(27 3)

NSC92-2214-E-002-003-
92 08 01 93 07 31

93 S 17



Effect of solvent quality on the conformations of a model comb polymer

NSC9-2214-E-002-003

The effect of solvent quality on the equilibrium structure of a densely-branched comb polymer is investigated
based on the structure factor analyses by off-lattice Monte Carlo simulations. Firstly, theta temperature (6.,)
must be determined to identify the solvent condition. We locate the characteristic temperature, 6, (N), at which
the second virial coefficient vanishes and the transition temperature, 6x(N), at which radius of gyration, Ry, of

the chain varies most rapidly with temperature, i.e. dZRg /dT? =0. N represents the total number of

&k

monomers of acomb. AsN - o, 8, and & coincide to a point that isidentified as the true theta temperature (&.).
The structure factors of the main chain, the side chain, and the whole polymer are calculated, respectively. It is
found that at T=6,, the structural factors SQR,) for the overall comb polymers match quite well with those of
their Gaussian counterparts. When T<@., the overall comb polymer assumes collapsed conformations, similar to
a homogeneous sphere. However, the structure factor of the side chain indicates that it always remains in an
expanded state regardless of the solvent condition. It is attributed to the strong interactions between side chains.
The same effect leads to enhanced rigidity of the main chain in comparison to the linear chain, as clearly
observed from the rescaled Kratky plot

Monte Carlo simulations, comb polymers, second virial coefficient, structural factor

The polymeric structural units may be connected in all kinds of patterns. Linear-type polymers are the
simplest of all. Nonlinear type polymers, including star, knotted or branched structures, are also frequently
encountered in the polymeric applications. A regularly branched polymer (also called a comb polymer) with side
chains of equal length has rather interesting topology. Its geometric conformations as well as thermodynamic
properties are quite different from those of alinear chain due to steric repulsion between high-density monomers.
These interactions result in the swelling of the comb on a large scale.* Grafting of side chains onto the main
chain aso greatly affects the equilibrium structure of the main chain of the comb molecule. Partial stretching of
the backbone was observed."™ The degree of induced rigidity of the backbone varies with several factors, such
as side-chain length, side-bead size and distance between grafted point. However, solvent quality may also play
an important role in the conformations of the combs. The systems studied in most of the previous works werein
good solvent (or athermal) conditions. In his work, Rouault® introduced attractive interactions between
side-chain monomers. At high temperature, the ratio between the radius of gyration of the main-chain of the

comb polymer and that of a linear chain without side chains is about 2 ( Rgmain/ Rélinear =1.9), indicating
a swollen conformation as a result of the repulson between side chains. On the other hand, a low
temperature, Rémain/ Rélinear =1, showing that the side chains are shrunk below their excluded volume

radius to aradius very near the Gaussian value. The comb polymer could be seen as an excluded volume chain
decorated with Gaussian side-chains. For a more realistic chain with attractive interactions among all the
monomers on the comb, the effect of solvent quality (or system temperature) on the conformations of the main
chain, side chains and overall comb polymer is still unclear.

The theta point (6) of macromolecules is traditionally viewed as the point a which intrachain excluded
volume interactions exactly cancel the attractive interactions between monomers of the chain,™® Consequently, at
@ temperature, monomers on a polymer molecule telescope one another freely without any net interaction. In
other words, they behave quasi-idedlly, i.e., <R2> Y2 /NY2 for linear chains. N is the total number of monomers.
@ temperature is also defined for a polymer solution as the Boyle point of a rea gas as the polymer-polymer



second viria coefficient vanishes. Furthermore, according to Flory's theory,™ the theta temperature may be
identified as the critical miscibility temperature in the limit of infinite molecular weight. Simulation results
suggested that a consistent & temperature was found for these three definitions, however, in the limit of infinite
chain length.* Study of the theta point of knotted polymer chains again supported the findings.*

For comb polymers, & point is expected to shift from its linear counterpart’. Gallacher and Windmer®®
thought that the high nearest neighbor density expected in the branched polymers would lead to a & point a a
much higher temperature. On the other hand, Rouault® believed the value of temperature needed to reach the 8
point for grafted chains in the brush is lower than that of linear chainsin the bulk. It is important to clarify these
differences and then the solvent condition can be identified.

