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TIME AND FREQUENCY DOMAIN IDENTIFICATION AND

ANALYSIS OF A PERMANENT MAGNET SYNCHRONOUS

SERVO MOTOR

Jui-Jung Liu, Ya-Wei Lee, Fu-Cheng Wang, Ramesh Uppala, and Ping-Hei Chen*

ABSTRACT

This study employed the approach of non-linear autoregressive moving average
model with exogenous inputs (NARMAX) to analyze the dynamics of a Permanent
Magnet Synchronous Motor (PMSM).  The non-linearity in PMSM including cogging
force, reluctance force and force ripple is difficult to estimate.  By using the NARMAX
approach, thrust-speed relationship and thrust-position relationship could be analyzed
by identifying both time and frequency domain models of the system.  The frequency
domain analysis is studied by mapping the discrete-time NARMAX models into gen-
eralized frequency response functions (GFRFs) to reveal the non-linear coupling be-
tween the various input spectral components and the energy transfer mechanisms in
the system.  From the results, the interpretation of the higher-order GFRFs has been
comprehensively studied and non-linear effects have been related to the physical models
of the systems.

Key Words: Identification; non-linear system, frequency response functions.

*Corresponding author. (Tel: 886-2-33662689; Fax: 886-2-
23670781; Email: phchen@ntu.edu.tw)

J. J. Liu is with the Department of Information and Electronic
Commerce, Kainan University, Taoyuan 338, Taiwan

Y. W. Lee, F. C. Wang, R. Uppala, and P. H. Chen are with the
Department of Mechanical Engineering, National Taiwan University,
Taipei 106, Taiwan

I. INTRODUCTION

Many Permanent magnet synchronous motor
(PMSM) response studies have been carried out us-
ing various approaches for modelling the speed and
torque control system (Jahns and Soong, 1996;
Solsona et al., 2000; Bolognani et al., 2001).  These
investigations may be classified into time domain and
frequency domain methods, which involve numeri-
cal integration of motions, neuro fuzzy optimization
techniques and experimental estimation.  These meth-
ods are well suited to explain many of the non-linear
dynamic behaviours associated with PMSM systems.
Cheng and Tzou (2004) developed a novel design
approach by applying gradient optimization with step-
sizing techniques to design a digital PMSM servo
drive, and the servo responses were then fed back to
evaluate the overall system performances.  Hattori et

al. (2001) projected a suppression control method
which used repetitive control with auto-tuning func-
tion and Fourier transform to the motor frame vibra-
tion and the rotational speed vibration.  Yue et al.
(2003) derived a mathematical model of PMSM with
initial rotor position uncertainty and proposed the
control methodology.  Babak et al. (2004) provided
an online identification method to limit the param-
eter uncertainties.  This method did not need a well-
known initial rotor position and made the sensorless
control more robust with respect to the stator resis-
tance variations at low speed.  All these studies have
been extensively explored, studied and documented
by (Driss et al., 2001; Mobarakeh et al., 2001;
Morimoto et al., 2002).  Frequency domain methods
are quite efficient for performing stochastic analysis.
However, prior to frequency domain analysis a Fast
Fourier Transform (FFT) is usually employed to trans-
form the time domain signal to a spectrum distribu-
tion on a linear frequency domain (Kadjoudj et al.,
2001; 2003; 2004).  Therefore, the dynamic charac-
teristics of a nonlinear system could be shown by the
power spectral density (PSD) derived from experi-
mental data.

Actually, cross modulation, desensitization, and
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gain compression/expansion may exist simultaneously,
which are generated within frequencies, and these cause
nonlinear phenomena in the frequency domain.  Analy-
sis of non-linear systems in the frequency domain is
advantageous as integral equations which relate the
input-output in the time domain become algebraic in
the frequency domain. In academia, non-linear sys-
tem analysis and prediction to a gray or black system
have been an important issue, but many studies de-
scribed non-linear systems just by a linear approach
in consideration of the complicated estimation process.
The present study is based on the NARMAX (Non-
linear Auto-Regressive Moving Average with
eXgenous inputs) (Leontaris and Billings, 1985; Bill-
ings and Voon, 1986; Billings et al., 1989; Brown
and Harris, 1994) modelling technique to build a model
which can predict the rotor velocity and position
accurately.  Thereafter, by applying a recursive probing
algorithm to NARMAX models, it is possible to ob-
tain the non-linear frequency response functions of
real systems so that the analysis and application of
non-linear transfer functions become more practical.

