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摘要： 
The effect of solvent quality on the equilibrium structure of a densely-branched comb polymer is investigated 

based on the structure factor analyses by off-lattice Monte Carlo simulations. Firstly, theta temperature (θ∞) 
must be determined to identify the solvent condition. We locate the characteristic temperature, θA,(N), at which 
the second virial coefficient vanishes and the transition temperature, θR(N), at which radius of gyration, Rg, of 

the chain varies most rapidly with temperature, i.e. 0/ 22 =
R

dTRd g θ
. N represents the total number of 

monomers of a comb. As N→∞, θA and θR coincide to a point that is identified as the true theta temperature (θ∞). 
The structure factors of the main chain, the side chain, and the whole polymer are calculated, respectively. It is 

found that at T=θ∞, the structural factors S(qRg) for the overall comb polymers match quite well with those of 
their Gaussian counterparts. When T<θ∞, the overall comb polymer assumes collapsed conformations, similar to 
a homogeneous sphere. However, the structure factor of the side chain indicates that it always remains in an 
expanded state regardless of the solvent condition. It is attributed to the strong interactions between side chains. 
The same effect leads to enhanced rigidity of the main chain in comparison to the linear chain, as clearly 
observed from the rescaled Kratky plot 
 
關鍵字：Monte Carlo simulations, comb polymers, second virial coefficient, structural factor 

前言 
The polymeric structural units may be connected in all kinds of patterns. Linear-type polymers are the 

simplest of all. Nonlinear type polymers, including star, knotted or branched structures, are also frequently 
encountered in the polymeric applications. A regularly branched polymer (also called a comb polymer) with side 
chains of equal length has rather interesting topology. Its geometric conformations as well as thermodynamic 
properties are quite different from those of a linear chain due to steric repulsion between high-density monomers. 
These interactions result in the swelling of the comb on a large scale.1 Grafting of side chains onto the main 
chain also greatly affects the equilibrium structure of the main chain of the comb molecule. Partial stretching of 
the backbone was observed.1-12 The degree of induced rigidity of the backbone varies with several factors, such 
as side-chain length, side-bead size and distance between grafted point. However, solvent quality may also play 
an important role in the conformations of the combs. The systems studied in most of the previous works were in 
good solvent (or athermal) conditions. In his work, Rouault3 introduced attractive interactions between 
side-chain monomers. At high temperature, the ratio between the radius of gyration of the main-chain of the 

comb polymer and that of a linear chain without side chains is about 2 ( 9.1/ 22 ≈linearRmainR gg ), indicating 
a swollen conformation as a result of the repulsion between side chains. On the other hand, at low 

temperature, 1/ 22 ≈linearRmainR gg , showing that the side chains are shrunk below their excluded volume 
radius to a radius very near the Gaussian value. The comb polymer could be seen as an excluded volume chain 
decorated with Gaussian side-chains. For a more realistic chain with attractive interactions among all the 
monomers on the comb, the effect of solvent quality (or system temperature) on the conformations of the main 
chain, side chains and overall comb polymer is still unclear. 

The theta point (θ) of macromolecules is traditionally viewed as the point at which intrachain excluded 
volume interactions exactly cancel the attractive interactions between monomers of the chain,13 Consequently, at 
θ temperature, monomers on a polymer molecule telescope one another freely without any net interaction. In 
other words, they behave quasi-ideally, i.e., <Rg²>1/2∼ N1/2 for linear chains. N is the total number of monomers. 
θ temperature is also defined for a polymer solution as the Boyle point of a real gas as the polymer-polymer 



 

second virial coefficient vanishes. Furthermore, according to Flory's theory,13 the theta temperature may be 
identified as the critical miscibility temperature in the limit of infinite molecular weight. Simulation results 
suggested that a consistent θ temperature was found for these three definitions, however, in the limit of infinite 
chain length.14 Study of the theta point of knotted polymer chains again supported the findings.15 

For comb polymers, θ point is expected to shift from its linear counterpart’. Gallacher and Windmer16 
thought that the high nearest neighbor density expected in the branched polymers would lead to a θ point at a 
much higher temperature. On the other hand, Rouault3 believed the value of temperature needed to reach the θ 
point for grafted chains in the brush is lower than that of linear chains in the bulk. It is important to clarify these 
differences and then the solvent condition can be identified.  

