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Finite-volume/multigrid methods are presented for solving incompressible heat
flow problems with an unknown melt/solid interface, mainly in solidification ap-
plications, using primitive variables on collocated grids. The methods are imple-
mented based on a multiblock and multilevel approach, allowing the treatment of
a complicated geometry. The inner iterations are based on the SIMPLE scheme, in
which the momentum interpolation is used to prevent velocity/pressure decoupling.
The outer iterations are set up for interface update through the isotherm migration
method. V-cycle and full multigrid (FMG) methods are tested for both two- and
three-dimensional problems and are compared with a global Newton’s method and a
single-grid method. The effects of Prandtl and Rayleigh numbers on the performance
of the schemes are also illustrated. Among these approaches, FMG has proven to
be superior on performance and efficient for large problems. Sample calculations
are also conducted for horizontal Bridgman crystal growth, and the performance is
compared with that of traditional single-grid methods.c© 1999 Academic Press
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1. INTRODUCTION

Solidification processes, such as casting and crystal growth, involve incompressible heat
flow and an unknown shape of the solidification (growth) front. In such systems, in addition
to complicated geometry, simulation could become quite challenging due to the strong cou-
pling of incompressible heat flow and the unknown melt/solid interface shape. Especially,
for high Prandtl number materials, the interface is affected significantly by convection. Sev-
eral numerical approaches [e.g., Refs. 1–8] for solving such problems have been proposed.
They can be categorized, from the formulation point of view, by streamfunction/vorticity
(ψ/ω) [2, 3, 6, 7] and primitive (UVP) variables [1, 4, 5, 8], and from the solution point
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of view, by decoupled [2–6] and global (coupled) [1, 7, 8] iteration approaches. The global
approaches [1, 7, 8] have shown great robustness, and with the iterative matrix solver they
are much more efficient than direct solvers for larger problems. However, as compared
with traditional decoupled point or line iteration schemes, for large problems, especially
for three-dimensional (3D) problems, the iterative matrix solvers still require a tremendous
amount of computer memory and often need the use of supercomputers. This has discour-
aged the performance of their 3D calculations in an engineering workstation. Theψ/ω

approach, which requires more equations for 3D problems, is less efficient than the UVP
approach. Accordingly, the decoupled UVP method seems to be a better choice for large
3D applications.

The use of a decoupled method [e.g., 2–6], especially the point iteration approach, could
greatly reduce the memory required. However, most iterative schemes, e.g., the Gauss–
Siedel method, are good smoothers only for short wavelength errors [9]. For long wave-
length errors, the convergence rate is slow. For large problems, the convergence rate thus
degrades very quickly as the iteration proceeds, especially as the grid is refined. The con-
vergence rate becomes slower as the problem size increases. Accordingly, multigrid (MG)
methods that use different meshes to smooth errors with a wider spectrum of wavelengths
have been used widely to overcome the difficulty of slow convergence [9, 10]. Very often,
if the implementation is right, the convergence is not affected by the problem size, and its
operation counts are linearly proportional to the problem size as well. Accordingly, MG
methods have been regarded as one of the most effective methods in the computational fluid
dynamics (CFD) community [11, 12]. Many studies [e.g., 13, 14] have reported the suc-
cessful implementation of MG on incompressible flow applications, and its performance is
very impressive. However, applications to free-boundary or free-interface problems are
very limited. The work by Farmeret al. [15] seems to be the only application of MG to the
free-surface problem. No applications of MG methods to solidification problems, i.e., with
a melt/solid interface, have been reported.

In the present report, approaches implementing the isotherm migration method (IMM)
upon a MG incompressible flow solver are presented for solidification problems. The incom-
pressible flow solver design is based on a multiblock and multilevel concept for the treat-
ment of complicated geometry. In each block/level, a collocated-grid finite-volume method
(FVM) is used, in which the SIMPLE scheme [16] is used as a smoother. The strategies for
interface update based on both V-cycle and full MG (FMG) methods are compared for 2D
and 3D problems. A global Newton’s method used in our previous report [8] is also tested
for comparison purposes. In the next section, the physical model used is described. The
FVM/MG implementation based on the multiblock and multilevel concept is discussed in
Sections 3 and 4. Section 5 is devoted to results and discussion, followed by conclusions in
Section 6.

2. FORMULATION FOR PHYSICAL PROBLEMS

The 2D and 3D steady-state two-phase heat flow problems studied in this report are
shown in Figs. 1a and 1b, respectively. The material is partially solidified in a cavity; the
interface is coupled with heat transfer and fluid flow. The upper surface can be either a
free surface or a solid wall. A simple extension of the two-phase problem is shown in
Fig. 1c for horizontal Bridgman (HB) crystal growth, which is one of the major processes
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FIG. 1. Schematics of the two- and three-dimensional two-phase heat flow problems: (a) two dimensional
(2D), (b) three dimensional (3D), and (c) horizontal Bridgman crystal growth.

for growing GaAs single crystals [17]. In the HB process, the upper surface is usually open
to the gas environment and is thus a free surface. To focus on the numerical study, we have
purposely chosen Fig. 1b for the formulation of governing equations. Other applications
can be extended from here easily [e.g., Refs. 18, 19].