Recently, system identification has become a
very active subject in research.  Thouverez and
Jezequel (1996) used the modal co-ordinates to ex-
press the NARMAX model which reduced the num-
ber of parameters to identify a mass-spring system.
Liu et al. (2001) proposed a new graphical user in-
terface interpretation tool for the non-linear frequency
response function, and demonstrated the improved
visualization of the multi-dimensional non-linear gen-
eralized frequency responding functions (GFRFs).
The present study is based on a combined approach
of both the time and the frequency domains.  It is
shown that new insights into PMSM dynamics can
be obtained from studying both time and frequency
domain properties of the system.  The non-linear
GFRFs, which are generalizations of the linear fre-
quency response functions, are shown to be crucial
in system interpretation and modelling.

The thrust-speed and magnetic thrust-position
relationships of PMSM are extensively studied in this
paper.  After a presentation of the NARMAX approach
and frequency domain concepts, the identification and
analysis results of PMSM model are presented in both
time and frequency domain.

II. TIME AND FREQUENCY DOMAIN
IDENTIFICATION TECHNIQUES

1. The NARMAX Approach

A wide class of discrete time multi-variable non-
linear stochastic systems, can under appropriate assump-
tions, be represented by the NARMAX model.  For an
m-output r-input system, it can be described as follows:

_y(k) = _α  + F [_y(k – 1), ..., _y(k – ny), _u(k – d),

..., _u(k – d – nu),

_ε(k –1), ..., _ε(k – nε)] + _ε(k) (1)

where

y (k) =
y1(k)

ym(k)
, u (k) =

u1(k)

ur(k)
, ε (k) =

ε1(k)

εm(k)

in which _y(k), _u(k) and _ε(k) represent the system
output, input and prediction error respectively.  d is
the system time delay.   is the degree of non-linear-
ity and _α  is a constant vector term to accommodate
mean levels. _F[.] is a vector valued non-linear
function.  Taking the ith row from Eq. (1) with differ-
ent values of the maximum lag for each output, input
and noise gives

yi(k) = α  + Fl
i[y1(k –1), ..., y1(k – ni

y1), ...,

ym(k – 1), ..., ym(k – ni
ym),

ui(k – d), ..., u1(k – d – ni
u1), ..., ur(k – d), ...,

ur(k – d – ni
ur),

ε1(k – 1), ..., ε1(k – nε), ..., ε1(k – ni
ε), ..., εm(k – 1),

 ..., εm(k – ni
εm)] + _εi(k),  k = 1, ..., m (2)

When m = r = 1, the model of Eq. (2) reduces to the
single-input single-output (SISO) case as follows:

y(k) = α  + Fl[y(k – 1), ..., y(k – ny), u(k – d), ...,

u(k – d – nu), ε(k –1), ..., ε(k – nε)] + ε(k)

(3)

where ε(k) is the residue at time k.
Tsang and Billings (1994) used an orthogonal

estimator for the identification of NARMAX models.
The orthogonal estimator is a simple and efficient al-
gorithm that allows each coefficient in the model to
be estimated.  At the same time, it provides an indi-
cation of the contribution that each term makes to the
system output, using the error reduction ratio (ERR).
In this study, when eliminating the dc offset, ERR
can be defined as

ERRi =
gi

2wi
2(k)Σ

k = 1

N

y2(k)Σ
k = 1

N
– 1

N [ y(k)Σ
k = 1

N
]2

× 100% (4)
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where gi are the coefficients and wi are the terms of
an auxiliary model constructed in such a way that the
terms wi are orthogonal to the data records.  A for-
ward-regression algorithm is employed at each step
to select the term with the highest ERR, in other
words, the term that contributes most to the reduc-
tion of the residual variance.

The ERR value can be computed together with
the parameter estimation to indicate the significance
of each term, then the terms can be ranked according
to their contribution to the overall mean squared pre-
diction error.

