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一、Abstract
The effect of topological deformation on the 
mobility and diffusivity of a polymer chain in 
a good solvent is investigated by off-lattice 
dynamic Monte Carlo simulations. The 
topological deformation of the polymer is 
expressed through the knotted structure. The 
Nernst-Einstein relation is obeyed and thus 
the diffusivity is proportional to the mobility. 
As the crossing number of the knotted poly-
mer, which characterizes the extent of the 
deformation, is increased, the mobility de-
clines. A scaling analysis confirmed by simu-
lations indicates that the deformation yields 
an extra contribution to the resistance æN as-
sociated with a linear chain, áN-3/5p8/5, where 
N is the chain length and p is the 
length-to-diameter ratio associated with a 
maximum inflated knot. The mobility of the 
polymer chain is further reduced due to the 
confinement in a cylindrical tube. Neverthe-
less, the confinement only slightly increases 
the friction coefficients æ and the internal 
friction constant á. Our numerical results for 
the Rouse model are qualitatively different 
from those anticipated on the basis of scaling 
arguments for the Zimm model.

二、Introduction
When a weak external force F is applied to a 
polymer in the dilute polymer solution, the 
field will cause a uniform motion of the cen-
ter of mass of the polymer with a constant 
velocity U which is proportional to the force 
F. This would correspond physically to sedi-

mentation or to electrophoresis². According 
to the Nernst-Einstein relation or fluctua-
tion-dissipation theorem, the mobility 
M=U/F is proportional to the self diffusion 
constant, DG=MkT, where kT denotes the 
thermal energy. The mobility and 
self-diffusivity associated with a linear 
polymer are closely related to the dynamics 
of a polymer in dilute solution and have been 
well studied in the past decades.1-3 In the 
Rouse model, the hydrodynamic interaction 
is neglected and the self diffusion constant is 
inversely proportional to the chain length N, 
DG=T/(Næs), where æs is the solvent-monomer 
friction coefficient. On the other hand, in the 
Zimm model, the hydrodynamic interaction 
is taken into account and the diffusivity is 
given by DG∼(kT/(Níæs). In a good solvent, 
í=3/5.

 There are two types of barriers opposing 
the migration process of a polymer1,2. One is 
associated with the hydrodynamic friction; 
the other is associated with the changes in 
chain conformation: "internal barrier." In 
other words, consideration of the hydrody-
namic friction term only gives the upper 
bound for self diffusion constant.1,2 It has 
been shown that for a linear chain in a liquid 
medium, internal barriers are negligible for 
uniform translational properties.2 In the first 
Rouse mode, if N is large enough, any frac-
tion of the chain moves essentially as if it 
were in uniform translation. However, the 
internal barrier may become significant when 
the topological deformation is imposed upon 
a polymer through a knotted structure. In ad-
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dition, the confinement of a knotted polymer 
within a cylindrical tube may enhance the 
deformation effect furthermore. It is the pur-
pose of this paper to investigate the effect of 
the topological deformation on the mobility 
and diffusivity.

三、Model and Simulation Details
The knotted polymers studied in this work 
are up to nine crossings: 31, 41, 51, 52, 61, 62, 
63, 71, 72, 81, 82, 91. They are modeled as 
beads connected by stiff springs. The interac-
tions between the nonbonded beads are 
through the standard Lennard-Jones poten-
tials.
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where ε and ó are the energy and size pa-
rameters, respectively. The interactions be-
tween bonded beads are represented by a 
cut-off harmonic spring potential as
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The potential is infinite elsewhere. We have 
chosen kó²/ε=400. 
    The systems studied contain a single 
polymer chain with chain length N ranging 
from 42 to 82. In the present study, the re-
duced temperature T*=10 is chosen. It is high 
enough so that the system is in the good sol-
vent regime. 
    The interactions between the chain and 
the tube wall are purely excluded volume. 
The new configurations resulting from this 
move are accepted according to the standard 
Metropolis acceptance criterion.4-11 Runs for 
the different chain length and at different 
tube radius (free space and 3.5) are first 
equilibrated for 1 million steps/monomer. 
Then each bead of the knot is subjected to an 
external force f. In this work, fó/kT=0.5 is 
adopted for calculating the mobility. Meas-
urements for migration speed along the axial 
direction are taken for over 5000 realizations 
in our simulations.
    The mean position of the center of mass 
along the axial directions in a tube and in free 
space are given by
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where (xCM,yCM,zCM) are the coordinates of 
the center of mass of the chain. The angular 
brackets <> denote the average of all realiza-
tions. The migration velocity of a knot poly-
mer caused by externally applied forces is 
then evaluated by
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Since the z-direction trajectory is almost lin-
ear, the velocity can then be evaluated di-
rectly by dividing the z-direction displace-
ment by the elapsed time. The self-diffusion 
constant of a knotted polymer is calculated 
through the Einstein relation,

dt
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where d is the dimensionality of the system. 
Time is measured in units of Monte Carlo 
steps per monomer (MCS/monomer), one 
MCS/monomer means that on average every 
monomer has attempted to move once.  