As illustrated in Fig. 1b, the temperature on the two ends is fixed; the left temperatureTH

is higher than the melting point (Tm) of the material inside, while the right temperatureTC

is lower. The other sides of the system are assumed adiabatic. Again, the case with heat loss
or fixed temperature can also be treated easily if needed. The melt/solid interface position
h(x2, x3) is unknowna priori, and needs to be solved simultaneously with other field
variables. In the applications of crystal growth, which are our major interests, the movement
of the system (in the order of mm/h) is much slower than the melt velocity. Therefore,
the contribution due to the movement of the system is considered only at the interface
to take the heat of fusion into account. The melt is assumed incompressible and the flow
laminar. The dimensionless variables are defined by scaling the length with the heightH ,
velocity withαm/H , and pressure withρmα

2
m/H2, whereαm is the thermal diffusivity andρm

the melt density. The dimensionless temperature(θ) is defined asθ ≡ (T − Tm)/(TH− Tm).
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With the Boussinesq approximation [20], the conservation equations in dimensionless form
for 3D steady incompressible laminar flow of a Newtonian fluid in the melt, and heat
conduction in the solid, can be described as follows:
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In the above equations,u1, u2, andu3 are the Cartesian velocities in thex1, x2, andx3

directions, respectively, andP is the pressure. The Prandtl (Pr) and Rayleigh (Ra) numbers
are defined as Pr≡ νm/αm and Ra≡βg(TH− Tm)H3/(νmαm), whereνm is the kinematic
viscosity,β the thermal expansion coefficient, andg the gravitational acceleration. In Eq. (6),
κs is the thermal conductivity ratio of the solid and the melt.

To solve the previous governing equations, the following boundary conditions are used,

θ(0, x2, x3) = θH; θ(L/H, x2, x3) = θC, (7)

∂θ(x1, 0, x3)/∂x2 = ∂θ(x1,W/H, x3)/∂x2 = 0,
(8)

∂θ(x1, x2, 0)/∂x3 = ∂θ(x1, x2, 1)/∂x3 = 0,

and on all melt boundaries, the no-slip boundary condition is used, i.e.,

u1 = u2 = u3 = 0. (9)

For the case with a free surface, the shear stress balance on the free surface is imposed,

∂u1

∂x3
= Ma

∂θ

∂x1
; ∂u2

∂x3
= Ma

∂θ

∂x2
, (10)

where the Marangoni number Ma≡ (∂γ /∂T)(TH− Tm)H/(µmαm), andµm is the melt
viscosity. The free surface deformation is neglected in Eq. (10).
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At the melt/solid interface, the thermal flux balance is imposed as

∂θ/∂n|m− κs∂θ/∂n|s+ St Pe
(
n · ex1

) = 0, (11)

as well as the melting-point isotherm

θ = 0, (12)

where the Stefan number St≡1H/(CpsTm) and the Peclect number Pe≡UgρsCpsH/km;
1H is the heat of fusion; andCps andρs are the specific heat and solid density, respectively.
Ug is the solidification rate of the interface andkm the melt thermal conductivity.

The measure of convective heat transfer is through theNunumber as

Nu= 1

S

∫
S

∂θ

∂n
dS, (13)

wheren is the unit normal vector at the interface pointing into the melt andS is the surface
area of the interface. For the case without convection (purely conductive heat transfer),
Nu= (θH− θC)H/L for κs= 1.

3. FINITE-VOLUME METHOD

The physical problem can be easily decomposed into a number of blocks for analysis.
For example, two blocks are adopted for Fig. 1b: one is for the melt and one for the solid.
As the complexity of the problem increases, more blocks are needed. Multiple blocks can
also be used in the same media, like in the melt. In each block, the finite-volume method
based on the structured mesh used in the previous report [8] is adopted. The grid at the
block interface can be coherent or incoherent. Although the incoherent interface is more
versatile for a complicated domain, its implementation is tedious. Therefore, in this study
only the coherent interface is considered.

3.1. Coordinate Transformation

Due to the unknown and deformed interface shapeh(x2, x3), structured body-fitted co-
ordinates (ξ1, ξ2, ξ3) are adopted for each block. The algebraic coordinate transformation
for both melt and solid phases are performed as follows:

Melt

x1 = ξ̄1(ξ1)h(ξ2, ξ3), (14)

x2 = ξ̄2(ξ2)W/H, (15)

x3 = ξ̄3(ξ3). (16)

Solid

x1 = h(ξ2, ξ3)+ ξ̄1(ξ1)(L/H − h(ξ2, ξ3)), (17)

x2 = ξ̄2(ξ2)W/H, (18)

x3 = ξ̄3(ξ3). (19)
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FIG. 2. (a) A sample mesh and (b) a 3D finite-volume and labeling scheme.

