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Abstract

Three-dimensional (3D) unsteady heat #ow and molten zone induced by nonlinear bifurcations or imperfect growth
conditions are typical in vertical zone-melting crystal growth or re"ning. Through #ow modi"cation, we "nd that the use
of steady ampoule rotation is e!ective in suppressing these 3D characteristics. Even with only 10 RPM ampoule rotation,
numerical simulation indicates that the steady axisymmetric (or nearly) mode can be easily retained for 2-in GaAs under
a typical growth condition, in which the 3D unsteady #ows prevail for no rotation. A model gallium zone is also
examined, and its 3D bifurcations are signi"cantly suppressed by rotation as well. However, if the rotation is not
su$cient to suppress the unsteadiness, baroclinic waves may appear. The e!ects of ampoule rotation for imperfect
growth conditions, including asymmetric heating and ampoule tilting, are further illustrated. The ampoule rotation is
also found useful. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 44.25.#f; 47.27.Te; 81.10.Fq; 02.60.Cb; 02.70.Fj
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1. Introduction

The vertical zone melting (VZM) is an important
process for both crystal growth and puri"cation
[1}4]. However, because of the radial zone heating,
the induced thermal convection is strong. As a re-
sult, not only can the growth interface be signi"-
cantly a!ected [5,6], but also three-dimensional
(3D) nonlinear bifurcations, such as symmetry
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breaking and unsteadiness, may prevail [7}9]. The
3D heat #ows as well as the resulted growth inter-
face may have signi"cant in#uences, usually detri-
mental, on the crystal quality. An imperfect growth
condition, such as ampoule tilting or asymmetric
heating, also induces the 3D #ows and the molten
zone. How to suppress and control these 3D char-
acteristics is a great interest for crystal growers.

By studying an ideal gallium melt zone, both
numerically and experimentally, Neumann [7] and
Baumgartl et al. [8] found that with increasing
Rayleigh number (Ra

8
), a steady axisymmetric

mode bifurcated to a 3D toroidal mode "rst at
Ra

8
+3]104 and then to a time-dependent mode
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at a higher Ra
8

(about 4]104) for a parabolic
thermal pro"le at the melt surface. A steady one-
roll (m1) mode was found for 8]104(
Ra

8
(1.85]105. Beyond Ra

8
"1.85]105, the

m1 #ow became time dependent. The growth of
GaAs single crystals was also carried out at
Ra

8
+4]105, and 3D striation patterns were

found [8]. In a recent numerical study by Lan and
Liang [9], they found that the symmetry breaking
was subcritical for GaAs, and the subcriticality
might be caused by the deformable interfaces. Al-
though their work mainly focused on the steady
symmetry breaking, 3D unsteady m1 #ows were
also found for Ra

8
'2.23]105, which was consis-

tent with the previous growth experiment. To avoid
the unsteadiness, a lower-superheating and shorter
zone was needed. However, the use of a shorter
zone or lower thermal gradients is not quite feasible
in practice due to the di$culty in the process con-
trol.

Besides the inherent symmetry breaking, in real-
ity, the 3D characteristics can also be induced by
imperfect growth conditions, such as asymmetric
heating or ampoule tilting. By imposing an asym-
metric thermal boundary condition, Baumgartl
et al. [8] also found that only the asymmetric mode
could exist, and the rotational m0 #ow disap-
peared. Signi"cant 3D #ow and dopant segrega-
tions for vertical Bridgman (VB) crystal growth due
to the asymmetric environments are also typical, as
illustrated by Xiao et al. [10] and Liang and Lan
[11]. For a better process control, it may be of
importance to suppress the 3D #ows. Using a mag-
netic "eld to suppress the 3D #ows has been found
feasible for both VZM and VB growth (see e.g.,
Refs. [12,13]). With a high enough magnetic "eld
strength, Baumgartl et al. [12] have also illustrated
the transition from an unsteady m1 mode to
a steady m0 mode for a model gallium system at
Ra

8
"2.5]105. Even for horizontal zone-melting

growth, Muller [14] also illustrated the usefulness
of a transversal magnetic "eld to damp the un-
steady #ows. Nevertheless, the use of magnetic
"elds is still too expensive in applications.