Structure factor which can be measured by neutron or X-ray scattering experiments as well as computer
simulations, thus offers a direct connection between simulation and experimental works. Once we have
determined the true theta temperature for comb polymers, Monte Carlo simulations can be used to caculate
S(gRy) or (ng)ZS(ng) as afunction of gRy to investigate the variation of chain conformation in different solvent
quality. As we know, S(qR;) describes the Fourier components of density fluctuation. It is related, through a
three-dimensional Fourier transform to the pair distribution function g(r). Thus, systems with same SgR;) may
consist of equivalent internal structure. On the other hand, the structure factor plotted as (ng)ZS(ng) Vvs. gRy is
called the rescaled Kratky plot, which has the advantage of being less sensitive on N.* In this type of plot, the
curve for linear chain situating in good solvents always ascends. However, for rings or other chains with more
compact structures, aclear difference is observed. Even under good solvent condition, there are maxima existing
within the curves. The sharpness of the peak can be an indication of the compactness of the chain.

In this work, we intend to estimate the ., temperature of the comb polymers through two different schemes.
Firstly, we use the algorithm proposed by Harismiadis and Szleifer® to calculate the second virial coefficient of
the comb polymer. Note that similar procedures have been successfully used in various studies.*>*** Once A,

is obtained, temperature ((A) at which A2=0 can be determined. Secondly, we calculate
Rg of the chains and determine the transition temperature ((R) at which EMBED
Equation.3 . The true theta temperature ((() is obtained through extrapolating (A
and (R to the infinite chain length regime. Then the structure factors of the comb polymer at temperatures

greater than, equal to and less than 8., are calculated to examine the effect of solvent quality on the equilibrium
conformations of comb polymers.

The model comb polymer studied in this work is modeled as beads connected by springs. Our comb model is
quite densely grafted. Figure 1 displays the schematic diagram of a model 10-11 comb polymer, with b, mand s
representing the number of beads on a side chain, the number of side chains attached to the main of the comb
and the chain length of the spacer separating side chains, respectively. In this work, we consider only the case
s=2. The interactions between all the nonbonded beads are through the standard Square-Well potentials.

o (0>r)
Up=1-€ (ho>r=0) 1)
0 (r =2 10)

where € and o are the energy and size parameters, respectively and A=1.5. The monomeric £ and o are units
used for the reduced quantities for temperature and distances as T =KT/£ and R =R/a. The interactions between
bonded beads are represented by an infinite deep Square-Well potential as
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where (=1.2.

The systems studied contain a single model comb with total number of monomers, N ranging approximately
from 20 to 300. The model polymers are labeled as b-m. We have studied the model comb polymers up to 33
different configurations with b=5,10,15 and m=1,2,3,4,6,7,9,10,12,13,15. The simulations are performed under
the conditions of constant temperature and total number of beads.

For convenience, the initial configurations of chains studied are constructed on a lattice. The construction
process is quite straightforward but the topologica constraint must be conserved. Once the initial configurations
are created, the simulations are carried out in continuous space. The trial moves employed for chains of the
equilibration and production process are bead displacement motions which involve randomly picking a bead and



displacing it to a new position in the vicinity of the old position. The distance away from the original position is
chosen with probability that the condition of equal sampling of al points in the spherical shell surrounding the
initial position must be satisfied. The new configurations resulting from this move are accepted according to the
standard Metropolis acceptance criterion.® The samples for the statistical averages are taken every N MC steps
and the total number of MC stepsis over (10°)N.

(a) Radius of gyration

The root-mean-squared radius of gyration of the polymer chains was determined by
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where (x;,y;,z) are the coordinates of the ith monomer on the chain and (Xcw,Yem»Zom) are the coordinates of the
center of mass of the comb. The angular bracket <...> denotes ensemble average.
(b) Second virial coefficient

The virial expansion for the compressibility factor takes the form?

BPIp =1+ Aop+ Agp® +.. ©
where P is the pressure, p isthe molecular number density of the system. A, As are the second and third viria
coefficients, respectively. = 1/KT where k is the Boltzmann's constant and T is the temperature.
To calculate the second viria coefficient, we used the algorithm proposed by Harismiadis and Szleifer.”®
The second viria coefficient can be calculated in terms of the interaction potentials from standard statistical
mechanics'®?