Here ξ̄1(ξ1), ξ̄2(ξ2), and ξ̄3(ξ3) are stretch functions ranging from 0 to 1 for adjusting
grid distribution. A hyperbolic tangent function with the following form, for example, for
ξ̄1, is used,

ξ̄1(ξ1) = 0.5

[
1+ tanh

(
B[(ξ1− 1)/(Nξ1 − 1)− 0.5]

0.5B

)]
, (20)

where B is a stretch constant andNξ1 the number of control volumes (CVs) in theξ1

direction. The coordinate transformation defines the boundaries of the CVs. For example,
the corner coordinates of each CV in physical space, as shown in Fig. 2a, are calculated
according to the transformation. The cell faces can be represented by surface vectors, i.e.,
A1, A2, andA3. For convenience,1ξ1=1ξ2=1ξ3= 1, so the CVs in the computational
domain (ξ1, ξ2, ξ3) have unit volume. In the implementation,ξ1, ξ2, andξ3 are simply the
loop indicesI , J, and K for the three coordinates. The values of variables in each CV
are defined at its geometric center. Since some variables on boundaries are unknown, to
make coding easier the CVs on the boundaries are also assigned, but their volume is zero.
Grids highly stretched toward the boundaries can be obtained easily by simply increasing
the stretch constantB.
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TABLE I

Form of Governing Equations
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3.2. Finite-Volume Integration

After the coordinate transformation, the governing equations can be rewritten in a general
conservation-law form for each block in(ξ1, ξ2, ξ3) as

∂

∂ξ i
(Ciφ + Di )+ J Sφ = 0, (21)

where

J = det|∂xi /∂ξ j |.
The variableφ and its associated coefficients are listed in Table I. For the convenience of
representation, tensor notation (summation on free indices) is adopted here. Also, in Table I,
Ai

j represents thex j component of the surface vectorA i (see Fig. 2b). More importantly,
the driving forces due to pressure gradients and the buoyancy forceF are combined and
redefined through a new variable℘ as

∂℘

∂ξ j
≡ Fk

∂xk

∂ξ j
− ∂P

∂ξ j
, (22)

whereFk is thekth component of the body forceF; F≡Pr Raθe3. The advantages of using
this variable have been discussed in our previous report [8].

The finite-volume method simply integrates Eq. (21) over each CV in the computational
domain (ξ1, ξ2, ξ3). In fact, the integration performed over the physical domain (x1, x2, x3)
is the same as that over the computational domain after coordinate transformation, and
1V = J. After the Gauss theorem is applied, the integration over each CV results in a flux
balance equation,

Ie− Iw + In− Is+ I t − Ib+
∫
1V

Sφ dV = 0, (23)

where Ii , i = (e, w, n, s, t, b), represents the fluxes ofφ across the faces of the CV. Each
of the fluxesIi is made of two distinct parts, namely a convective contributionI C

i (=Ciφ)
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and a diffusive contributionI D
i (=Di ). Both I C

i and I D
i are approximated with the central

difference scheme. A detailed implementation of this boundary condition and related dis-
cussions can be found elsewhere [8]. It should be noticed that the FVM formulation for
each block is the same. The interface between blocks is set up by equating the fluxes from
both sides.

Furthermore, since the pressure variable does not appear explicitly in the continuity
equation, the use of linearly interpolated velocity at the cell faces for collocated grids
could lead to the velocity/pressure decoupling or the so-called checkerboard oscillation of
pressure. In order to amend this, the idea of the Rhie–Chow momentum interpolation scheme
[21] is adopted. In other words, the velocity values required for the continuity equation are
interpolated from the momentum equations, rather than linearly from the adjacent nodal
values. Furthermore, for incompressible flow, the pressure does not appear explicitly in the
continuity equation and only the pressure gradient is meaningful. Therefore, the concept of
the pressure correction scheme from the SIMPLE method [16] is adopted.

4. SOLUTION SCHEME

4.1. Strong Implicit Procedure

The approximation from the previous section leads to a general nonlinear form as

aφPφP −
∑
nb

aφnbφnb = Sφ1V, (24)

for variableφ, andφ= u1, u2, u3, P, andθ at every CV center for each block. A similar
formulation can also be obtained for the block interfaces. The strong implicit procedure
(SIP) based on the incomplete LU decomposition [22] is then used to solve Eq. (24). To
ensure the diagonal dominance, the deferred correction method [23] is also used. With the
deferred correction, the central difference scheme is allowed for the convection terms for
all of the cases considered here.