2. Non-linear Systems Higher-order Frequency
Response Functions Analysis and Interpretation

The discrete polynomial NARMAX representa-
tion of a particular system is not necessarily unique.
If the model captures the system dynamics correctly,
no matter in what form the discrete model is, it must
present the correct linear and non-linear frequency
content of the system.  In other words, even though
there may be a number of discrete time models to rep-
resent a real system, the higher-order GFRFs corre-
sponding to each of the discrete models should be
unique.

Most conventional non-linear frequency domain
representations have been based on the extensions of
FFT routines to the Volterra model.  A better
approach, based on the estimation of parameters of a
NARMAX model, has been proposed by Lang and
Billings (2000), which is then used to generate the
GFRFs.  The advantage of using the polynomial
NARMAX model is the reduction of the number of
parameters which encode information from past out-
puts and past inputs, and the smaller data set required
for identification.  The NARX model can be obtained
from the NARMAX model by eliminating the error
terms.

ym(k) = cp, q( 1, , p + q)Σ
1, p + q = 1

L

Σ
p = 0

m
y(k – i)Π

i = 1

p

⋅ u(k – j)Π
j = p + 1

p + q

(5)

y(k) = ym(k)Σ
m = 1

M
(6)

where ym(k) indicates the mth order output signal, and
cp, q( 1 , ..., p + q) donates the coefficient of product

of y(k – i)Π
i = 1

p

 and u(k – j)Π
j = p + 1

p + q

.

Transferring Eq. (6) to frequency domain, the
frequency responding function can be found as
(Thouverez and Jezequel, 1996):

[1 – c1, 0( 1)e– j2π( f1 + + fn) 1Σ
1 = 1

L
]Hn

asym( f1, , fn)

= c0, n( 1, , n)e– j2π( f1 1 + + fn n)Σ
1, n = 1

L

+ cp, q( 1, , p + q)Σ
1, N = 1

L

Σ
p = 1

n – q

Σ
q = 1

n – 1

⋅ e– j2π( fn – q n – q + 1 + + fp + q p + q)Hn – q, p( f1, , fn – q)

+ cp, 0( 1, , p)Σ
1, 2 = 1

L
Hn, p( f1, , fn)Σ

p = 2

n
     (7)

where  H  is frequency responding function.  The re-
gressive relation can be written as

Hn, p
asym( ⋅ ) = Hi

asym( f1, , fi)Σ
i = 1

n – p + 1

Hn – i, p – 1( fi + 1,

, fn)e– j2π( f1, , fi) p . (8)

The symmetry of an nth order frequency responding
function is defined as

Hn
sym( f1, , fn) = 1

n! Hn
asym( f1, , fn)Σ

Sn
(9)

where Sn indicates all permutations of f1, ..., fn in Hn(.).
The higher-order frequency responding func-

tions deduced from NARX model can represent multi-
dimensional characteristics and be used to investigate
the dynamic behavior of a real system.

3. Model Validation

A strategy to evaluate the model correctness and
validity is indispensable once the significant terms
have been identified and estimation of associated pa-
rameter values has been obtained.  If validation shows
that the model is not good, some of the design vari-
ables of the estimation should be changed and the
identification procedure should be repeated.  Three
ways of validating a model are used in this study:
1. One-step ahead prediction and model predicted

output: the one-step ahead prediction of the output
is defined as

~y(k) = F [y(k – 1), ..., y(k – ny), u(k – d), ...,

u(k – d – nu), ε(k – 1, 
~θ), ..., ε(k – nε,  

~θ)]

(10)

where  
~
F[.] is the estimate of F[.], ε(k, 

~θ ) is the
residue given by

ε(k, 
~θ) = y (k) – ~y(k). (11)
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This is a by-product of the regression process.  From
Eq. (10) the prediction is easily obtained by sub-
tracting the prediction errors from the original data.
At each step the model is effectively reset by in-
serting the appropriate values into the right hand
side of Eq. (10) and any error is therefore reset at
each step.  Consequently, even a poor model can
produce reasonable one-step ahead predictions.  For
these reasons, the one-step ahead predictions do
not often provide a good metric of model performance.

