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Abstract

Monte Carlo simulations were used to study the effect of 
topological constraints of knotted polymers on their theta 
temperatures. The theta temperatures were determined through 
two different definitions - the vanishing of the second virial 
coefficient A2=0, and the quasi-ideal behavior of the radius of 
gyration, <Rg²>�N. Prime knots with chain lengths from N=60 
to 300 and with crossings from 31 to 91 were considered. For 
chains with finite lengths, it was found that the theta temperature 
determined from quasi-ideal condition of the knot increases, as 
the complexity of the knot increases. On the other hand, the 
topological complexity seemed to have no effect on the theta 
temperatures determined from the vanishing of the second virial 
coefficient. Also, our simulation results suggest that for chains 
with finite crossing numbers, as N��, theta temperatures for all 
knots obtained from two different approaches coincide and are 
equivalent to that of a linear polymer chain.

Keywords: Monte Carlo simulation, second virial coefficient, 
topological constraint

一、Introduction
The theta point(è) of macromolecules is traditionally 

viewed as the point at which excluded volume interactions 
exactly cancel the attractive interactions between monomers of 
the chain. Consequently, at the è temperature chain dimension 
behave quasi-ideally, with the radius of gyration proportional to 
chain length, <Rg²>∼N. According to Flory's theory,¹ the theta 
temperature is also the point at which the polymer-polymer 
second virial coefficient vanishes. Bruns² has performed careful 
simulations on the 5-choice cubic lattice and has determined that 
the temperature for quasi-ideal chain dimensions coincides, 
within simulation uncertainty, with the temperature at which the 
second virial coefficient vanishes at the limit of long chains. 
Sheng et al.³ have extended the work to linear polymers in 
continuous space. It was found that the temperatures at which 
the second virial coefficients vanish are essentially constant for 
different chain length polymers and the estimated common value 
agrees, within simulation uncertainty, with the temperature at 
which an isolated polymer chain behaves as if it were a random 
coil (i.e. <Rg²>∼N).

Many biological macromolecules assume knotted forms. 
For example, DNA rings in bacteria take the form of a knotted 
ring, and there are certain types of enzymes that can act on 
circular DNA's and produce different types of DNA knots.4-6 The 
proteins, RNA's and DNA's are all polymers of biology origin. 
The physical properties of these molecules are strongly affected 
by their topological properties. Also, many molecular biological 
phenomena are associated with quite ordinary properties and 
characteristics of polymers. Thus studies of the physical 
properties of model knotted polymers can be of great help in 
understanding the basic physics of knotted type polymers and 
biopolymers.

Careful inspection reveals that due to the fundamental 
similarity in the topology of knots, conventional labeling of 
knots can further be classified naturally into groups, such as 
(31,51,71,...), (41,61,81,...) and (51,71,91,...). The similarity in 
topological interactions in a group is also supported by the 
observation of the Alexander polynomials and Conway 
notations.7,8 Knots with only hard-core excluded volume 

interactions and topological constraints, the nonequilibrium 
relaxation time of an equilibrated knot cut at one point to relax to 
a linear chain were found to increase stepwise linearly with 
number of essentially crossings of knots within a group.

Many other physical properties were also known to be 
affected by topological interactions. It was found that the 
average crossing number of flexible knotted polymer is 
consistent with a linear variation of the square root of the 
minimum crossing number, C.9 The effect of topological 
deformation on the mobility and diffusivity of a polymer chain 
was also investigated.10 The mobility declines as the crossing 
number of the knotted polymer increases. For a knotted polymer 
confined within a tube of diameter D, the equilibrium radius of 
gyration along the axial direction scales as C-0.52D-0.95 which has 
a stronger dependence on D than that of a linear chain. This 
indicates that the loops within a knot being forbidden to cross 
one another enhances the excluded interactions between the 
chain and the wall. In this work, we intend to perform an 
off-lattice Monte Carlo simulation to examine the effect of the 
topological interactions on a also very important physical 
quantity, the theta temperature of a knotted chain. The theta 
temperatures were determined through two different 
definitions-the vanishing of the second virial coefficient A2=0, 
and the quasi-ideal behavior of the radius of gyration, <Rg²>∼N. 
The result can provide for us further understanding of knotted 
systems.

二、Simulation Details

The knotted polymer chain studied in this work is modeled 
as beads connected by springs. The interactions between the 
nonbonded beads are through the standard Square-Well 
potentials.
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where � and ó are the energy and size parameters, respectively 
and ë=1.5. The monomeric � and ó are units used for the 
reduced quantities for temperature and distances as T*=kT/� and 
R*=R/ó. The interactions between bonded beads are represented 
by a infinite deep Square-Well potential as
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where ò=1.4 is to prevent any bond crossing occurring within the 
knotted chain.