The assembly of Eq. (24) for all variables and all blocks leads to a sparse block matrix.
In each block for each variable, there are 9 diagonals for 2D problems, and 19 diagonals
for 3D problems. In addition to SIP, other techniques, like the Gauss–Siedel (GS) method
or preconditioned conjugate gradient (PCG) [24] methods, can also be used. However, for
memory and performance, the SIP is adopted for each block, and the global iteration is
performed variablewise and blockwise. The performance is found satisfactory for coarse
grids, but becomes poor as the grid is refined. In fact, to most of the iterative methods, the
convergence becomes slower as the number of equations increases. The convergence rate is
fast only at the initial stage of the iterations, and it degrades rapidly as the iteration proceeds
further. As mentioned before, this is because only the short wavelength errors are smoothed
out efficiently. The long wavelength errors are hard to remove in the fine grid.

4.2. Multigrid Methods

An efficient way of overcoming the difficulties of slow convergence is to use differ-
ent meshes for iterations, i.e., the MG methods. The concept of MG is simple, but its
implementation is quite tedious. Careful design of the data structure is crucial to a success-
ful implementation. If a wide spectrum of the wavelength for errors can been seen from
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different grids, the convergence is expected to be faster. Therefore, to implement MG for
each block, we further adopt several grid levels (multilevel) for the MG acceleration. For
simplicity, the finest grid, which describes the shape of each block most accurately, is set
up first. After setting up the finest grid, as the level is down for one level, eight contiguous
control volumes (the kid volumes) are coalesced into a larger finite volume (the parent vol-
ume). From there, a simple parent–kid link-list data structure is then set up for computation.
Furthermore, there are several approaches to performing MG iterations. Among them, the
full approximation scheme (FAS) proposed by Brandt [25], which has been widely used
[14, 15], is adopted here. Since the detailed description of FAS can be found elsewhere
[25], only a brief description is presented here.

Let us take two grids (levels), the coarse grid (CG) and the fine grid (FG), as an example.
During iteration, the FG formulation of Eq. (24) is rewritten in a matrix form,

Afφf = Sf, (25)

whereAf is the coefficient matrix andSf the source term. Since the solution of Eq. (25) is
the most time consuming part, we only iterate it several times. After the iterations, say three
nonlinear iterations, we can estimate the FG residualRf by

Rf = Sf − Afφf . (26)

This residual is then passed to CG to get the defectDc. The corresponding CG residialRc

and solutionφc are estimated first by linear interpolation (the so-called restriction step),

Rc = I c
f Rf, (27)

φc = I c
f φf, (28)

whereI c
f is the restriction operator for interpolating the values from FG to CG. Since the

structure grids are used here, i.e., eight FG CVs are coalesced into a CG CV, the value on
the CG is simply the volume-weighted average from the FG values. The defect on CG,Dc,
is then estimated by

Dc ≡ Acφc− Sc+ Rc. (29)

Now, the next step is to get a solution on CG (φc) with this defect by solving

Acφc = Sc+ Dc. (30)

Since the solution on the CG is much cheaper than that on the FG, enough nonlinear
iterations (but less than 20) are performed on the CG. After the solution is obtained, the
correction value1φc is calculated by subtracting the old value interpolated from FG,φc,
i.e.,

1φc = φc− φc. (31)

The FG correction1φf is again obtained by interpolation,

1φf = I f
c1φc, (32)
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where I f
c is the prolongation operator for interpolating the values from CG to FG.

Equations (31) and (32) are the so-called prolongation step. Linear interpolation is found
to be adequate in this study. The solution on the FG is then updated by

φf = φold
f +1φf . (33)

This new solution is used as a guess for Eq. (25) for further nonlinear iterations on FG. The
MG iteration continues until the solution on the FG converges. Again, the MG acceleration
is done block by block.

4.3. V-Cycle, FMG, and Interface Update

The MG procedure described above can be easily extended to more than two grids. Now,
we must find the following: (1) a better MG procedure and (2) a better strategy for updating
the interface. Two procedures for MG iterations are used here. With a known geometry, for
each cycle, as illustrated in Fig. 3a, the procedure based on the previous section starts from
the finest grid (top level) to the coarsest grid (lowest level) for restriction, and the prolonga-
tion is from the lowest level upward to the top level. Because of its shape, it is also called the
V-cycle scheme. After the fixed-geometry MG V-cycle iteration is converged, the interface
update based on the isotherm migration method (IMM) [8] is performed on the top level, as
shown by the dashed line with an arrow in Fig. 3a. The IMM is simply to locate the melting
point isotherm by interpolation. After the interface shape is obtained, the grid is generated

FIG. 3. Schemes for multigrid iteration and interface update: (a) V-cycle and (b) full multigrid (FMG).
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using Eqs. (17)–(19) before entering the next fixed-grid V-cycle. The same procedure con-
tinues until the residual for the interface update is reduced to an acceptable tolerance.