Recently, Lan and Chian [15] studied the e!ects
of 5}25 RPM ampoule rotation on the 2D heat
#ows and the zone shape during VZM growth of
a 2-in GaAs crystal. They found that the steady

ampoule rotation was e!ective in modifying the
local #ow near the center of the growth interface.
As a result, a convex interface could be obtained
easily, even with only 5 RPM rotation. Clearly, the
role of the low-speed ampoule rotation is not to
damp the bulk #ow. Instead, it seems to be more
e!ective in modifying the local #ow structure.
Therefore, it may be of interest to try that for
suppressing the 3D characteristics. In theory [16],
it is possible to suppress the buoyancy e!ect by the
Coriolis force. However, a too-high rotation speed
causes mechanical vibrations that may be detri-
mental to the growth as well. Also, if the "nal
interfaces are not axisymmetric, the rotation may
cause signi"cant regrowth and remelting, which
could make the growth even worse. Furthermore,
the baroclinic instability due to the coupling of the
Coriolis and buoyancy forces may be induced.
Therefore, care must be taken for using ampoule
rotation in practice.

In this study, we will examine the e!ects of low-
speed steady ampoule rotation on the 3D nature in
VZM crystal growth. Since such an idea has not yet
been tested before, to provide more convincing
results, we will "rst use a commercial code Fluent
[17] to examine the e!ects of rotation for the sim-
pli"ed model zone used by Baumgartl et al. [8].
Detailed numerical simulation for GaAs growth
using a more realistic model is then carried out.
Besides the inherent bifurcations, the in#uence of
rotation on the heat #ow under imperfect growth
conditions is then illustrated. In the next section,
the mathematical model and its numerical solution
are described brie#y. Section 3 is devoted to results
and discussion, followed by conclusions and com-
ments in Section 4.

2. Model description and numerical solution

A generic VZM crystal growth system is illus-
trated in Fig. 1a. Since axisymmetry is no longer
assumed here, the system is described by a "xed
Cartesian coordinate (x, y, z). The zone heater is
described by an e!ective heating pro"le ¹

!
(x,

y, z, t), which is kept stationary in this study. For
pseudo-steady-state calculations, the ampoule pull-
ing speed ;

!.1
is set to be the steady melting and
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Fig. 1. (a) Schematic of vertical zone-melting (VZM) crystal growth; (b) a simpli"ed model and mesh for gallium melt zone.

growth rates. Such an assumption is reasonable
and can reduce computation load signi"cantly
[18]. The ampoule rotation rate X is "xed here;
variable speeds are allowed. The #ow and temper-
ature "elds as well as the melt/feed (h

&
(x, y, z, t)) and

melt/crystal (h
#
(x, y, z, t)) interfaces are also repre-

sented by the Cartesian coordinate.
The dimensionless variables are de"ned by scal-

ing length with crystal diameter D
#
, time t with

D2
#
/a

.
, velocity with a

.
/D

#
, pressure with o

.
a2
.
/D2

#
,

and temperature ¹ with melting point ¹
.
, where

a
.

is the thermal di!usivity and o
.

the melt den-
sity. The time-dependent governing equations de-
scribing the convection and heat transport in the
melt (m) are as follows:

+ ) *"0, (1)

R*/Rq#* )+*"!+P#Pr+2*

!Pr Ra
T
(h!1)e

'
, (2)

Rh/Rq#* )+h"+2h, (3)

where q, *, P, and h are the dimensionless time,
velocity, pressure, and temperature, respectively. Pr
is the Prandtl number and e