The model predicted output (MPO) is defined
as

~yMPO(k) =F [~y(k – 1), ..., ~y(k – ny), u(k – d), ...,

u(k – d – nu), 0, ..., 0] (12)

where the measured inputs are used to generate the
model output.  The zeros are present because the
prediction errors will not be available when using
the model to predict the output.  It is an essential
condition for accepting the model that the estimated
model predicted outputs are in good agreement
with the measured outputs.

2. Cross-validation test: estimated models are usually
validated using an independent set of data called
the validation data (test set).  This is usually re-
ferred to as cross-validation.  The output from the
model and the system are compared when they are
run with the same input where the input data has
not previously been used in the identification.  The
difference between the system output and MPO has
to be as small as possible.  The comparison be-
tween the observed data and the model output usu-
ally reveals much with regard to model anomalies
not previously detected. Failure to pass the cross-
validation test may also indicate that the system is
not time-invariant.

3. Model validity test (correlation tests): The ap-
proach consists of computing the auto-correlation
function of the residues and the cross-correlation
functions between the residues and the inputs.  In
order to extend to non-linear models, practical tests
must be available to check the presence of non-
linearity in both raw time series and residues from
the fitted models.  Many tests have been proposed,
but using higher-order correlation functions for va-
lidity of non-linear systems has been successful.

When the system is non-linear the residues
should be unpredictable from all linear and non-lin-
ear combinations of past inputs and outputs.  This will
be true if the following correlation tests are satisfied

φεε(τ) = δ(τ), φuε(τ) = 0 ∀  τ, φu2′ε(τ) = 0 ∀  τ,

φu2′ε2′(τ) = 0 ∀  τ, φεεu(τ) = 0 ∀ τ ≥ 0 (13)

where φ
ab

(τ) = E[a(k – τ)b(k)], δ(τ) is the Kronecker
delta, u(τ ) and ε(τ ) are the input and the residues
sequence, respectively, and the single quote indicates
that the mean has been removed.

III. ANALYSIS OF THE PMSM

Permanent Magnet Synchronous Motor (PMSM)
drives have gained considerable attention among re-
searchers recently because of several advantages.  The
high torque density, small size, inherent variable speed
capability, and overall high performance of the drive
with appropriate control strategy are some of the posi-
tive aspects of the PMSM drive.  Generally, for this
kind of motor the individual phase excitations are
synchronized with rotor position, which necessitates
position sensing.  Usually, mechanical position
sensors, like resolvers or optical encoders, are em-
ployed for this purpose.  External position sensors,
however, give position information with high resolu-
tion and accuracy, but they have certain drawbacks.
Position sensors with good accuracy are usually ex-
pensive and they need proper mechanical mounting.
They occupy space, and the cabling associated with
sensors needs to be shielded in order to avoid cor-
ruption due to external noise.  Several methods have
been published in the literature on sensor elimina-
tion techniques with which the rotor information is
obtained electronically.

Because of high efficiency and linearity between
torque and current, the PMSM has been widely used
in many industrial applications.  The position and
speed sensors, which are normally mounted on PMSM,
are desirable to eliminate from the standpoints of ma-
chine size, weight, cost, and reliability.

System Description

There are two applications included in this ex-
perimental design.  First, under standard interference,
non-linear identification methodology is adopted to
construct the NARX models by using I/O signals of
PMSM.  These discrete non-linear models for PMSM
contain the lag of inductance and uncertain electrical
factors.  Secondly, mapping of the NARX models into
frequency domain, then multi-dimensional dynamic
behavior of systems can be shown by high order GFRFs.

The main framework of the experiment consists
of a PMSM set,  motor drive interface, power
amplifier, Hall sensor and a control PC (Fig. 1).  The
measuring system is developed by real time control
driving interface of a PMSM with visualized modules.
When e control operations are executed, the feedback
signals and control commands are transmitted by the
interface card, through an ISA Bus, to the control PC.
After computations, three-phase output voltage is
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obtained.  A real time control circle of PMSM is com-
pleted by transmitting this output voltage to the mo-
tor driving interface card by the same ISA Bus.  The
specifications of the test motor are shown in Table 1.