Structure factor which can be measured by neutron or X-ray scattering experiments as well as computer 
simulations, thus offers a direct connection between simulation and experimental works. Once we have 
determined the true theta temperature for comb polymers, Monte Carlo simulations can be used to calculate 
S(qRg) or (qRg)2S(qRg) as a function of qRg to investigate the variation of chain conformation in different solvent 
quality. As we know, S(qRg) describes the Fourier components of density fluctuation. It is related, through a 
three-dimensional Fourier transform to the pair distribution function g(r). Thus, systems with same S(qRg) may 
consist of equivalent internal structure. On the other hand, the structure factor plotted as (qRg)2S(qRg) vs. qRg is 
called the rescaled Kratky plot, which has the advantage of being less sensitive on N.17 In this type of plot, the 
curve for linear chain situating in good solvents always ascends. However, for rings or other chains with more 
compact structures, a clear difference is observed. Even under good solvent condition, there are maxima existing 
within the curves. The sharpness of the peak can be an indication of the compactness of the chain. 

In this work, we intend to estimate the θ∞ temperature of the comb polymers through two different schemes. 
Firstly, we use the algorithm proposed by Harismiadis and Szleifer9 to calculate the second virial coefficient of 
the comb polymer. Note that similar procedures have been successfully used in various studies.15,18-24 Once A2 
is obtained, temperature ((A) at which A2=0 can be determined. Secondly, we calculate 

Rg of the chains and determine the transition temperature ((R) at which � EMBED 

Equation.3  ���. The true theta temperature ((() is obtained through extrapolating (A 

and (R to the infinite chain length regime. Then the structure factors of the comb polymer at temperatures 
greater than, equal to and less than θ∞ are calculated to examine the effect of solvent quality on the equilibrium 
conformations of comb polymers. 
 

研究方法 
The model comb polymer studied in this work is modeled as beads connected by springs. Our comb model is 
quite densely grafted. Figure 1 displays the schematic diagram of a model 10-11 comb polymer, with b, m and s 
representing the number of beads on a side chain, the number of side chains attached to the main of the comb 
and the chain length of the spacer separating side chains, respectively. In this work, we consider only the case 
s=2. The interactions between all the nonbonded beads are through the standard Square-Well potentials. 
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where ε and σ are the energy and size parameters, respectively and λ=1.5. The monomeric ε and σ are units 
used for the reduced quantities for temperature and distances as T*=kT/ε and R*=R/σ. The interactions between 
bonded beads are represented by an infinite deep Square-Well potential as 
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where ζ=1.2. 
The systems studied contain a single model comb with total number of monomers, N ranging approximately 

from 20 to 300. The model polymers are labeled as b-m. We have studied the model comb polymers up to 33 
different configurations with b=5,10,15 and m=1,2,3,4,6,7,9,10,12,13,15. The simulations are performed under 
the conditions of constant temperature and total number of beads.  

For convenience, the initial configurations of chains studied are constructed on a lattice. The construction 
process is quite straightforward but the topological constraint must be conserved. Once the initial configurations 
are created, the simulations are carried out in continuous space. The trial moves employed for chains of the 
equilibration and production process are bead displacement motions which involve randomly picking a bead and 



 

displacing it to a new position in the vicinity of the old position. The distance away from the original position is 
chosen with probability that the condition of equal sampling of all points in the spherical shell surrounding the 
initial position must be satisfied. The new configurations resulting from this move are accepted according to the 
standard Metropolis acceptance criterion.25 The samples for the statistical averages are taken every N MC steps 
and the total number of MC steps is over (107)N. 

(a) Radius of gyration 
The root-mean-squared radius of gyration of the polymer chains was determined by 
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where (xi,yi,zi) are the coordinates of the ith monomer on the chain and (xCM,yCM,zCM) are the coordinates of the 
center of mass of the comb. The angular bracket <…> denotes ensemble average. 
(b) Second virial coefficient 

The virial expansion for the compressibility factor takes the form26 
...1/ 2

32 +++= ρρρβ AAP                                               (4) 
where P is the pressure,  ρ is the molecular number density of the system. A2, A3 are the second and third virial 
coefficients, respectively. β=1/kT where k is the Boltzmann's constant and T is the temperature. 

To calculate the second virial coefficient, we used the algorithm proposed by Harismiadis and Szleifer.18 
The second virial coefficient can be calculated in terms of the interaction potentials from standard statistical 
mechanics19,20 
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where F1 is the Helmholtz free energy of a single chain at infinite dilution in a solvent, and F2(ξ) is the 
Helmholtz free energy of a system composed of the same solvent and two polymer molecules when their center 
of mass distance is ξ. The difference in the exponential can be thought of as an effective potential between the 
chain molecules, i.e. 