'
the unit vector in the

gravity direction. For a tilted ampoule, the growth
direction is deviated from e

'
by an angle c, as

shown in Fig. 1a. The associated dimensionless
number Ra

T
in the source term of the momentum

equation is the thermal Rayleigh number, de"ned
as follows:

Ra
T
,

gb
T
¹

.
D3

#
a
.
l
.

,

where g is the gravitational acceleration, b
T

the
thermal expansion coe$cients, and l

.
the kin-

ematic viscosity. This de"nition is somewhat di!er-
ent from the one used by Baumgartl et al. [8]. Their
Rayleigh number was de"ned as follows:

Ra
8
,

2gb
T
*¹D3

#
a
.
l
.

,
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where *¹ is the maximum temperature di!erence
in the melt.

In the crystal (c), the feed (f), and the ampoule (a),
only heat transfer needs to be considered:

Rh/Rq#(!v
!.1

e
z
#rXHe

(
) )+h"i8

i
+2h

(i"c, f, a), (4)

where i8
i
,a

i
/a

.
is the dimensionless thermal dif-

fusivity of the feed (i"f), crystal (i"c) or ampoule
(i"a); a

i
is the thermal di!usivity (i"f, c, or a).

Also, v
!.1

is the dimensionless ampoule pulling
speed, XH the dimensionless rotation speed, and
e
z

and e
(

are the unit vectors in the axial and
angular directions, respectively.

The no-slip condition is used for the melt velocity
on solid boundaries,

*"c
#
(!v

!.1
e
z
#rXHe

(
), (5)

where c
#
,o

#
/o

.
; c

#
"1 is used here.

The thermal boundary conditions at the growth
and feeding fronts are set by the heat #ux balances

QD
.
!QD

#
#c

#
[(v

!.1
#dh

#
/dq)e

z

!rXHe
(
]St )n"0, (6)

QD
.
!QD

&
#c

#
[(v

!.1
#dh

&
/dq)e

z

!rXHe
(
]St )n"0, (7)

where n is the unit normal vector at the feed or
growth interface pointing to the melt. QD

.
, QD

#
, and

QD
&

are the dimensionless total heat #uxes at the
melt, the crystal, and the feeding sides, respectively.
The Stefan number St,*H/Cp

.
¹

.
scales the

heat of fusion (*H) released during solidi"cation to
the sensible heat in the melt; Cp

.
is the speci"c heat

of the melt. The component for (rXHe
(
) n) is parti-

cularly important for 3D interfaces during rota-
tion. Clearly, the melting (e

(
)n'0) and growth

(e
(
) n(0) rates may be larger than the ampoule

pulling rate if (e
(
) n) is not trivial. Furthermore, this

term also increases the interface distortion along
the rotational direction, which can further reduce
the asymmetry.

The heat exchange between the ampoule and the
furnace is by both radiation and convection ac-
cording to the energy balance along the ampoule
surface,

!n )i
!
+hD

!
"Bi(h!h

!
)#Rad(h4!h4

!
), (8)

where n is the unit normal vector on the ampoule
surface pointing outwards, Bi,hD

#
/k

.
the Biot

number, and Rad,pe
!
¹3

.
D

#
/k

.
the radiation

number; h is the heat transfer coe$cient, k
.

the
melt thermal conductivity, p is the Stefan Bol-
tzmann constant, and e

!
is the surface emissivity of

the ampoule. For simplicity, the e!ective heater
temperature h

!
is assumed to be a Gaussian distri-

bution

h
!
(x, y, z, t)"h

!=
#(h

1
!h

!=
)

]exp(![(z!z
1
)/a]2), (9)

where h
!=

and h
1

are the dimensionless ambient
background and peak temperatures, respectively,
and a is related to the width of distribution. For the
case with asymmetric heating, angular variation of
h
1

is further considered

h
1
(x, y)"h

1
D
(/0

!*h
1

cos /, (10)

where *h
1

is the deviation from the average peak
temperature.