IV. TIME DOMAIN IDENTIFICATION

The PMSM has a permanent magnet (PM) on
the rotor and requires alternating stator currents to
produce constant torque.  Besides, the PMSM has si-
nusoidal induced electromotive-force (the so-called
back-emf) which contributes to the operating
characteristics. In this study, electromagnetic thrust
is regarded as input; rotor speed and position are re-
garded as the output.  Due to the variance of operat-
ing time, environmental effects, or man-made errors,
the parameters of PMSM may lead to bias.  For this
reason, accurate prediction can hardly be achieved.
In this study, using a NARMAX approach to build a
NARX model which represents a real PMAM system,
the error term ε would be obtained from subtracting
the predicted output ~y from the actual output.

1. Thrust-Speed NARX Model

The data are sampled at a rate of 500 Hz.  The
input data representing the electromagnetic thrust is
given as sinusoidal waves which are fed into the

PMSM, while the output data is the rotor speed.  Data
points from 1001 to 2000 of I/O data are assumed for
estimation set, and data points from 3001 to 4000 of
I/O data are assumed for validation set.  The I/O time
series signals for validation set are shown in Fig. 2.

First, the power spectral density (PSD) plots of
input thrust and output speed are illustrated in Fig. 3.
It shows that the input and output energy occurred around
the normalized frequency 0.033 but the energy mag-
nitude expanded by several orders.  This suggests that
the system possesses non-linear dynamics around this
frequency caused by electrical parameter variations.
This non-linear effect would directly relate to model
structures, time delays, etc.  Structure selecting is im-
portant to identify the non-linearity of a system.  In
this study, a quadratic NARX model is considered and
the model structure is designed for 15 terms by rule of
thumb.  Setting appropriate time lags will help to de-
scribe the real system and could avoid computation
problems, and the appropriate maximum time lags should
be set as 40 and 30 to input and output respectively
for this case.  It means that predicted output would be
simulated by the combinations of 40 input signals and

Power amplifier
220V 60 Hz

Motor drive interface

PMSM
set

Hall sensor
Position

Speed
ia , ib , ic

id , iq

Control computer

Table 1  Specification of test motor

          Parameter Value Unit

Rated output 83 W
Rated speed 1.0 m/sec
Rotor equivalent resistor per 11.6504/3.0 Ω
phase (Rs)
Rotor inductance per phase (Ls) 0.0048/3.0 H
Stator flux (λm) 0.4849 Wb
Standard rotor mass (M) 2.3213 kg
Viscous friction coefficient (B) 32.4992 N/m/s

Fig. 1  Experimental system configuration
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Fig. 2 Input (a: thrust) and output (b: speed) of data set taken
from the 1001st to 2000th samples
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30 output signals.  The estimation result of the I/O
relationship is represented as a difference equation in
Table 2.  The model predicted output and cross-vali-
dation tests are shown in Figs. 4 and 5 respectively
where the model predicted output follows the system

output very well.  It means that this time domain speed
model can simulate the output speed completely and
it can also play a role in speed prediction.  Besides,
the system is proved time-invariant.  The model va-
lidity tests shown in Fig. 6 indicate that the model is
reasonable because the model validity tests are all in-
side the confidence bands except φu2′ε2′(k) which is just
outside.  It shows that this estimated model can grasp
the dynamics of the PMSM precisely.  This model is
validated by cross validation test, correlation tests and
model output prediction test, so the estimated non-linear
NARX model is quite reliable to identify the relation-
ship between electromagnetic torque and output speed
of a PMSM.