The systems studied contain a single polymer chain with 
chain length N ranging from 60 to 300. The simulations are 
performed under the conditions of constant temperature, volume 
and total number of beads. In the present study, the reduced 
temperature T* is varied to study the system under different 
conditions. We have studied the knotted polymers up to ten 
crossings: 31, 41, 51, 52, 61, 71, 72, 81, 91, 92. The standard 
notation for uniquely labeling a knot is CK, where C is the 
number of essential crossings and K is an index for a particular 



knot.11,12

Figure 1(a) displays the schematic diagrams of some knots.
The initial configurations of knots are generated by growing the 
chain bead by bead along the contour line of each knot to the 
desired length and knot type. For convenience, the knot is 
constructed on a lattice. The construction process is simple but 
tedious. Figure 1(b) and 1(c) show the top and side views of the 
constructed initial configuration of the 31 knot. From the top 
view, it is clear that there are three intersections indicating a knot 
with 3 crossings. At each intersection, one of the line goes under 
another line as can be seen in Figure 1(c). However, this 
procedure is nonrandom and must be proceeded according to the 
topological structure of the knot. Thus the topological constraint 
is conserved. Our previous works10,11 have successfully 
investigated the topological effects on properties such as 
relaxation time and diffusivity of knotted chains based on these 
initial configurations.

The trial moves employed for chains of the equilibration 
and production process are bead displacement motions which
involve randomly picking a bead and displacing it to a new 
position in the vicinity of the old position. The distance away 
from the original position is chosen with probability that the 
condition of equal sampling of all points in the spherical shell 
surrounding the initial position must be satisfied. The new 
configurations resulting from this move are accepted according 
to the standard Metropolis acceptance criterion.¹³ Runs for the 
same chain length at different temperatures are performed 
starting with the final configuration from a previous temperature 
and are equilibrated for 200 million steps. Measurements for 
static properties such as radius of gyration are taken over a 
period of 5-10 millions MCS/monomer.

The root-mean-squared radius of gyration of isolated 
polymer chains was determined by
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where (xi, yi, zi) are the coordinates of the ith monomer in the 
chain and (xCM, yCM, zCM) are the coordinates of the center of 
mass of the chain. The angular brackets <… > denote ensemble 
average.

The virial expansion for the compressibility factor takes the 
form14

...,1/ 2
32 +++= ρρρβ AAP                       (4)

where P is the pressure, ñ is the molecular number density of the 
system, A2, A3 are the second and third virial coefficients, 
respectively, â=1/kT, k is the Boltzmann's constant and T is the 
temperature. To calculate the second virial coefficient, we used 
the algorithm proposed by Harismiadis and Szleifer.15 The 
second virial coefficient can be calculated in terms of the 
interaction potentials from standard statistical mechanics16,17
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where F1 is the Helmholtz free energy of a single chain at 
infinite dilution in a solvent, and F2(î) is the Helmholtz free 
energy of a system composed of the same solvent and two 
polymer molecules when their center of mass distance is î. The 
difference in the exponential can be thought of as an effective 
potential between the chain molecules, i.e.
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where Uinter is the intermolecular interaction energy between the 
two polymer molecules. <… > denotes a canonical average over 
all the configurations of the two chains however each chain does 
not know the presence of the other chain. If there are no overlaps, 
it equals to the number of segment pairs belonging to the two 
interacting polymers with distance lying between ó and 1.5ó, 

multiplied by the well depth. A trial move leading to overlap of 
two knots is allowed but yields an infinite value of 
intermolecular interaction, Uinter. The typical example is the A2
calculation for two hard-spheres of radius R. When the distance 
between the two particles is less than 2R, i.e. î<2R, all sampling 
by rotations result in Ueff(î) =�. As a consequence, one obtains 
the theoretical value A2=16ðR³/3 from MC simulations.

The algorithm used to calculate Ueff and then A2 is as 
follows: 200,000 completely independent chain conformations 
are generated by using the Metropolis recipe.¹³ A pair of chains 
is selected out of 100,000 pairs. One of the pair is placed with its 
center of mass fixed at (0, 0, 0). Then place another chain with 
its center of mass set at (î, 0, 0), i.e. two chains are separated by 
a distance of î and î is systematically increased during the 
simulation process to estimate the Ueff at different separations. 
At each separation, 50 random rotations of the second chain are 
performed. A total of 5,000,000 Uinter are sampled at each 
separation. After the effective potential between the chains is 
calculated (eq.(6)) as a function of î, the second virial coefficient 
can be obtained through eq.(5). Similar procedures have already 
been used in various studies.15-21

Note that the approach adopted in our simulations for A2
calculations cannot preclude the formations of concatenated 
knots as two knotted chains are close to each other. In principle, 
they can be avoided through time-consuming, elaborated 
simulation procedures. However, it is believed that the 
probability of the formation of concatenated knots is very small 
as will be discussed later. Our present approach provides 
accurate results and yet is time-saving.