The above governing equations and their asso-
ciated boundary conditions can only be solved
numerically. We have developed e$cient "nite-
volume method schemes using the primitive vari-
able formulation [19] and multigrid acceleration
[20] for the free or moving boundary problem. The
second-order central di!erence scheme is adopted
for both convective and di!usion terms using the
deferred correction. For time-dependent calcu-
lations, an implicit Euler scheme [21] is used for
time integration. Detailed numerical schemes and
benchmark comparison with Fluent and the 2D
stream function/vorticity code [18] can be found in
Ref. [9].

3. Results and discussion

Before presenting the results for crystal growth,
we have performed a series of numerical simula-
tions using Fluent for the gallium melt zone studied
by Baumgartl et al. [8]. For the ideal zone, a para-
bolic temperature pro"le is speci"ed at the melt
surface, while the top and bottom boundaries are
set at a "xed temperature. Clear symmetry break-
ing and unsteadiness have also been reported [7,8].
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Fig. 2. Temperature responses at the zone center for 0 and 10 RPM (Ta"2056.49); some #ow patterns and isotherms at the mid-plane
are shown; Ra

8
"7.32]105.

Therefore, this model serves as an excellent candi-
date for examining the e!ects of rotation on the
#ow bifurcations as well as for benchmarking. The
unstructured mesh used for this case (aspect ratio of
one) is shown in Fig. 1b. There are 28 440 control
volumes and this leads to 142 200 unknowns; "ner
meshes (up to 77 370) have also been used, but the
result is not changed much; the di!erence on the
maximum center temperature is within 1%. Al-
though Ra

T
, Ta and Pr are the only dimensionless

numbers for describing this system, we need to give
dimensional values for using Fluent; Ta,
X2D4

#
/l

.
. Therefore, D

#
"2 cm and *¹"265.73C

are used, and the Rayleigh number Ra
8

is adjusted
through the gravitational acceleration. In addition,
Pr"0.02 is also used. Since the Boussinesq ap-

proximation and constant physical properties are
used, the calculated results will depend on the di-
mensionless numbers (Ra

8
, Ta, Pr) and the zone

aspect ratio only. To start the calculation, the solu-
tion for g"X"0 (or Ra

8
"Ta"0) is used as the

initial condition, i.e., conduction only. Time integ-
ration is then started by specifying the gravity ac-
celeration and the rotation speed. Second-order
schemes are used both in the space and time. In
addition, no relaxation is used for temperature (re-
laxation factor being one); the relaxation in temper-
ature degrades the convergence rate dramatically.

At Ra
8
"7.32]105, which is way beyond the

onset point of the unsteady m1 mode
(Ra

8
+2]105), we obtain very chaotic #ows. As

shown by the solid line in Fig. 2, without rotation,
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Fig. 3. Temperature response at the zone center for Ra
8
"9.15]105 with 10 RPM rotation (Ta"2056.49). Some #ow patterns and

isotherms at the mid-plane from a to e are also shown.

the temperature oscillation is very irregular, where
h
#
is the rede"ned dimensionless temperature at the

zone center; h
#
"(¹

#
!¹

.
)/(¹

.!9
!¹

.
). Some

#ow structures (vector "elds) and mid-plane iso-
therms near the end of calculation are shown in the
upper part of the "gure. As shown, the calculated
#ow structures without rotation are all m1. As
reported before [7,8], the #ows are not rotational.
One can examine the #ow structure, the #ow is
moving back and forth only with time. With
10 RPM rotation (or Ta"2056.49), as shown by
the dashed line in Fig. 2, the temperature "nally
reaches to a steady state and the #ow mode is m0.
Here, the `steady statea means that its maximum
dimensionless temperature variation is within
1]10~3. The axisymmetric mode can be better
examined by the mid-plane isotherms. From the
side view, there is an upward #ow at the zone center

and this is due to ampoule rotation, as illustrated
by Lan and Chian [15]. Furthermore, from the
isotherms near the lower interface, during crystal
growth the interface shape will be convex as well.
From Fig. 2, clearly, the steady ampoule rotation
indeed signi"cantly suppresses the symmetry
breaking and unsteadiness. The convex isotherms
near the growth boundary are also bene"cial.