Py = 211 (1— exp[— FZ(‘ET_ZFlszdf ®)

where F; is the Helmholtz free energy of a single chain at infinite dilution in a solvent, and Fx(¢) is the
Helmholtz free energy of a system composed of the same solvent and two polymer molecules when their center
of mass distance is & The difference in the exponential can be thought of as an effective potential between the
chain molecules, i.e.

Uy (€) = F,(&) ~2F, = KT In(expl-= B 1 (€)]) ®)
where Uiy is the intermolecular interaction energy between the two polymer molecules. However, note that
each chain does not know the presence of the other chain. <...> denotes a canonical average over al the
configurations of the two chains. If there are no overlaps, it equals to the number of segment pairs belonging to
the two interacting polymers with distance lying between g and 1.50, multiplied by the well depth. A trid move
leading to overlap of two molecules is allowed but yields an infinite value of intermolecular interaction, i.e.
Uiner=c0. TO calculate Ujq, fOr a given separation (§) between two comb polymers, two steps are involved in
obtaining samples in the phase space. First, a lot of different conformations for the polymers are generated.
Secondly, for given conformations of the two polymers, different relative orientations yield different interaction
energies. As a result, the “rotation” is smply an efficient way to obtain more interaction energy samples. Of
course, one can aways adopt the first step only, but the approach is much less efficient. As mentioned, the
agorithm used to calculate Uy and then A, has already been used in various studies.*®** Our previous study of
A, of aknotted chain has more detailed descriptions of the procedure.
(c) Satic structure factor

The structure factor describes the Fourier components of density fluctuations in the system. It can be
measured by neutron or X-ray scattering experiments as well as computer simulations. The structure factor of a
single chain is defined as®*’

n n
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where n is the number of scattering units; rj; is the vector joining two scattering points i and j of the same
molecule. The bracket <...> means that §q) is taken over al conformations and orientations. For a randomly
oriented chain, eg.(7) can be expressed as

S(q):izzz<annj> @®
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Monte Carlo simulations were performed to study the effect of solvent quality (temperature) on the equilibrium
conformation of comb-like polymers with different architectures. To do so, we start the work by determining the
true theta temperature (&.,) of the system. First, the theta temperature () at which the second virial coefficients
for chains of finite length vanish is calculated. Figure 2 shows the calculated second virial coefficients A, for
comb-like polymers of which b=15 and m=1,2,3,4, respectively, as a function of temperature. The qualitative
behavior of the virial coefficient of the comb-like polymer is the same with its linear counterpart. At low
temperatures, the attractive interactions dominate and A, is negative. A, increases as the temperature increases.
There exists a temperature (that is, the theta temperature, &) where the attractive and the repulsive
intermolecular interactions exactly cance each other and thus A,=0. Below theta temperature, the longer the
chain length, the more negative the second virial coefficient is. On the other hand, above theta temperature, A,
for longer chain becomes more positive than that of the shorter chain. Note that the true theta temperature (8,)
isin fact the temperature at which the second viria coefficient of infinitely long chains is zero. However, 8, is
known to be a fairly weak function of N.**?*?%  Thus we intend to estimate &, by extrapolating 8, to infinite
chain length. It is aso worth mentioning that combs 15-1 and 15-2 are very similar to linear chains of 17 and 32
monomers carrying one or two very short chains of two monomers each. Moreover, combs carrying side chains
of about the same length as (or longer than) the main chain may show some crossover to star-like polymers.*

For a comb polymer with the same number of monomers on a side chain (i.e. b=constant), &, decreases
dlightly as number of side chain, m, increases. On the other hand, when m is fixed, g, aso decreases with
increasing number of monomers on each side chain, b. Generally speaking, g, of a comb polymer decreases as
the total number of monomers N increases. It is known that polymers with the same molecular mass can exhibit
different physica behaviors due to different topological architectures. For example, molecules with more
complex structures often have smaller radii of gyration.*® In the experimental work of Roovers et al.,*"* theta
point depressions were observed for ring-type polymer chain when compared to a linear polymer chain of the
same molecular weight. The degree of depression is only about 3%. In this work we observed a similar degree
of depression in the g, for the comb-like chains. The theta temperature of infinite molecular weight, i.e. 8., can
be estimated to be about 2.53. We will have more discussion on this later in this section.