2. Thrust-Position NARX Model

In this case, a thrust-position model is estimated
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Fig. 3 Power spectral density of (a) input signal (thrust) and (b)
output signal (velocity)
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Fig. 4 Comparison of the model predicted output (dotted line)
with the original measurements (solid line)

Table 2  Quadratic thrust-speed NARX model

Model Standard
Estimate ERRi

parameter deviation

u(k-14) 0.33710 e+2 0.9976 0.0432
y(k-1) 0.31254 0.1083 e-2 0.0308
y(k-14) -0.90502 e-1 0.9426 e-4 0.0264
y(k-30) 0.13787 0.6672 e-4 0.0252
y(k-33)u(k-21) 0.38805 0.3426 e-4 0.0798
y(k-23) -0.10185 0.3133 e-4 0.0272
y(k-5) 0.96491 e-1 0.1948 e-4 0.0304
y(k-26) 0.10947 0.1834 e-4 0.0259
y(k-18) -0.90082 0.1563 e-4 0.0268
y(k-9) -0.11602 0.1187 e-4 0.0271
y(k-6) 0.86075 e-1 0.1042 e-4 0.0305
y(k-2) 0.91110 e-1 0.9358 e-5 0.0305
y(k-7)y(k-33) -0.33757 e-2 0.6161 e-5 0.0012
y(k-3)y(k-32) -0.34004 e-2 0.5636 e-5 0.0009
y(k-16)y(k-36) -0.13394 e-2 0.1190 e-5 0.0004
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Fig. 5 Cross-validation test: original measurements (solid line)
and model (asterisk line)
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by the same method as above.  The input is the mea-
sured electromagnetic torque as sinusoidal waves and
sampled at 500 Hz, and the output is the rotor posi-
tion varied by the magnetic thrust.  Assuming data
points from 1001 to 2000 of I/O data are the data set
for estimation, and data points from 3001 to 4000 of
I/O data are for validation.  The I/O time series sig-
nals for validation set are shown in Fig. 7.

The PSD of the input thrust and output position
are illustrated in Fig. 8.  It shows that the input energy
is around the normalized frequency 0.023 and the out-
put energy frequency is around the normalized frequency
0.023 and 0.  This result indicates that there exists
obvious non-linearity in this system.  Energy transfer
occurs around a specific frequency, and this phenom-
enon results in several order growth in the PSD mag-
nitude from input to output signals.  A quadratic NARX
model is built.  The maximum time lags are set as 10
to both input and output, and the estimation result of
the I/O relationship is represented as a difference equa-
tion listed in Table 3.  The model predicted output and
cross-validation test are shown in Fig. 9 and 10
respectively.  The good results mean that this non-lin-
ear model can describe the real system completely, and
the output position can be predicted by the model.  In
Fig. 11, all the model validity tests satisfy the 95%
confidence limit except φu2′ε2′(k) which is just outside.
It shows that this estimated model can grasp the dy-
namics of the system.  This model is also validated by
the three tests, namely the cross validation test, the
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Fig. 7 Input (a: thrust) and output (b: position) of data set taken
from the 1001st to 2000th samples
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correlation tests and the model output prediction test,
so that the non-linear NARX model is a qualified model
to identify the relationship between the thrust and po-
sition of a PMSM.

V. FREQUENCY DOMAIN ANALYSIS

The interpretation of non-linear effects in the
frequency domain is illustrated by the higher order
frequency functions computed using the models in
Tables 1 and 2.  The GFRFs can be directly derived
from NARMAX models according to Eqs. (7) and (8).
In speed NARMAX model, the first-order frequency
response function H1(f) is illustrated in Fig. 12.   The
resonances in H1(f) are found approximately at 0.033
in normalized frequency and the corresponding mag-
nitude is 50 dB.  The non-linear GFRFs are gener-
ated by the non-linear terms in the discrete-time
models.  The second-order GFRFs H2(f1, f2) are de-
rived and represented in Fig. 13.  There are four domi-
nant ridges along equations f1 = 0.033, f2 = -0.033, f1

+ f2 = 0.033 and f1 + f2 = -0.033.  Since the sampling
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Table 3. Quadratic thrust-position NARX model.