Since the initial guess is often far away from the final solution, it may make more sense
to obtain a rough solution from the coarsest grid first. This is the original concept of FMG,
as illustrated in Fig. 3b. As shown, the solution starts from the coarsest grid. After the
solution is obtained, one (or more than one) grid level is added. The addition of the grid
level continues until the top level is reached. The interface update can be added onto the
top level like that used in the V-cycle. However, a more consistent way is to add it between
levels, as shown by the dashed line with an arrow in Fig. 3b. In fact, FMG with the interface
update can be seen as a combination of V-cycles with different levels.

There is an additional advantage of FMG. Since the solution is converged for each level
of grids, the grid-independent solution can be obtained easily from different levels through
Richardson extrapolation. As a result, the estimation of discretization errors and the order
of convergence is possible after two levels of grids have been used. In other words, local
mesh refinement may be implemented if a refinement tree is set up. Furthermore, since
the solutions for coarser grids are only the initial guess for the finest grid, the convergence
criteria can be looser. Therefore, another modification can be made by tightening up the
convergence tolerance as the grid level goes up. Such a strategy can be used for both field
and interface variables.

It should be pointed out that the IMM scheme can also be used for single-grid approaches
somewhat differently. The interface is usually updated more frequently during iterations.
For example, one could update the interface every 50 nonlinear iterations of the field vari-
ables. Synchronized iterations can also be used by updating the interface right after each
temperature iteration. However, such an interface update scheme is less stable because the
isotherms are usually not smooth enough. Hence, it often requires underrelaxation. For
example, one may use

hnew= hold+ α1h (34)

or

hnew= hold+ α(θ − 0), (35)

whereα is the relaxation parameter, but this does not force the interface temperature to be
the melting point. Using the Stefan condition (Eq. (11)) is also a good way for single-grid
methods to update the interface through its residualRh by

hnew= hold+ αRh. (36)

However, the interface temperature has to be set at the melting point (θ = 0). Also, the
synchronized iteration scheme is necessary to keep the interface shape stable.

5. RESULTS AND DISCUSSION

Since the performance of IMM relies on the convergence of fixed-grid calculations,
the MG performance on the fixed-grid cases, as well as the benchmark comparison, is
presented first in the next section. The applications of MG/IMM schemes will be presented
in Section 5.2, followed by an example on the crystal growth application, where both
buoyancy and thermocapillary flows are important, in Section 5.3.
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5.1. Performance on Fixed-Boundary Problems

The performance on a 2D heated square problem [13, 26] for various Ra numbers
(Pr= 0.71) is examined first;L/H = 1. Although Pr= 0.71 is usually used for air in the
benchmark solution, for most oxides Pr is about the same order. Therefore, for the conve-
nience of illustration, Pr= 0.71 is used throughout this report even for the cases with phase
change unless otherwise stated. The no-slip boundary condition is used for all boundaries.
The top and bottom walls are insulated, while the hot wall (θ = 1) is on the left and the
cold wall (θ = 0) is on the right. For both single-grid (SG) and MG,u1= u2= P= θ = 0
is used as the initial guess. Five levels of meshes, from 10× 10 to 160× 160, are used.
For RaT= 105, less than 50 fine-grid iterations are used for both V-cycle MG and FMG
to achieve a normalized residual norm of 10−7. Using the finest grid alone, it will take
more than 1000 iterations to reach a residual norm of only 10−2. The calculatedNu are
in excellent agreement, up to four to five digits, with the benchmark results [13, 15, 27] for
Ra= 104 to 106. The cases with a 45◦ skewed parallelogram are also conducted, which are
based on nonorthogonal grids and Pr= 0.1 or 10. Excellent agreement is obtained as well.
The CPU time required for MG methods is linearly proportional to the number of equations
(NEQ); i.e., CPU time∝NEQn, n∼ 1. For the single-grid approach,n∼ 1.8, whilen∼ 1.6
for Newton’s method [8] using the ILU(0) preconditioned GMRES iterative matrix solver
[28, 29], and the dimension of the Krylov subspace is 50. Due to the small convergence
radius, for Newton’s method the solution at Ra= 104 needs to be used as an initial guess for
higher Ra. Furthermore, for all of the methods, the memory required is about linearly pro-
portional to NEQ, but the memory required for MG is still much less than that for Newton’s
method. More importantly, the CPU time required for NEQ= 140,000 is less than 50 s for
one calculation on an IBM/590 workstation, which is one to two orders of magnitude faster
than that by the single-grid solution as well as Newton’s method. The memory required is
only 30 Mbytes.