As we know, theta point can also be the temperature at which the intrachain excluded volume interactions
exactly cancel the intrachain attractive interactions. For linear chains, at theta temperature <R 2> V2 Ny v=1/2,
wheresas in a good solvent v=3/5. For comb-like polymers, the mean-squared radius of gyration of the entire
molecule was found to increase monotonously with increasing N.*'** However, the simple relation of
<R2> Y2 /N2 does not hold for the comb-like chains and a valid expression for combs with varying b and mis
not available at the moment. It is worthy of mentioning that Rouault and Borisov* have studied the global
conformations and the radius of gyration of comb-branched polymers by using both Monte Carlo simulations
and scaling analysis. However, the scaling theory is analyzed only as functions of the length of the side chains
and spacers. The effect of number of side chain was not considered.

Radius of gyration of the entire comb-like chain as a function of temperature is shown in Figure 3. At low
temperatures, the intrachain attractive interaction dominates and the chain assumes compact structure. At high
temperatures, the chain takes on an expanded conformation. Again, a theta temperature, the intrachain
attractive interactions will compensate exactly the influence of volume exclusion. When this condition is
achieved, the polymer chain will assume its so-called random flight configuration. For a linear chain, at theta
condition, <R ;> is proportional to N”2 Therefore at theta temperature, the curves <R2>"?/N"? belonging to
al chain lengths N will intersect at a single point. However, as mentioned, <R2> Y2 Y does not hold for the
comb-like chains. The intersection scheme can not be applied to locate the theta point of the system. Therefore
another method has been employed in this work. We have numerically differentiated the R, curve with respect to
T and defined the maximum point of the resulting curve as the transition temperature (&). Note that the
transition temperature does not necessarily coincide with &, for chain of finite length. In fact, in the study of
linear chains, & isfound to be lower than g,.. However, we expect that the & and 6, will become the same in
the limit of infinite chain length.

We have plotted in Figure 4, all the 6, and & as afunction of 1/N. It is fairly obvious that for chains with
larger m, &k continues to rise. The extrapolation of & to chains of infinite chain length is believed to converge to
the same temperature regime for all the comb-like polymers studied. Also in the infinite chain length regime,
N - oo, theta temperatures determined through two different definitions - the vanishing of the second virial
coefficient A,=0, and the quasi-ideal behavior of the radius of gyration are expected to coincide into a single
value which isthe true theta temperature (8,=2.53).



Now that we have determined the true theta temperature (&,) for comb polymers, Monte Carlo simulations
can be used to calculate S(R,) as a function of gR, to investigate the variation of chain conformation in
different solvent conditions (i.e. at different system temperatures). We have performed the cal culations of (qR,)
for several different types of comb polymers at &, estimated in this work. The S(gR;) of the corresponding
Gaussian combs are also calculated. S(qR;) calculated for the overall comb polymers are found to match quite
well with those of their Gaussian counterparts as shown in Figure 5. As we have mentioned before, SqR,)
describes the Fourier components of density fluctuation. It is related, through a three-dimensional Fourier
transform to the pair distribution function g(r). Thus, systems with the same S(gR;) may consist of equivalent
internal structure. Although the radius of gyration of the Gaussian comb polymer is smaller than that of the
model polymer, Figure 5 reveals that the structure factors can be the same if the wave vector ¢ is scaled by Ry
and indirectly verifies the accuracy of the &, temperature estimated in this work.

Comb polymers have more compact structures than linear chains do. Thus, we expect to see the (ng)ZS(ng)
vs. Ry curves going through maxima at certain Ry even when system is at good solvent condition (i.e. T> 8.,).
We have shown in Figure 6, the Kratky plot of 5-10 comb polymer at three different solvent conditions. All
three curves go through maximum as anticipated. However, as we have mentioned before, the sharpness of the
peak can be an indication of the compactness of the chain. Thus, as temperature increases, the curves gradualy
flatten revealing that the comb is becoming more expanded. Note that in Figure 6, we have also plotted the
structure factor for a homogeneous sphere”* of a radius R, (QRy)*S(qRy)= (qRy)’[ 3(singR-qRcosgR)/(qR)’] %,
where Ry= (3/5)?R. Aswe can see, at T=1.2, i.e. below the 8., regime, the solvent is poor and the polymer takes
on a collapsed conformation fairly similar to a spherical structure. On the other hand, above the &, regime, the
chain is in a comparatively more expanded state. It is also worth mentioning that for small gR; we have the
sameidentical behavior, (QRy)*S(qRy)= (GR,)*(1- (qR,)*/3+...) as shown in Figure 6.