Of course, the 10 RPM rotation is not always
su$cient to suppress the 3D unsteady #ows if Ra

8
is further increased. In fact, Ra

8
"7.32]105 is

right at the margin already. Fig. 3 shows the result
at Ra

T
"9.15]105. As shown, with 10 RPM rota-

tion, the melt temperature is still oscillating, but it
becomes much more regular than that in Fig. 2; the
oscillation period is about 0.4208 (or 16 s). More
interestingly, if we further examine the one-period
#ow and thermal "elds, as shown in the same
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Table 1
Physical properties and some input parameters [9,24}27]

GaAs
o
#
"o

&
"5.7 g cm~3

o
.
"5.7 g cm~3

¹
.
"12383C

*H"726 J g~1

h"1.6]10~2 W cm~2 3C~1

k
#
"k

&
"0.07 W cm~1 3C~1

k
.
"0.14 W cm~1 3C~1

Cp
#
"Cp

&
"Cp

.
"0.42 J g~1 3C~1

b
T
"1.16]10~4 K~1

Quartz
o
!
"2.2 g cm~3

k
!
"0.035 W cm~1 3C~1

Cp
!
"0.188 J g~1 3C~1

e
!
"0.8

Other input parameters
¸"15 cm
D

#
"2 cm

D
!
"2.4 cm

¹
1
"16003C (for high superheating);
15003C (for low superheating)

¹
!=

"3003C
2.0 cm (for low superheating)

a
&
"a

#
"1.8 cm (for high superheating);

z
10

"7.5 cm
*¹

1
"0}203C

X"0}10 RPM
;

)
"0 cm/h

;
!.1

"0.5 cm/h
c"0}53

Dimensionless groups
Pr"0.059 (GaAs), 0.02 (Ga);

Ra
T
"0}6.9]106; Ra

8
"0}7.36]105

"gure, the time-dependent #ow is rotational, i.e.,
with an angular wave. This is the so-called baroc-
linic wave, which is caused by the interaction be-
tween the buoyancy and Coriolis forces [22,23].
This angular wave travels at a lower speed than the
applied rotation rate; 10 RPM rotation takes 6 s
(or q"0.1578) for one revolution. Again, without
rotation, the unsteady #ows are similar to that in
Fig. 2 (upper "eld plots). No angular wave is found
as well. The temperature oscillation is also quite
chaotic.

From this simpli"ed model, it is clear that,
though quite unexpected, the 10 RPM rotation
may suppress the 3D bifurcations, both symmetry
breaking and unsteadiness. In fact, the magnetic
"led strength used by Baumgartl et al. [12] for
suppressing the 3D unsteady #ow was also very
low; Ha+30 or B+0.05 T, where Ha is the Har-
tmann number and B the magnetic "eld strength.
Nevertheless, as compared with magnetic damping,
steady ampoule rotation is much more feasible in
practice and simpler. To further illustrate the idea,
we also conduct calculations using a more realistic
model [9] for GaAs, where the melting and growth
interfaces are considered. The physical properties
and some input parameters are listed in Table 1 for
references [9,24}27]. Detailed bifurcations for both
high and low superheatings using the gravity or
peak heater temperature as the parameter can be
found in Ref. [9]. For the high-superheating case at
¹

1
"16003C, the bifurcation diagram from Ref.