[ ])(expln2)()( int12 ξβξξ ereff UkTFFU −−=−=                                (6) 
where Uinter is the intermolecular interaction energy between the two polymer molecules. However, note that 
each chain does not know the presence of the other chain. <…> denotes a canonical average over all the 
configurations of the two chains. If there are no overlaps, it equals to the number of segment pairs belonging to 
the two interacting polymers with distance lying between σ and 1.5σ, multiplied by the well depth. A trial move 
leading to overlap of two molecules is allowed but yields an infinite value of intermolecular interaction, i.e. 
Uinter=∞. To calculate Uinter, for a given separation (ξ) between two comb polymers, two steps are involved in 
obtaining samples in the phase space. First, a lot of different conformations for the polymers are generated. 
Secondly, for given conformations of the two polymers, different relative orientations yield different interaction 
energies. As a result, the “rotation” is simply an efficient way to obtain more interaction energy samples. Of 
course, one can always adopt the first step only, but the approach is much less efficient. As mentioned, the 
algorithm used to calculate Ueff and then A2 has already been used in various studies.18-24 Our previous study15 of 
A2 of a knotted chain has more detailed descriptions of the procedure.  
(c) Static structure factor 

The structure factor describes the Fourier components of density fluctuations in the system. It can be 
measured by neutron or X-ray scattering experiments as well as computer simulations. The structure factor of a 
single chain is defined as25,27 
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where n is the number of scattering units; rij is the vector joining two scattering points i and j of the same 
molecule. The bracket <…> means that S(q) is taken over all conformations and orientations. For a randomly 
oriented chain, eq.(7) can be expressed as 
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結果與討論 

Monte Carlo simulations were performed to study the effect of solvent quality (temperature) on the equilibrium 
conformation of comb-like polymers with different architectures. To do so, we start the work by determining the 
true theta temperature (θ∞) of the system. First, the theta temperature (θA) at which the second virial coefficients 
for chains of finite length vanish is calculated. Figure 2 shows the calculated second virial coefficients A2 for 
comb-like polymers of which b=15 and m=1,2,3,4, respectively, as a function of temperature. The qualitative 
behavior of the virial coefficient of the comb-like polymer is the same with its linear counterpart. At low 
temperatures, the attractive interactions dominate and A2 is negative. A2 increases as the temperature increases. 
There exists a temperature (that is, the theta temperature, θA) where the attractive and the repulsive 
intermolecular interactions exactly cancel each other and thus A2=0. Below theta temperature, the longer the 
chain length, the more negative the second virial coefficient is. On the other hand, above theta temperature, A2 
for longer chain becomes more positive than that of the shorter chain. Note that the true theta temperature (θ∞) 
is in fact the temperature at which the second virial coefficient of infinitely long chains is zero. However, θA is 
known to be a fairly weak function of N.14,20,28,29  Thus we intend to estimate θ∞ by extrapolating θA to infinite 
chain length. It is also worth mentioning that combs 15-1 and 15-2 are very similar to linear chains of 17 and 32 
monomers carrying one or two very short chains of two monomers each. Moreover, combs carrying side chains 
of about the same length as (or longer than) the main chain may show some crossover to star-like polymers.4 

For a comb polymer with the same number of monomers on a side chain (i.e. b=constant), θA decreases 
slightly as number of side chain, m, increases. On the other hand, when m is fixed, θA also decreases with 
increasing number of monomers on each side chain, b. Generally speaking, θA of a comb polymer decreases as 
the total number of monomers N increases. It is known that polymers with the same molecular mass can exhibit 
different physical behaviors due to different topological architectures. For example, molecules with more 
complex structures often have smaller radii of gyration.30 In the experimental work of Roovers et al.,31,32 theta 
point depressions were observed for ring-type polymer chain when compared to a linear polymer chain of the 
same molecular weight. The degree of depression is only about 3%. In this work we observed a similar degree 
of depression in the θA for the comb-like chains. The theta temperature of infinite molecular weight, i.e. θ∞, can 
be estimated to be about 2.53. We will have more discussion on this later in this section. 

As we know, theta point can also be the temperature at which the intrachain excluded volume interactions 
exactly cancel the intrachain attractive interactions. For linear chains, at theta temperature <Rg²>1/2∼ Nν ν≈1/2, 
whereas in a good solvent ν=3/5. For comb-like polymers, the mean-squared radius of gyration of the entire 
molecule was found to increase monotonously with increasing N.4,12,33 However, the simple relation of 
<Rg²>1/2∼ N1/2 does not hold for the comb-like chains and a valid expression for combs with varying b and m is 
not available at the moment. It is worthy of mentioning that Rouault and Borisov1 have studied the global 
conformations and the radius of gyration of comb-branched polymers by using both Monte Carlo simulations 
and scaling analysis. However, the scaling theory is analyzed only as functions of the length of the side chains 
and spacers. The effect of number of side chain was not considered. 

