall if Ze|ú|/kT f ∞ and âú/|ú| * 1.

5.3. Fluid Velocity Distribution. The normalized
diffusioosmotic velocity distribution u(κy)/U* of an elec-
trolyte solution along a plane wall is given by eq 27 for
the general case and by eq 33 for the case of a small
magnitude of the zeta potential up to O(ú2). It can be seen
from the O(ú2) term of eq 33 that the fluid flows contributed
from chemiosmosis (involving the coefficient 1/8) and
electroosmosis [involving the coefficient -(1 - â2)/4] are
always in the opposite directions, and for the case of small
â2, the net flow is dominated by the electroosmotic effect
(having the direction of increasing electrolyte concentra-
tion). The results of both eq 27 and eq 33 are plotted in
Figure 4 for several values of the parameters Zeú/kT and
â.

When the product of ú and â is negative, u is also negative
(due to the electroosmotic contribution, as can be seen
from eq 15 or eq 33), meaning that the diffusioosmotic
flow is in the direction of increasing electrolyte concentra-
tion. The magnitude of u/U* increases monotonically with
an increase in the electrokinetic distance κy from the wall,
with an increase in Ze|ú|/kT and with an increase in |â|,
for an otherwise specified condition, which is expected
from eq 33.

When úâ is positive, the direction of the diffusioosmotic
flow depends on the combination of parameters Zeú/kT,

â, and κy. If the magnitude of â is sufficiently large [the
O(ú2) term of the fluid velocity in eq 33 is dominated by
the chemiosmotic effect], the fluid flows against the
electrolyte concentration gradient (u is positive) and u/U*
are still a monotonic increasing function of κy and of Ze|ú|/
kT. If the magnitude of â is sufficiently small [the O(ú2)
term of the fluid velocity in eq 33 is dominated by the
electroosmotic effect, which overcomes the contribution
from the O(ú) term], the fluid flows toward the opposite
direction (u is negative) and the magnitude of u/U* are
also a monotonic increasing function of κy and of Ze|ú|/kT.
For a specified value of Zeú/kT with an intermediate
magnitude of â, the diffusioosmotic flow may reverse its
direction from along the concentration gradient to against
it as the value of κy increases not much from zero.

For fixed values of Zeú/kT and â, the value of u/U*
approaches a constant as κy g 5, which is expected from
eq 33. Evidently, the asymptotic formula of eq 33 for u/U*
from the Debye-Huckel approximation (depicted by
dashed curves in Figure 4) agrees reasonably well with
the exact result of eq 27 for the case of small magnitude
of the zeta potential (say, Ze|ú|/kT e 2), but the accuracy
of this approximation deteriorates rapidly, as expected,
when the value of Ze|ú|/kT becomes large.

5.4. Bulk Fluid Velocity. In Figure 5, the normalized
diffusioosmotic velocity u∞/U* of the electrolyte solution
far away from the plane wall given by eq 31 is plotted
versus the parameters Zeú/kT and â. A map showing the
direction of this velocity is also provided in Figure 6a. The
dependence of u∞/U* on Zeú/kT and â is quite similar to

Figure 5. Normalized bulk-phase diffusioosmotic velocity
along a plane wall as calculated from eqs 31 (solid curves) and
32 (dashed curves): (a) plots versus the dimensionless surface
potential Zeú/kT for various values of the parameter â; (b) plots
versus â for various values of Zeú/kT.

Figure 6. Maps showing the direction of the bulk-phase
diffusioosmotic velocity along a plane wall: (a) as calculated
from eq 31; (b) as calculated from eq 32.
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that of u/U* for a given value of κy. When the product of
ú and â is negative (inside the second and fourth quadrants
in Figure 6a), u∞ is negative and the electrolyte solution
flows toward higher concentration. When the product of
ú and â is positive (inside the first and third quadrants
in Figure 6a), the bulk-phase diffusioosmotic velocity may
reverse its direction from against the concentration
gradient to along with it as Ze|ú|/kT increases not much
from zero for the case of a small magnitude of â (in addition
to a reversal that occurred at ú ) 0), or as |â| decreases
from 1 to 0 for a given value of Zeú/kT.

For comparison, the result of u∞/U* given by eq 32
without accounting for the effect of the lateral distribution
of the induced tangential electric field in the electric double
layer adjacent to the plane wall is also plotted in Figures
5 and 6b. Surprisingly, the difference between this
previously obtained bulk-phase diffusioosmotic velocity
and the presently obtained quantity is quite substantial
unless the magnitude of â approaches unity. Thus, the
effect of the lateral distribution of the induced electric
field always exists and cannot be neglected even as
κy f ∞.