[9] shows a Hopf bifurcation at Ra
8
+2.23]105

or 0.26g, as shown in Fig. 4a; *h is the zone-length
deviation and it is zero for an axisymmetric zone.
At normal gravity (Ra

8
+7.36]105), the oscillat-

ing #ow also have signi"cant e!ects on the zone
length (inside Fig. 4a), as well as on the periodic
growth and melting. As shown by the zone length
oscillation, the long period is about 88 s. This value
increases with decreasing gravity. Near the onset
point, at g"0.3, the oscillation period is about
450 s.

One period of oscillation for the isotherms is
shown in Fig. 4b, where both the mid-plane iso-
therms and isotherm surfaces are shown. A typical
#ow structure is illustrated in Fig. 5a for reference.
As shown in Fig. 5a, there are two major and one
small #ow cells in the molten zone. During oscilla-

tion, the major cells compete with each other lead-
ing to the periodic oscillation in temperature and
zone length. One can also examine the isotherms
(or one of the iso-surface) in Fig. 4b to get a better
picture of the oscillation. Clearly, similar to the
gallium zone, no angular wave is found; the #ow
structure is also similar to that shown previously in
Fig. 2. The growth interface resulted from this #ow
structure is similar to that due to the one-roll #ow
(m1 mode). Again, if we apply 10 RPM rotation, we
are able to obtain a steady result, as shown in Fig.
5b. More importantly, the solution is axisymmetric
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Fig. 4. (a) Bifurcation diagram of zone length deviation for high
superheating and the zone length oscillation at normal gravity
(Ra

8
"7.36]105); (b) some isotherms showing a period of oscil-

lation. The black dots (v) in (a) indicate the maximum values of
the oscillations.

Fig. 5. (a) Typical #ow pattern for Fig. 4(b); (b) axisymmetric
#ow pattern and isotherms after 10 RPM rotation.

(an m0 mode). Again, there is a small cell induced
due to the rotation near the center line, and this
#ow cell seems to hinder other #ows from coming
across. One can also compare this with the #ows in

the lower "gure of Fig. 2 (10 RPM) to notice the
#ow cell near the lower center, which is also in-
duced by ampoule rotation. Again, due to this #ow
structure, the growth front is convex.

In addition to the physical symmetry breaking
and unsteadiness, an imperfect growth condition
due to ampoule tilting or asymmetric heating may
also induce 3D or unsteady #ows. To focus our
discussion on the symmetry breaking, a low-super-
heating con"guration (¹

1
"15003C) [9] is taken

for consideration here. Under a perfect growth con-
dition (c"03, *¹

1
"03C), a steady axisymmetric

solution can be easily obtained, as shown in Fig. 6a.
However, tilting the ampoule slightly can lead to
signi"cant 3D #ows and melt zone, as shown in
Figs. 6b and c for c"13 and 53, respectively. Espe-
cially, the #ow in Fig. 6c has a typical m1 structure.
Interestingly, with 10 RPM rotation, as illustrated
in Fig. 7, the asymmetry is signi"cantly reduced; the
#ow structure in Fig. 7c is a toroidal mode (not m1
any more). Also, due to the rotation, the growth
interfaces in Fig. 7 are more convex than that in
Fig. 6. This is also consistent with the observation
by Lan and Chian [15] from their 2D calculations.
One can also notice that the rotation pushes the
asymmetric isotherms in the angular direction, as
shown by the mid-plane isotherms in Fig. 7c. Such
an angular distortion of the thermal "elds help
reduce the asymmetry caused by the tilting. The
Stefan e!ect, i.e., the rotational growth and melting,
in the angular direction also has contribution.

Similar improvement is also found for asymmet-
ric heating. Fig. 8 shows the e!ects of *¹

1
(03, 53,

and 203C, respectively) on the heat #ows and the
zone shape. As shown in Fig. 8c, only 403C di!er-
ence in ¹

1
(*¹

1
"203C) can result in a severely

distorted molten zone, and the #ow structure in
also m1. However, with 10 RPM rotation, as illus-
trated in Fig. 9, a nearly axisymmetric growth con-
dition can be obtained. One can also examine the
isotherms at the mid-plane of the zone. Apparently,
the improvement in Fig. 8 seems to be much better
than the previous cases. Again, the angular thermal
nonuniformity caused by the heater is signi"cantly
smoothed out by the rotational e!ect. Indeed, the
thermal di!erence buildup in the ampoule caused
by the nonuniform heating has been signi"cantly
reduced by the rotation. One can also examine the
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Fig. 6. E!ect of ampoule tilting: (a) c"03; (b) c"13; (c) c"53; ¹
1
"15003C.