The convergence for a 3D heated box problem (L/H = 1 andW/H = 1) using a similar
initial guess is illustrated in Fig. 4. As shown, the convergence of MG still outperforms that

FIG. 4. Convergence of single-grid and multigrid methods for the 3D heated box problem at Ra= 105.
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TABLE II

Rayleigh number

Grid 103 104 105 106

7× 7× 7 1.068 2.126 5.210 8.650
14× 14× 14 1.070 2.073 4.569 10.045
28× 28× 28 1.071 2.060 4.396 9.014
56× 56× 56 1.071 2.057 4.352 8.735

Grid-independent 1.071 2.056 4.337 8.642
Costaet al. [30] (60× 60× 60) 1.071 2.054 4.346 8.69
Fusegiet al. [31] (64× 64× 64) 1.085a 2.100 4.361 8.77

a This result of Fusegiet al.for Ra= 103 was obtained with a nonuniform grid of 32× 32× 32.

of the single-grid method. Again, the convergence of MG is not affected by the problem
size; the convergence rate for three and four levels is almost the same. Furthermore, the
FMG seems to work better than the V-cycle MG. Clearly, for FMG, by the time the finest
grid is added, its initial guess is good already even though the convergence rate remains
the same. Furthermore, the benchmark comparison with previous calculations [30, 31] for
Nu is illustrated in Table II. Again, the agreement is very good, but our results are closer to
those by Costaet al. [30].

The flow patterns and isotherms calculated for the two-block case for Ra= 105 are shown
in Fig. 5. Due to the side wall insulation, the flow is quite similar to 2D flow; the flow in the
third dimension is weak. In addition, since the interface is no longer at a fixed temperature,
the flow is slightly different from that in a heated box. The comparison of CPU time
required for different methods is summarized in Fig. 6, and again FMG appears to be the
best method. Due to memory limitation, Newton’s method is excluded from the comparison
for 3D calculations. For NEQ≈ 106, the FMG takes about 10 min CPU time on an IBM
workstation, and it is about two orders of magnitude faster than using the finest grid alone.

5.2. Performance on Free-Interface Problems

After the MG methods for the fixed-interface problems have been demonstrated, we
are now ready to move on to the calculations including an unknown interface. When
the melt/solid interface is included, the strategies on locating the interface are important.
Figure 7a illustrates the IMM convergence of the interface shape (Ra= 104) by the V-cycle
MG; the MG/IMM iteration scheme is shown in Fig. 3a. As shown, it requires more than 5
fixed-grid iterations to converge; the initial guess is the same as before andh= 1. However,
if we monitor the maximum interface position atx2= 1 during iterations, as shown by the
dashed line in Fig. 7b, 10 iterations are needed to converge. Nevertheless, the final interface
position is quite far away from the initial guess, which also illustrates the robustness of the
IMM scheme here. The convergence of|1h|max is further illustrated in Fig. 7c. Fourteen
interface updates are needed to reduce the norm to 10−4 for the V-cycle MG (again, the
dashed line). Nevertheless, the number of fine-grid iterations for each interface shape is
also significantly reduced as convergence is approached. As a result, the overall CPU time
required is much less than that for 14 fixed-grid calculations. If Ra= 105 is used, the inter-
face position will move toward the cold wall even more. The CPU time required will be a
bit more as well.
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FIG. 5. Calculated temperature and velocity fields for the 3D two-block problem at Ra= 105.

FIG. 6. CPU time required for different schemes for the problem in Fig. 5.
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FIG. 7. Multigrid methods for the 2D free-interface problem(Ra= 104): (a) interface update using the V-cycle
method (Fig. 3a); (b) convergence of the maximum interface position for V-cycle (dashed line) and FMG (the
scheme is shown in Fig. 3b); and (c) convergence of interface corrections for V-cycle and each level of FMG. The
converged isotherms are also shown in (b).



70 LAN AND LIANG

For FMG, the convergence of the maximum interface position is also shown in Fig. 7b
(solid lines). Apparently, the convergence of the interface improves progressively as the grid
level increases. Clearly, it takes much more interface updates, but mainly on the coarser
meshes (lower levels). As the finest level is added, only two to four iterations are required
to achieve the same accuracy as that by the V-cycle MG/IMM. As a result, the CPU time
for FMG/IMM is only about one-third of that for the V-cycle MG/IMM. The difference can
be further illustrated in Fig. 7c for the convergence history of the interface norm|1h|max

for both methods. Interestingly, the convergence rate for the interface using IMM seems to
be the same for all levels of meshes; it converges almost linearly. In other words, the major
difference between the V-cycle MG/IMM and FMG/IMM is the initial guess of the interface
shape for the finest grid that requires most of the CPU time. As shown in Fig. 7c, for FMG,
by the time the finest level is added, the initial norm|1h|max is small already. As a result,
for the problem with an unknown interface shape, FMG/IMM requires about three times
more CPU time than that needed for a fixed-grid problem. Furthermore, the convergence of
the FG iterations is progressively speeded up due to the better initial guess from previous
solutions. Therefore, the overall performance leads to the CPU time being less than three
times of that for a fixed-grid problem.