四、Results and Discussion
The mobility can be determined by 
M=U/(Nf). When fó/kT is small enough, the 
disturbance of the polymer configuration due 
to externally applied forces is essentially the 
same as that caused by the thermal fluctua-
tion at equilibrium (f=0) according to the 
fluctuation-dissipation theorem. As a conse-
quence, one anticipates that the mobility is 
independent of the external force. Figure 1
demonstrates the linear relationship between 
the velocity and the applied force. The excel-
lent agreement between the data and the 
straight line with zero intercept indicates that 
the range of the applied forces in our simula-
tion, fa/kT �0.6, is always in the linear re-
gime.
    To further examine the validity of the 
dynamic Monte Carlo approach adopted in 
this paper, we evaluate the self-diffusivity 
and the mobility of the knotted polymers of 
various types. Figure 2 shows that the diffu-
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sivity and the mobility can be well fitted by a 
straight line with a slope 1. This result indi-
cates that the Nernst-Einstein relation, 
DG=MkT is obeyed and the validity of the 
dynamic Monte Carlo approach is justified 
for weak external forces. 
  The variation of the mobility with the 
topological invariant p, which characterizes 
the extent of the topological deformation, is 
shown in Fig. 3 for N=42, 60, and 82 with 
the dimensionless tube radius Rt/σ =3.5 and 

∞ . It is clearly demonstrated that the mobil-
ity decreases with the chain length for a given 
type of knot. It is well-known that the mobil-
ity (or diffusivity) of a linear Rouse chain 
(p=0) in an unbounded domain is simply 
(æsN)-1. For simplicity, we assume that the 
confinement resistance is approximately 
proportional to the number of beads. There-
fore, the mobility of a Rouse chain confined 
in a tube can still be described by (æN)-1, 
where æ=æs+æw with æw denoting the 
bead-wall friction coefficient. These results 
are confirmed in our simulation by varying 
the length of linear chains and will also be 
shown in the later analysis for knotted chains 
(p>0). For a given chain length, the mobility 
of a knotted polymer declines with increasing 
p. As the chain length is increased, however, 
the degree of the mobility reduction becomes 
less substantial. Because of the additional 
resistance caused by the tube wall, the mobil-
ity of a knotted polymer confined in a tube is 
less than that in an unbounded domain. 
   The migration velocity of the polymer 
chain is evaluated from the mean velocity of 
every bead¹
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where P is the steady state distribution func-
tion and can be obtained by solving the 
Smoluchowski equation. Hnm is the mobility 
tensor and is often approximated by the 
Oseen tensor if the hydrodynamic interac-
tions are taken into account. r m is the posi-
tion of m-th bead. In the Rouse model, Hnm is 
simply Hnm=änm/æs. The term kT �lnP/�r m

denotes the driving force due to the deforma-
tion of the polymer¹. When this term is ne-

glected, an upper bound corresponding to the 
linear Rouse chain is obtained. This term is 
also referred to as the internal friction effects 
and is shown to be weak, particularly for long 
chains². For a knotted polymer, however, this 
term becomes much important than that for a 
linear chain. In the Rouse model the equation 
of motion for the m-th bead is given by
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The second term represent the internal barrier 
associated with the changes in chain confor-
mation driven by the thermal motion. This 
term simply consists of a characteristic work 
times a characteristic deformation and then 
divided by the square of a characteristic bond 
size. By expressing the knot polymer in terms 
of the R-size tube, we assume a characteristic 
work fa, a characteristic deformation propor-
tional to LR/N, and a characteristic bond size 
DR. As a consequence, one obtains the total 
resistivity

)( 5/81 pNNM s
ναζ −− +=   (9)

The second term denotes the effect of topo-
logical deformation on the mobility and 
yields a next order correction. A linear chain 
(p=0) gives no contribution. For a finite value 
of p, the internal friction effect becomes in-
significant as N→ ∞ .
    Now we can examine the scaling law by 
our simulation results. Rearranging Eq. (9) 
gives a straight line for M-1/N versus p8/5

with an intercept æs and a N-dependent slope. 
In other words, all lines of different chain 
lengths should converge to the same intercept. 
Figure 4 depicts the agreement between the 
scaling law and the simulation data with a 
common intercept for knotted polymers in an 
unbounded domain. In addition, all three 
lines corresponding to three different chain 
lengths can be well represented by the inter-
nal friction constant, á�0.458.
   For knotted polymers confined in a tube, 
the bead-wall friction gives additional 
contribution to the resistance. We expect that 
the scaling law, Eq. (9), is still valid with æs

replaced by æ. As illustrated in Fig. 5(a), 
simulation data of different chain lengths can 
be well represented by three lines with a 
common intercept æ=363 kTô/ó². Again, all 
three lines can be well described by an 
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lines can be well described by an internal 
friction constant, which increases only a little 
bit, á�0.513. Figure 5(b) shows that the data 
for polymers of different chain lengths con-
fined in a tube can crumple into a straight 
line following Eq.(9). Those consequences 
indicate that the scaling law, Eq.(9), is appli-
cable to both unbounded domains and con-
fined tubes. Nevertheless, the bead-wall fric-
tion is not as significant as the internal fric-
tion associated with topological deforma-
tions.
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Figure 1. The variation of the migration ve-
locity with the external force under various 
conditions.

2.0x10-5 3.0x10-5 4.0x10-5 5.0x10-5 6.0x10-5 7.0x10-5
2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

7.0x10-5

D
G

M

 r=3.5
 N=42
 N=60
 N=82

 r=inf
 N=42
 N=60
 N=82
 slope=1 

Figure 2. The diffusivity is plotted against the 
mobility for various chain length and various 
types of knot.
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Figure 3. The variation of the mobility with 
the topological invariant.
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Figure 4. The variation of the resistivity per 
bead for different chain lengths of infinite 
tube diameter.
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Figure 5(a). The variation of the resistivity 
per bead for different chain length with tube 
diameter equals 3.5.
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Figure 5(b). The variation of scaled mobility 
with p on a log-log plot for tube diameter 
equaling 3.5.
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