Radius of gyration of the entire comb-like chain as a function of temperature is shown in Figure 3. At low 
temperatures, the intrachain attractive interaction dominates and the chain assumes compact structure. At high 
temperatures, the chain takes on an expanded conformation. Again, at theta temperature, the intrachain 
attractive interactions will compensate exactly the influence of volume exclusion. When this condition is 
achieved, the polymer chain will assume its so-called random flight configuration. For a linear chain, at theta 
condition, <Rg

2>1/2 is proportional to N1/2. Therefore at theta temperature, the curves <Rg²>1/2/N1/2 belonging to 
all chain lengths N will intersect at a single point. However, as mentioned, <Rg²>1/2∼ N1/2 does not hold for the 
comb-like chains. The intersection scheme can not be applied to locate the theta point of the system. Therefore 
another method has been employed in this work. We have numerically differentiated the Rg curve with respect to 
T and defined the maximum point of the resulting curve as the transition temperature (θR). Note that the 
transition temperature does not necessarily coincide with θA for chain of finite length. In fact, in the study of 
linear chains, θR is found to be lower than θA. However, we expect that the θR and θA will become the same in 
the limit of infinite chain length. 

We have plotted in Figure 4, all the θA and θR as a function of 1/N. It is fairly obvious that for chains with 
larger m, θR continues to rise. The extrapolation of θR to chains of infinite chain length is believed to converge to 
the same temperature regime for all the comb-like polymers studied. Also in the infinite chain length regime, 
N→∞, theta temperatures determined through two different definitions - the vanishing of the second virial 
coefficient A2=0, and the quasi-ideal behavior of the radius of gyration are expected to coincide into a single 
value which is the true theta temperature (θ∞≈2.53).  



 

Now that we have determined the true theta temperature (θ∞) for comb polymers, Monte Carlo simulations 
can be used to calculate S(qRg) as a function of qRg to investigate the variation of chain conformation in 
different solvent conditions (i.e. at different system temperatures). We have performed the calculations of S(qRg) 
for several different types of comb polymers at θ∞ estimated in this work. The S(qRg) of the corresponding 
Gaussian combs are also calculated. S(qRg) calculated for the overall comb polymers are found to match quite 
well with those of their Gaussian counterparts as shown in Figure 5. As we have mentioned before, S(qRg) 
describes the Fourier components of density fluctuation. It is related, through a three-dimensional Fourier 
transform to the pair distribution function g(r). Thus, systems with the same S(qRg) may consist of equivalent 
internal structure. Although the radius of gyration of the Gaussian comb polymer is smaller than that of the 
model polymer, Figure 5 reveals that the structure factors can be the same if the wave vector q is scaled by Rg 
and indirectly verifies the accuracy of the θ∞ temperature estimated in this work. 

Comb polymers have more compact structures than linear chains do. Thus, we expect to see the (qRg)2S(qRg) 
vs. qRg curves going through maxima at certain qRg even when system is at good solvent condition (i.e. T>θ∞). 
We have shown in Figure 6, the Kratky plot of 5-10 comb polymer at three different solvent conditions. All 
three curves go through maximum as anticipated. However, as we have mentioned before, the sharpness of the 
peak can be an indication of the compactness of the chain. Thus, as temperature increases, the curves gradually 
flatten revealing that the comb is becoming more expanded. Note that in Figure 6, we have also plotted the 
structure factor for a homogeneous sphere27,34 of a radius R, (qRg)2S(qRg)= (qRg)2[3(sinqR-qRcosqR)/(qR)3]2, 
where Rg=(3/5)1/2R. As we can see, at T=1.2, i.e. below the θ∞ regime, the solvent is poor and the polymer takes 
on a collapsed conformation fairly similar to a spherical structure. On the other hand, above the θ∞ regime, the 
chain is in a comparatively more expanded state. It is also worth mentioning that for small qRg we have the 
same identical behavior, (qRg)2S(qRg)= (qRg)2(1- (qRg)2/3+…) as shown in Figure 6.  