三、Results and Discussion

    Figure 2 shows the calculated second virial 
coefficients A2 of 31 knot as a function of temperature for a 
variety of chain lengths ranging from 60 to 120 monomers per 
chain. The qualitative behavior of the virial coefficient with 
temperature of a knotted polymer is the same with its linear 
counterpart. At low temperatures, the attractive interactions 
dominate and A2 is negative. A2 increases as the temperature 
increases. There exists a temperature (that is, the theta 
temperature) where the attractive and the repulsive 
intermolecular interactions exactly cancel and thus the second 
virial coefficient vanishes. For a 31 knot, the è temperature is 
found to be around T*=2.55. It has been well known that the 
theta temperature obtained from the vanishing second virial 
coefficient definition is a fairly weak function of chain 
length.2,3,15,22 The è temperature obtained for short-length chain 
is very close to the true theta temperature. Below the è 
temperature, the solvent is poor. The longer the chain length is 
the more negative the second virial coefficient is. On the other 
hand, above the è temperature, the solvent becomes good. The 
chains are in expanded conformations and for two chains of 
distance î apart, the chance of overlapping between segments 
increases. The chance of overlapping also increases as chain 
length increases. Thus, A2 for longer chain becomes more 
positive than that of the shorter chain. This result is consistent 
with the fact that in a good solvent, the second virial coefficient 
is proportional to the excluded volume of the chain which 
increases with increasing chain length.

We have also performed simulations for linear polymer 
chains as displayed in Figure 3. The behavior are qualitatively 
similar to that of the knotted polymer. The estimated theta 
temperature for linear chain is about 2.56. The second virial 
coefficients for polymers of length N=60 but with different 
topological structures are plotted as a function of temperature in 
Figure 4. Although the absolute values of A2 for linear chain 
vary more significantly than the knotted counterparts, the 
general behaviors for linear and knotted polymers are actually 
quite similar. Table 1 lists the values of the calculated theta 
temperatures of different knots for chain length N=90. From the 
Table, it can be seen that the topological complexity seemed to 



have no effect on the theta temperatures determined from the 
second virial coefficient approach. The è temperature are 
essentially the same (within simulation errors) for different knot 
types we have studied. This result again shows that the 
topological constraint has almost no effect on the theta 
temperature estimated from vanishing of A2.

In the experimental works of Roovers et al.,23,24 some 
physical properties, such as the theta point, of both linear and 
ring polymers of the same molecular weight are studied. They 
found that the theta temperature is essentially independent of 
molecular weight which is consistent with our finding. However, 
they found slight (about 2%) theta point depression for the ring 
polymer. As listed in Table 1 of our manuscript, varying degrees 
of theta point depression (up to 3%) are also observed for the 
knotted type polymers. From our previous works,10,11 we found 
that topological effects have significant effect on some of the 
physical properties, such as radius of gyration, relaxation time 
and diffusivity. However, the degrees of the theta point 
depression resulted in this work seem to be quite insignificant. 
Thus, we concluded the independence of the theta temperature 
on topology. It is worth mentioning that this study provides the 
leading behavior and a realistic potential model may be needed 
to probe the slight difference in theta temperature change.

It is also possible for us to use the calculated effective 
potentials to demonstrate the radial distribution function, g(î) as 
a function of the distance î,

( ) [ ]kTUg eff /exp −=ξ  (7)

Figure 5 shows the radial distribution function as a function of 
the distance between centers of mass for linear-linear, 
31knot-31knot, 61knot-61knot and 91knot-91knot pairs for N=60 
and T*=2.6. As we can see from the figure, g(î) behaves 
differently for linear-linear and knot-knot pairs. For two linear 
polymers, penetration between them is more probable than that 
of knotted polymers. That is, the two linear polymers can 
relatively easily penetrate into each other. However, knotted 
polymers are of ring structure. The radius of gyration of knotted 
polymers are significantly smaller than that of a linear chain with 
the same length. Thus the monomer density of a knotted chain is 
greater than the monomer density of a linear chain. The 
penetration of knotted chains into each other is relatively more 
difficult in close distance.

Also, as we have mentioned earlier, it is believed that the 
formation of the concatenated knot is possible but with slim 
chance. Since bond crossing is forbidden for non-phantom knots, 
the concatenated knot formation should correspond to an infinite 
value of intermolecular interaction, Uinter. In our calculation, 
however, the concatenated knot formation would result in a 
finite value of Uinter. If such events take place frequently, the A2
value calculated in our work would be lower than its actual value. 
However, as we can see from Fig. 5, as î is approximately less 
than 2Rg, g(î)=exp[-Ueff/kT]�0, which means Ueff�� for î<2Rg. 
This result indicates that in the regime where concatenated knots 
can possibly form, the effective hard-sphere behavior dominates. 
This implies that the chance of concatenated knots formation is 
slime and can be neglected. Note that for a linear chain, the 
effective hard-sphere behavior is not as significant. It is because 
knotted polymers have higher intrachain monomer density. 
When two knots are placed in close proximity, there is a greater 
possibility that they will overlap instead of forming concatenated 
knots.