Model Standard
Estimate ERRi

parameter deviation

y(k-1) 0.22209 e+1 0.9986 0.0303
y(k-2) -0.15159 e+1 0.1349 e-2 0.0611
y(k-9) 0.60831 0.5348 e-6 0.0612
u(k-10) 0.27583 e-1 0.3539 e-7 0.0029
y(k-8) -0.48565 0.5302 e-7 0.0361
y(k-3) 0.34624 0.4279 e-7 0.0357
y(k-10) -0.17312 0.3770 e-7 0.0301
y(k-1)u(k-10) 0.33725 e-2 0.2140 e-7 0.0027
y(k-10)y(k-10) -0.73095 e-2 0.1082 e-7 0.0030
y(k-2)u(k-2) 0.26377 e-3 0.9794 e-8 0.0027
y(k-1)y(k-1) 0.12182 e-1 0.1187 e-8 0.0037
y(k-4)y(k-4) 0.32931 e-1 0.3206 e-8 0.0049
y(k-6)y(k-6) -0.23274 e-1 0.8147 e-8 0.0039
y(k-2)y(k-2) -0.28863 e-1 0.6589 e-8 0.0063
y(k-9)y(k-9) 0.14489 e-1 0.4357 e-8 0.0045

Fig. 8 Power spectral density of (a) input signal (thrust) and (b)
output signal (position)
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Fig. 9 Comparison of the model predicted output (dotted line)
with the original measurements (solid line)
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Fig. 10 Cross-validation test (original measurements: solid line;
model: asterisk line)
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Fig. 12 The first-order GFRFs and phase angle of thrust-speed
model
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frequency is 500 Hz, the actual frequencies are ap-
proximately f1 = 16.5 Hz, f2 = -16.5 Hz, f1 + f2 = 16.5
Hz and f1 + f2 = -16.5 Hz.  These functions reveal
that there appears to be a strong non-linear effect of
the system which transfers energy to around 16.5 Hz
as defined by the dominant ridges in 16.5 Hz.  The
results show that all possible frequency combinations
are caused by second order non-linear effects (for
example cogging torque).  This can be confirmed by
the power spectral density of the system output in
which the power is concentrated on the normalized
frequency around 0.033.

The functions f1 + f2 = 16.5 Hz and f1 + f2 =
-16.5 Hz can be seen as a resonance behavior, where
energy at the input frequencies f1 and f2, which sat-
isfy f1 + f2 = 16.5 Hz, f1 + f2 = -16.5 Hz are trans-
ferred to ±16.5 Hz frequencies.  In other words, short
time events are transferred to long time events.  In
contrast, the functions f1 = 16.5 Hz and f2 = -16.5 Hz
can be seen as a release of energy phenomena, in
which input frequency components close to ±16.5 Hz
are amplified by the system and transferred to fre-
quency components in the output other than ±16.5 Hz.

The third-order transfer functions H3(f1, f2, f3)

illustrated in Fig. 14 for f1 = f3 show a similar type of
amplification.  The low frequencies are amplified,
particularly on the ridges of normalized frequency
f1 = 0.033, f2 = -0.033, f3 = 0.033, f1 + f3 = ±0.033 and
f1 + f2 + f3 = ±0.033. The true values would be found
as defined by f1 = 16.5 Hz, f2 = -16.5 Hz, f3 = 16.5
Hz, f1 + f3 = ±16.5 HZ and  f1 + f2 + f3 = ±16.5 HZ.
The interpretation of H3(f1, f2, f3) is similar to that of
H2(f1, f2) because the frequency ridges listed above
correspond to the same type of dynamic effects.  The
functions f1 = 16.5 Hz and f2 = -16.5 Hz can be seen
as a release of energy phenomena, and the frequency
combinations f1 + f3 =  ±16.5 Hz and f1 + f2 + f3 =
±16.5 Hz can be seen as a resonance behavior.

In position NARMAX model, the first-order
GFRFs is illustrated in Fig. 15, including two high
amplifications at 62.15 dB and 23.13 dB for low nor-
malized frequencies 0 and 0.023 respectively.  The
sampling frequency of this case is also 500 Hz, mul-
tiplied by these normalized frequency lines, and the
true values would be found as defined by 0 Hz and
11.5 Hz.  The magnitude of the second-order GFRFs
H2(f1, f2) also shows two high magnitudes along the
normalized frequencies f1 and f2, defined by f1 = 0,
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Fig. 14 The third-order GFRFs of thrust-speed model: (a) top view,
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model
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 f2 = 0, f1 = 0.023, f2 = ±0.023, f1 + f2 = 0 and f1 + f2 =
±0.023 (Fig. 16).  The true values would be found
as defined by f1 = 0 Hz, f2 = 0 Hz, f1 = 11.5 Hz, f2 =
±11.5 Hz, f1 + f2 = 0 Hz and f1 + f2 = ±11.5 Hz.