6. Concluding Remarks
An analysis of the steady diffusioosmotic flow of

symmetric electrolyte solutions parallel to a charged plane
wall is presented in this work. It is assumed that the fluid
is only slightly nonuniform in the electrolyte concentration
along the wall, but no assumption is made about the
thickness of the electric double layer adjacent to the wall
and the effect of lateral distributions of the electrolyte
ions; the electrostatic potential on the induced tangential
electric field due to the applied concentration gradient is
taken into account. The plane wall may have either a
constant surface potential or a constant surface charge
density of an arbitrary quantity. By solving the Poisson-
Boltzmann equation and the modified Navier-Stokes
equation applicable to the system, the electrostatic
potential distribution, the induced electric field distribu-
tion, and the pressure distribution under the influence of
the imposed electrolyte gradient are determined analyti-
cally. Closed-form formulas and numerical results for the
local and bulk-phase diffusioosmotic velocities as functions
of relevant parameters are presented in detail.

It is shown in section 3 that the macroscopic electric
field induced by the prescribed electrolyte gradient along
the plane wall is a function of the lateral position rather
than a constant bulk-phase quantity. The contribution to
the diffusioosmotic flow made by the position dependence
of the induced electric field is of the same order [O(ú2)] as,
but has an opposite direction to, that made by the
chemiosmotic effect, and the former is dominant in most
practical situations, as indicated by eqs 33 and 34.
Therefore, the effect of the deviation of the local induced
tangential electric field inside the electric double layer
from its bulk-phase quantity (given by the term of zeroth
order in ψ in eq 15), which causes the fluid flowing toward
the end of higher electrolyte concentration, cannot be
neglected in the evaluation of the diffusioosmotic velocity
of electrolyte solutions along a wall, even for the case of
a very thin double layer.

The macroscopic electric field E arising spontaneously
due to an imposed concentration gradient of a symmetric
electrolyte along a plane wall is provided by eq 11 or 15,
and the diffusioosmotic velocity u of the electrolyte solution
is obtained in eq 27 or 33; both are accurate with the
primary effects only. In addition to the ionic fluxes due
to diffusion and electric migration (given by eq 10), the
diffusioosmotic fluid flow can generate an electric current
by ionic convection (known as the relaxation effect). This
electric current is not included in the current balance for
the determination of E in section 3. Thus, a secondary
induced electric field must build up along the wall, which
is just sufficient to prevent the net electric current flow.
This secondary induced field, which is of O(ú2), and its
contribution to the fluid flow, which is of O(ú3), can be
calculated via the same approach in the calculations of
the electroosmosis and streaming potential induced across
a capillary in the presence of an applied electric field and
pressure gradient.3,4,10,11 Alternatively, distributions of
ionic concentrations, electric potentials, and fluid velocity
might be calculated in a general self-consistent way.10,18-20

For the case of a plane wall with an arbitrary value of its
zeta potential considered in the present article, however,
this general approach would be somewhat complicated
and could be an endeavor for future work.

In contrast to diffusioosmosis, diffusiophoresis refers
to the migration of colloidal particles in response to a
macroscopic gradient of solute concentration in a solution.
Without considering the variation of the induced tan-
gential electric field with the normal position inside the
electric double layer, u∞ given by eq 32 has been used as
a slip velocity at the surface of a nonconductive charged
particle of arbitrary shape with a very thin double layer
to obtain the steady diffusiophoretic velocity of the
particle.12-15 This terminal velocity turned out to be equal
in magnitude but opposite in direction to u∞ expressed by
eq 32. When the effect of the lateral distribution of the
induced electric field in the double layer is taken into
account, the correct diffusiophoretic velocity of the di-
electric particle should be equal in magnitude but opposite
in direction to u∞ given by eq 31 on the basis of the same
derivation.

It is worth repeating that all the results in this study
are obtained on the basis of a small external gradient of
the electrolyte concentration along the plane wall. If the
imposed concentration gradient |∇n∞| is relatively large,
then the effect of variation of the electrostatic potential
ψ in the double layer adjacent to the wall with the
tangential position and the relaxation effect of the diffuse
electrolyte ions may not be neglected. However, it is
reasonable for one to expect that these effects will lead
to quantitatively rather than qualitatively different
results.
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