Although the FMG/IMM scheme seems to be satisfactory, further improvement is still
possible. By examining Fig. 7c, it is interesting to note that|1h|max always has a jump
from one grid level to the other due to interpolation. We also observe that the magnitude of
the jump is not affected much by the convergence of the previous level if the convergence
of the previous level is down to a certain degree (usually about a two-order decrease in
the residual norm). Therefore, the convergence criteria for coarser grids for both field and
interface variables can be loosened. By doing so, we can further reduce the CPU time by
15 to 30% for most cases.

Similar convergence is also obtained for the 3D heated box problem with an interface
(Ra= 104). The results are summarized in Fig. 8. As shown in Fig. 8a, the V-cycle MG/IMM
is still about three times slower than the FMG/IMM. Although the FMG/IMM still requires
about four fixed-grid iterations, the total CPU time for about one million unknowns is less
than 50 min on an IBM RS6000/590 workstation with a good quality of convergence. The
convergence rates of the interface at different levels by FMG, again, are very similar to
those of the 2D case, as shown in Fig. 8b. The converged result for temperature and velocity
fields is shown in Fig. 8c.

For a further illustration on the robustness and the convergence speed, the result for
Ra= 105 is placed in Fig. 9 for comparison;h= 1 and zero velocity and pressure are also
used for the initial guess. As shown in Fig. 9a, it requires more interface updates for both
MG and FMG. The convergence rate is also slightly slower than that in the previous case.
However, due to the much stronger flow, the interface position is farther away from the initial
position and the isotherms become much more distorted. Even for single-grid calculations,
the convergence for higher Ra is slower as well. In other words, the speedup of the MG
schemes remains satisfactory. More importantly, when using the single-grid approach with
the finest grid, it is difficult to achieve the same convergence criteria. Furthermore, since
the side walls for the previous cases are insulated, the interface deformation in the third
dimension is not much. A more deformed interface will be illustrated in Section 5.3 for
crystal growth applications.

Since different levels of grids are used, the order of convergence can be estimated easily.
The grid-independent solution is again obtained by Richardson extrapolation from the
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FIG. 8. Multigrid methods for the 3D free-interface problem(Ra= 104): (a) convergence of the maximum
interface position for V-cycle (dashed line) and FMG (the scheme is shown in Fig. 3b); (b) convergence of interface
corrections for V-cycle and each level of FMG; and (c) converged isotherms and velocity fields.
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FIG. 9. Multigrid methods for the 3D free-interface problem(Ra= 105): (a) convergence of interface correc-
tions for V-cycle and each level of FMG; (b) converged isotherms and velocity fields; and (c) estimated errors of
Nuas a function of grid size for the 3D fixed-grid and free-interface problems.
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FIG. 10. Effects of Prandtl number (Pr) on the interface convergence of the V-cycle MG and FMG; only
the finest grid results are shown. The numbers of finest grid iterations of FMG and V-cycle MG are indicated in
parentheses in the legend.

solutions of the finest two grids. For the results in Figs. 5 and 9b, the error onNu, i.e.,ENu,
as a function of grid spacing on the computational domain is plotted in Fig. 9c. As shown,
as the grid is fine enough, second-order accuracy for both cases is obtained. Apparently,
our FVM approximation is second-order accurate and it is the same as we did before for
the 2D problems solved by Newton’s method [8].

Since the heat transfer and fluid flow are strongly coupled in our study, the Prandtl number
can also affect the convergence. The convective heat transfer becomes more important
with the increasing Prandtl number; the interface deformation is increased as well. To
illustrate this, we use Ra= 104, and the effects of different Prandtl numbers on the interface
convergence and the total number of finest grid iterations for MG and FMG are shown in
Fig. 10. As shown, for the interface update, the lower the Prandtl number, the faster the
convergence speed. However, we are also aware that the convergence of the field variables,
especially the velocity, slightly decreases as the Prandtl number increases. As a result, the
total fine-grid iteration, and thus the CPU time, is not affected much by the Prandtl number.