These functions represent a strong non-linear
effect as compression and expansion of energy.  The
functions f1 + f2 = 0 Hz and f1 + f2 = ±11.5 Hz can
be seen as resonance behaviors which represent a
phenomenon of energy storage, where energy at the
input frequencies f1 and f2, which satisfy f1 + f2 =
0 Hz and f1 + f2 = ±11.5 Hz, is transferred to very low
frequencies, close to 0 Hz and 11.5 Hz.  The func-
tions f1 = 0 Hz, f2 = 0 Hz, f1 = 11.5 Hz, f2 = ±11.5 Hz,
can be seen as a phenomenon of energy release, in
which input frequency components close to 0 Hz or
11.5 Hz are amplified by the system and transferred
to frequency components in the output other than
these two frequencies.  The low frequency compo-
nents in this case correspond to long time events,
which are transferred by non-linear effects to higher
frequency or shorter time events.

The third-order transfer function H3(f1, f2, f3) il-
lustrated in Fig. 17 for f1 = f3 shows a similar type of
amplification.  The low frequencies are amplified, par-
ticularly on the ridges of normalized frequencies f1 =
0, f2 = 0, f3 = 0, f1 = 0.023, f2 = ±0.023, f3 = 0.023, f1 +
f3 =0, f1 + f3 = ±0.023, f1 + f2 + f3 = 0 and f1 + f2 + f3 =
±0.023.  The true values would be found as defined by
f1 = 0 Hz, f2 = 0 Hz, f3 = 0 Hz, f1 = 11.5 Hz, f2 = ±11.
5 Hz, f3 = 11.5 Hz, f1 + f3 = 0 Hz, f1 + f3 = ±11.5 Hz,
f1 + f2 + f3 = 0 Hz and f1 + f2 + f3 = ±11.5 Hz.

It is important to note that even though the mod-
els analyzed are different in terms of model structure,
all the models generated give almost identical GFRFs.
The frequency ridges are regarded as resonant peaks
and they can be verified by the PSD plots.  Besides,
the frequency domain response functions are seen as
invariants of a non-linear system.

VI. CONCLUSIONS

A combined time and frequency domain identifi-
cation approach is considered in this study to analyze
data from a PMSM.  The NARMAX methodology has
been applied to two systems.  The first one utilizes the
electromagnetic thrust as input and the rotor speed as
output, where the second one utilizes the rotor posi-
tion as output.  It has been shown that this motor system,
which is non-linear for the considered operating points
and electromagnetic thrust, can be modeled with a se-
ries of discrete-time NARMAX models, derived for
various conditions and constraints.

Applying the NARMAX methodology to this
type of system is proved to be a good estimation
method, and the novelty of the present results relates
to the non-linear frequency domain analysis by the
high-order GFRFs which are derived for polynomial
NARX models.  The GFRFs reveal, for the PMSM
application, non-linear couplings which represent
energy release and storage between input harmonic
components taking place at low frequency and also
on particular lines of frequency.  Analytical expres-
sions for GFRFs for non-linear systems provide a great
deal of insight into the relationship between the time
and frequency domain representations of non-linear
systems and can be used to study the sensitivity of
the frequency domain effects due to the parameter
variations in the models.

NOMENCLATURE

c coefficients of NARMAX model
d system time delay
f frequency
F non-linear function
g coefficients of an auxiliary model
H frequency responding function

Fig. 16  The second-order GFRFs of thrust-position model
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Fig. 17  The third-order GFRFs of thrust-position model
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k time
m number of input
r number of output
n time lag
S all permutations of frequencies
w terms of an auxiliary model
u system input
y system output
ε residue
α constant vector term
δ Kronecker delta
τ time lag
φ correlation tests

Superscripts

asym asymmetry
degree of non-linearity

sym symmetry

Subscripts

MPO model predicted output
m number of input
n order
p order of input
q order of output
r number of output
u system intput
y system output
ε residue
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