Also, the linear polymer pairs have long-ranged repulsive 
interactions. However, for knotted chain pairs, attractive 
interactions at distances between 5 and 10 times the segment 
diameter can be clearly seen in Fig. 5. Also, as we know, Rg of 
knots scales as C-4/15. Thus as the complexity of knot increases, 
Rg decreases accordingly. The distance where maximum 
attractive interaction occurs between two knots becomes less for 
more complex knots.

As we have mentioned earlier, the è point can also be the 
temperature at which the excluded volume interactions exactly 
cancel the attractive interactions between monomers of the chain 
and <Rg²>1/2∼N1/2. However, for knotted polymer, the intrachain 
interactions also include the topological contribution which does 
not exist in a linear chain. Rg is not only the function of chain 
length but also affected by the complexity of the knot. Thus, we 
have performed simulations to study the effect. Figures 6 and 7 
are <Rg²>1/2/N1/2 vs. T. for linear and 61 type knotted polymers. 
If <Rg²>1/2 is proportional to N1/2 at some value of T, the curves 
belonging to all chain lengths N will intersect at a single point. 
As shown in Figure 6, the variations of Rg versus temperature of 
linear chains are quite sharp and all the curves seem to intersect 
at a single point. However, Figure 7 shows the variations of Rg 
versus temperature of 61 knot. For the chain lengths we have 
studied, the curves do not intersect at a single point, even for the 
longest chains. The temperature at which two chain lengths 
intersect increases with chain length. These observations are in 
agreement with the results of previous studies2,3. The values of 
the estimated intersection temperatures obtained from the radius 
of gyration calculations for chain length up to N=120 are 2.27, 
2.33, 2.36 and 2.44 for linear, 31, 61 and 91 knot chains, 
respectively. These results are obtained for chains with finite 
length. For chains with even longer length, the intersection 
temperature continues to slowly rise. However, for knots with 
equal length, noted that the theta temperatures appear to be 
increasing as the complexity of the knotted polymer increases. 
This is because for knots with more crossings, they have more 
compact structures due to topological constraints. Thus, the 
exact cancellation of the attractive and repulsive interactions can 
only be achieved at higher temperature. For knots with finite 
crossing numbers, the topological effects will become less and 
less important as chain length increases. It is known that for a 
linear long chain, the probability for it to assume open knotted 
formation grows exponentially with N. In other words, the 
entropy-induced, self-knotted structures are formed naturally for 
all types of chains. The extrapolation of the intersection 
temperatures to chains of infinite chain length are believed to be 
the same for all the knots and linear chains we have studied. 
Also in the infinite chain length regime, N��, theta 
temperatures determined through two different definitions - the 
vanishing of the second virial coefficient A2=0, and the 
quasi-ideal behavior of the radius of gyration, <Rg²>∼N are 
expected to coincide into a single value.
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Figure 1(a). Schematic knot diagrams. The conventional nomenclature of a knot is denoted by C_{K} where C is 
the number of essential crossings and K is a label to distinguish topologically different knots.

(b) The top view of the constructed initial configuration of the 3� knot.
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(c) The side view of the constructed initial configuration of the 3� knot.

Figure 2. Calculated second virial coefficients A2 of 31 knot as a function of temperature for a variety of chain 
lengths ranging from 60 to 120 monomers per chain.

Figure 3. Calculated second virial coefficients A2 of a linear polymer as a function of temperature for a variety of 
chain lengths ranging from 10 to 60 monomers per chain.
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Figure 4. Calculated second virial coefficients A2 as a function of temperature for different types of chains with 
length equal to 60 monomers per chain.

Figure 5. The radial distribution function as a function of the distance between centers of mass for linear-linear, 
31knot-31knot, 61knot-61knot and 91knot-91knot pairs for N=60 and T*=2.6.

Figure 6. The radius of gyration, <Rg²>1/2/N1/2 as a function of the temperature for linear polymers of lengths equal 
to N=20-80.
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Figure 7. The radius of gyration, <Rg²>1/2/N1/2as a function of the temperature for 6�knot polymers of lengths 
equal to N=60-300.

Knot type θ temperature
31 2.55
41 2.55
51 2.49
52 2.54
61 2.53
71 2.51
72 2.54
81 2.56
91 2.55
92 2.54

Table 1. Calculated theta temperatures of different knots with chain length N=90 from the vanishing second virial 
coefficient definition. The estimated theta temperature for linear chain is about 2.56.
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