The Kratky plot of the main chain of 10-10 comb at T=10, &, and 1.2 are shown in Figure 7. The
(ng)ZS(ng) curves of the corresponding linear chain without side chains are also plotted. At T=10, the
(ng)ZS(ng) curve of the main chain ascends much faster than that of a normal linear chain. At T=1.2, the
(ng)ZS(ng) curve of the main chain is more level than that of the normal linear chain. These results clearly
indicate that the interactions between side chains induce rigidity upon the main chain. That is, the conformation
of the main chain is more expanded than the conformation of a normal linear chain a the same temperature.
Also, aswe can see from Figure 7, the (ng)ZS(ng) curve of the main chain at T=10 is situated in between those
of arod and a linear chain. Therefore, R, of the main chain now scales with NY with 0.588< 1<1. The actual v
value can be obtained by plotting S(qRy) of the main chain as afunction of qR; in alog-log plot. Theory predicts
that at large gR, (qR, >1) one should have S(GR;) proportional to (qR,)™, v being the Flory exponent.** Here,
we found that at T=10, v=0.69. This result is consistent with the work of ref 4. However, the fact that the
(ng)ZS(ng) curve of the main chain at T=1.2 goes through a maximum indicates that the structure of main
chain collapses at temperature below &, in spite of the inflexibility caused by the side chain excluded volume
effect. Nonetheless, the conformation of the main chain at T=1.2 till is more expanded than a homogeneous
sphere structure. Note that the induced rigidity on main chain occurs only when the spacer length between the
side chains is short compared to the side-chain length, i.e., for densely branched, comb polymers. If spacer
length is much longer than the side-chain length, the main chain will behave very much like a normal linear
chain.

Figure 8 shows the (ng)ZS(ng) curves of the side chains of 10-10 comb. It is not surprising to see that the
(ng)ZS(ng) curve ascends with increasing gR; when T=10> &, and the curve coincides well with that of a
normal linear chain in good solvents. For temperature below &,, normal linear chains already exhibit collapsed
configurations. However, as can be seen from Figure 8, for all the temperatures studied, (ng)ZS(ng) curves of
the side chains of 10-10 comb keeps ascending with increasing Ry indicating that these side chains always stay
in expanded state regardless of the solvent conditions. Our results are consistent with the theoretical work of
Shiokawa et a® for polymacromonomers with long side chains. In their work, they observed that the shape of
the main chain is gradually varied with increasing b, from a self-avoiding coil-like structure to an extended
rod-like form. Nevertheless, the side chains maintain a three-dimensiona self-avoiding coil-like form
irrespective of the conformation of the main chain. Evidently, their approaches correspond to the densely
branched conformations of the comb polymer. For temperature below &,, the whole comb is actualy in
collapsed state and side chains are closely intertwined with each other. However, from the point of view of a
single side chain, the conformation is always in extended state because of the excluded volume effect associated
with the interacting side chains.

In this paper we have studied the effect of solvent quality on the equilibrium structure of a
densely-branched comb polymer through the analyses of structure factors calculated. The true theta temperature
@, for comb polymers is firstly determined to classify the solvent quality. We found that when T=4,, the



structure factor of a comb polymer agrees quite well with that of its Gaussian counterpart. The comb polymer
expands as T>@, and collapses into a globule-like structure as T<<#,. Main chains of the combs behave as
whole combs do, except that enhanced rigidity is clearly observed from the rescaled Kratky plot for all kinds of
solvent conditions. Strong interactions between side-chains are the key factor of the conformations resulted. The
Kratky plot of the side chain indicates that it stays in an expanded state at all times irrespective of the solvent
conditions as aresult of the very same effect.
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