Fig. 7. E!ect of ampoule tilting after 10 RPM rotation: (a) c"03; (b) c"13; (c) c"53; ¹
1
"15003C.
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Fig. 8. E!ect of asymmetric heating: (a) *¹
1
"03; (b) *¹

1
"53; (c) *¹

1
"203; ¹

1
"15003C.

Fig. 9. E!ect of asymmetric heating after 10 RPM rotation: (a) *¹
1
"03; (b) *¹

1
"53; (c) *¹

1
"203; ¹

1
"15003C.

convective term in Eq. (4) that the angular convec-
tive heat transfer enhances the heat transfer in the
azimuthal angle direction. As a result, the thermal
asymmetry in the ampoule is reduced "rst. The

following angular melt #ow further improves the
thermal uniformity.

Furthermore, although the ampoule rotation
seems to be useful for getting better growth
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conditions for VZM, there are some complications
that may arise. Especially, if the co-axis rotation
cannot be achieved during growth, the steady-state
growth condition cannot be obtained because the
zone-to-heater distance is changing with time dur-
ing rotation. Also, mechanical vibration due to
rotation may be a problem as well, and the induced
thermovibrational "eld is not uniform. Further-
more, if the growth interface is not perfectly
axisymmetric, continuous remelting and growth
proceeds with the rotation. As a result, constitu-
tional supercooling and rotational striations may
appear. Therefore, careful implementation of this
technique is necessary. An easier approach is to
rotate the whole growth system, including the am-
poule and the furnace, simultaneously.

4. Conclusions

In this study, we have illustrated the signi"cance
of steady ampoule rotation, for the "rst time, on the
3D heat #ows during VZM crystal growth. From
the calculated results, both for the Ga model zone
and the GaAs growth, we "nd that the 10 RPM
ampoule rotation suppresses the 3D characteristics
signi"cantly, both on the symmetry breaking and
unsteadiness. However, if the unsteadiness is not
removed, the introduction of the rotation may
cause the baroclinic waves. For an asymmetric
growth condition due to ampoule tilting or asym-
metric heating, the steady ampoule rotation is also
e!ective in minimizing the asymmetry, especially
for the asymmetric heating. Apparently, the angu-
lar convective heat transfer reduces the asymmetry
and improves the thermal uniformity. Indeed, this
is the typical mechanism that is often used in prac-
tice to reduce thermal asymmetry by rotation.
However, there are other concerns that may appear
in practice, especially, for the asymmetric growth
interface. Continuous regrowth and remelting, as
well as the rotational striations, may be factors that
need to be taken into account. Nevertheless, this
study provides an alternative that may be worth
trying. For high-Prandtl-number materials, the ef-
fects of ampoule rotation are still not clear. The
baroclinic waves in Czochralski oxide growth
[28,29] may occur in VZM due to similar thermal

con"guration. Furthermore, for an unstable ther-
mal "eld, the onset of convection under rotation
is signi"cantly a!ected by the Pr value [30]; the
Rayleigh}Benard onset is independent of Pr.
Therefore, further study for high-Pr materials will
be considered in the near future.

In summary, the steady ampoule rotation seems
to be an e!ective way for suppressing 3D unsteadi-
ness during vertical zone melting, at least for Ga and
GaAs. Even though the calculations are carefully
performed and the results seem to be reasonable,
further experimental veri"cation through a model
system or crystal growth experiments is necessary.
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