5.3. Application to Crystal Growth

In previous calculations, we have demonstrated the convergence and robustness of the
MG/IMM schemes, and the FMG/IMM has proven to be the most effective. The final
example is to apply the FMG/IMM scheme to the HB crystal growth (Fig. 1c). As mentioned
previously, the HB method is one of the major processes for growing GaAs single crystals
for optoelectronic devices. The control of the growth interface has been of major interest
to crystal growers because it directly controls the crystal quality. However, because the
problem is 3D and the interface shape is unknown and strongly affected by the heat flow,
both buoyancy and thermocapillary flows, its modeling is regarded as a great challenge in the
crystal growth community. The first 3D coupled solution for the open boat configuration was
conducted in our previous paper [19] using a SG/SIMPLE approach. The slow convergence
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FIG. 11. Sample calculated results for the horizontal Bridgman crystal growth: (a) conduction mode(Ra=
Ma= 0); (b) buoyancy mode(Ra= 104,Ma= 0); and (c) buoyancy and thermocapillary modes(Ra= 104,

Ma= 103). The interface shapes are also shown on the right-hand side for comparison; for clarity of illustra-
tion, the results are based on the grid level 3(196× 34× 34).

of the method for fine grids thus motivates the development of the present methods. To
simplify the calculation, the crucible is neglected here; in practice, the crucible is very thin.
The aspect ratiosL/H = 8 andW/H = 2 are now much larger. Also, the thermocapillary
convection is considered (Ma= 103). Crystal growth rate (Pe= 10−2), the heat of fusion
(St= 20), and the heat exchange with the environment (Bi= 5) are also included. A linear
heating profile (in thex1 direction) is imposed for the environment. Again, Pr= 0.71 is also
used.

The calculated results are shown in Fig. 11. For the case without convection in Fig. 11a,
the isotherms and the interface shape are not deformed much; the interface shape is also
plotted on the right of the figure for comparison. As the buoyancy force (Ra= 104) is
considered in Fig. 11b, due to the flow the isotherms become quite distorted. As shown, the
interface deformation in thex2 direction increases. As the Marangoni convection is taken
into account (Ma= 103) in Fig. 11c, the velocity at the surface becomes much larger due to
the thermocapillary force. As a result, the interface deformation increases. Since the driving
force for the flow at the free surface is proportional to the thermal gradients there, the flow
near the crucible is driven outward; the velocity vectors are more or less perpendicular to the
isotherms at the interface. As a result, near the crucible, the interface shape is sharpened by
the flow. In fact, such a small contact angle could induce parasitic nucleation and results in
a polycrystalline growth. The convergence of this example is still very good, which will be
illustrated shortly. Therefore, the schemes presented here seem to be promising for crystal
growth applications as well as for other solidification problems.
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FIG. 12. Convergence of the maximum interface position for different convection modes using FMG for
Fig. 11.

Furthermore, the performance of the interface update also depends on the convection
modes. As shown in Fig. 12, the case with both flow modes takes the most interface updates
for convergence because its solution is the farthest away from the initial guess. Even so,
the number of interface updates for the top level ranges only from 5 to 10, which is still
quite satisfactory. On the contrary, using the finest grid alone for Fig. 11c, the convergence
is very slow. A comparison of their convergence is shown in Fig. 13, where we represent
the convergence of the maximum interface position as a function of the number of fine-grid

FIG. 13. Comparison of the interface convergence for FMG and single-grid methods for Fig. 11c. SG-2
updates the interface synchronically with the field variables using Eq. (35) withα= 0.1.
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iterations. As shown, FMG takes about 350 fine-grid iterations for convergence, while the
single-grid methods take more than 3000 iterations. In fact, to make the comparison possible,
the convergence criteria for the single-grid iterations are also loosened to about 0.01 for
both field and interface variables. Two interface migration schemes are used for single-grid
iterations. One updates the interface every 100 iterations of the field variables. The other
updates the interface synchronically with the field variables, which requires a relaxation
parameter of 0.1 to ensure the stability; see also Eq. (35). Through this comparison, it is
clear that FMG outperforms the traditional single-grid approaches. The method is not only
efficient, but also robust in crystal growth calculations.

6. CONCLUSIONS

Efficient multigrid methods are presented for solving 2D and 3D incompressible flow
problems with an unknown melt/solid interface, mainly for solidification applications. The
implementation concept is based on a multiblock and multilevel approach that allows com-
plicated geometry of the problem to be treated. The present schemes are one to two orders
of magnitudes faster than the global Newton’s method using the GMRES iterative matrix
solver and the single-grid SIMPLE method. The CPU time required for the present schemes
is linearly proportional to the problem size. Both V-cycle and full multigrid methods are
tested for calculating the interface shape using the isotherm migration method. It is found
that the full multigrid method is the most effective, and its best performance requires about
two to three times more CPU time than is needed for a similar fixed-grid problem. The
2D and 3D cases with strong buoyancy convection are successfully tested on a workstation
with good quality of convergence. The performance of the scheme is not affected much by
the Prandtl number. Although the convergence for stronger flows is slower, its speedup is
not degraded much in our study as long as the coarsest grid remains stable during iterations.
The application to a 3D crystal growth problem with buoyancy and thermocapillary flows is
further illustrated, and the present schemes outperform the traditional schemes. In principle,
the present schemes may be easily extended to time-dependent problems as well as to other
free-boundary problems. Local refinement may also be another extension.
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