The Kratky plot of the main chain of 10-10 comb at T=10, θ∞ and 1.2 are shown in Figure 7. The 
(qRg)2S(qRg) curves of the corresponding linear chain without side chains are also plotted. At T=10, the 
(qRg)2S(qRg) curve of the main chain ascends much faster than that of a normal linear chain. At T=1.2, the 
(qRg)2S(qRg) curve of the main chain is more level than that of the normal linear chain. These results clearly 
indicate that the interactions between side chains induce rigidity upon the main chain. That is, the conformation 
of the main chain is more expanded than the conformation of a normal linear chain at the same temperature. 
Also, as we can see from Figure 7, the (qRg)2S(qRg) curve of the main chain at T=10 is situated in between those 
of a rod and a linear chain. Therefore, Rg of the main chain now scales with Nν with 0.588<ν<1. The actual ν 
value can be obtained by plotting S(qRg) of the main chain as a function of qRg in a log-log plot. Theory predicts 
that at large qRg (qRg >1) one should have S(qRg) proportional to (qRg)-1/ν, ν being the Flory exponent.4,12 Here, 
we found that at T=10, ν≈0.69. This result is consistent with the work of ref 4. However, the fact that the 
(qRg)2S(qRg) curve of the main chain at T=1.2 goes through a maximum indicates that the structure of main 
chain collapses at temperature below θ∞ in spite of the inflexibility caused by the side chain excluded volume 
effect. Nonetheless, the conformation of the main chain at T=1.2 still is more expanded than a homogeneous 
sphere structure. Note that the induced rigidity on main chain occurs only when the spacer length between the 
side chains is short compared to the side-chain length, i.e., for densely branched, comb polymers. If spacer 
length is much longer than the side-chain length, the main chain will behave very much like a normal linear 
chain.  

Figure 8 shows the (qRg)2S(qRg) curves of the side chains of 10-10 comb. It is not surprising to see that the 
(qRg)2S(qRg) curve ascends with increasing qRg when T=10>θ∞, and the curve coincides well with that of a 
normal linear chain in good solvents. For temperature below θ∞, normal linear chains already exhibit collapsed 
configurations. However, as can be seen from Figure 8, for all the temperatures studied, (qRg)2S(qRg) curves of 
the side chains of 10-10 comb keeps ascending with increasing qRg indicating that these side chains always stay 
in expanded state regardless of the solvent conditions. Our results are consistent with the theoretical work of 
Shiokawa et al24 for polymacromonomers with long side chains. In their work, they observed that the shape of 
the main chain is gradually varied with increasing b, from a self-avoiding coil-like structure to an extended 
rod-like form. Nevertheless, the side chains maintain a three-dimensional self-avoiding coil-like form 
irrespective of the conformation of the main chain. Evidently, their approaches correspond to the densely 
branched conformations of the comb polymer. For temperature below θ∞, the whole comb is actually in 
collapsed state and side chains are closely intertwined with each other. However, from the point of view of a 
single side chain, the conformation is always in extended state because of the excluded volume effect associated 
with the interacting side chains. 

In this paper we have studied the effect of solvent quality on the equilibrium structure of a 
densely-branched comb polymer through the analyses of structure factors calculated. The true theta temperature 
θ∞ for comb polymers is firstly determined to classify the solvent quality. We found that when T=θ∞, the 



 

structure factor of a comb polymer agrees quite well with that of its Gaussian counterpart. The comb polymer 
expands as T>θ∞ and collapses into a globule-like structure as T<<θ∞. Main chains of the combs behave as 
whole combs do, except that enhanced rigidity is clearly observed from the rescaled Kratky plot for all kinds of 
solvent conditions. Strong interactions between side-chains are the key factor of the conformations resulted. The 
Kratky plot of the side chain indicates that it stays in an expanded state at all times irrespective of the solvent 
conditions as a result of the very same effect. 
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Figure 1. Schematic diagram of a model b-m comb-like 
polymer. In this case, b=10 and m=11 representing that the 
comb has 11 side chains and each side chain has 10 
monomers. In this work, s is set to 2 for all the combs 
studied. 
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Figure 2. Calculated second virial coefficients A2 for 
comb-like polymers as a function of temperature. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Radius of gyration of the entire comb-like chain 

as a function of temperature. 
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Figure 4. Transition temperature θR and θA plotted against 
1/N. 
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Figure 5. S(qRg) plotted as a function of qRg for 5-10 and 

10-15 combs. 
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Figure 6. The Kratky plot of 5-10 comb at 
different temperatures. 
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Figure 7. The Kratky plot of the main-chain of 10-10 comb 
and of the linear chain with N=32 at different 
temperatures. 
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Figure 8. The Kratky plot of the side-chain of 10-10 comb 
and of the linear chain with N=10 at different 
temperatures. 
 


