
E�ects of axial vibration on vertical zone-melting
processing

C.W. Lan

Chemical Engineering Department, National Taiwan University, 10617, Taipei, Taiwan

Received 20 March 1999; received in revised form 9 August 1999

Abstract

Vibration can be an e�ective way for controlling heat ¯ow and the growth interface during crystal growth. To
better understand the role of axial vibration in vertical zone melting, an important process for crystal growth and

puri®cation, computer simulation is performed. For the zone melting of a 2-cm GaAs crystal in a quartz ampoule,
simulation results show that an axial vibration, especially at high frequency, can signi®cantly a�ect the ¯ows and
further the growth interface. The concave growth front due to buoyancy convection can be also inverted easily to a

convex one. The e�ects of vibration frequency are further illustrated, and the validity of the high-frequency model is
examined. For GaAs, the resonance frequency is found at about 0.5 Hz, where signi®cant ¯ow oscillation and severe
periodic growth and remelting can be induced. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The control of melt ¯ow, the interface shape, and

the growth rate is important in crystal growth pro-
cesses. Especially, for crystal growth in an ampoule, a
¯at or convex growth front is usually required to mini-

mize the parasitic nucleation of grains from the
ampoule wall [1]. The convection and its associated
heat and mass transfer are key factors for the interface

control. For puri®cation, mixing is also important on
its e�ciency. In general, tuning the furnace con®gur-
ations to control the melt ¯ow and thus the interface
shape and mixing is typical, but it is usually di�cult

and less ¯exible [2,3]. Therefore, using external forces
to control crystal growth has been widely adopted [4±
15]. Magnetic ®elds (e.g., [4±6]) and rotations [7±9],

steady rotation or accelerated crucible rotation tech-

nique (ACRT) [8], are two typical approaches.

Recently, vibration has also been found useful in ¯oat-

ing-zone (FZ) [10,11] and vertical Bridgman crystal

growth [13±15]. Some theoretical study has also been

performed (e.g., [11,15]). Contributions due to thermo-

vibration and surface waves have also been discussed

from the ¯uid mechanics point of view. However,

some important issues for crystal growth, such as the

interface control, e�ects of vibration frequency (es-

pecially near resonance), and the induced growth rate

oscillation, etc., have been ignored.

For crystal growth in an ampoule, the melt is

often con®ned by the rigid ampoule wall and the

deformable growth interface. As the ampoule

vibrates, the heat ¯ow as well as the interface also

vibrates. Although the melt can be treated as an

incompressible ¯uid, its thermal expansion coe�cient

is not zero. Accordingly, the vibration, which works
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like a gravitational ®eld, can induce periodic buoy-

ancy ¯ow. This is the so-called the thermovibration

e�ect. Furthermore, since the growth interface

vibrates as well, it may also a�ect the bulk ¯ow,

especially when the melt and solid densities are

di�erent. However, this is believed to be a second-

ary e�ect because the amplitude of interface vi-

bration is usually much smaller than the applied

one. Interestingly, when the vibration frequency is

high enough, the heat ¯ow becomes harmonic.

Hence, a Boussinesq-type approximation (time-aver-

aged heat ¯ow) can be obtained by taking a time

average over one vibration cycle. The vibrating

interface can be treated by including the Schlichting

boundary condition [16] instead of the no-slip one.

Such an approximation greatly simpli®es the numeri-

cal solution of the original time-dependent problem

that contains two very di�erent time scales. How-

ever, if the frequency is away from the high-fre-

quency limit, the approximation breaks down due

to the resonance e�ect, and the full numerical sol-

ution of the sti� problem is necessary. Indeed, for

crystal growth applications, the regime of operation

is particularly important. Operation near the reson-

ance can induce severe ¯ow unsteadiness leading to

growth striations

So far, the numerical study of vibration in crystal

growth is still very few. Uspenskii and Favier [15] used

the high-frequency approximation to investigate the

possible damping e�ects due to vibration for both ver-

tical and horizontal Bridgman con®gurations. Lyubi-

mov et al. [11,17] also used a similar approach to

investigate the e�ects of di�erent vibration mechanisms

for the FZ system. They observed that the surface

Nomenclature

a width parameter in Te�

bv vibration amplitude
Bi Biot number, hRc=km

Cp speci®c heat
ez unit vector in z-direction
fv vibration frequency

g0 gravitational acceleration
DH heat of fusion
h heat transfer coe�cient

Dhc de¯ection of growth front, hcjr�Rc
ÿ

hcjg�0
hc height of growth front
hf height of feed front

k thermal conductivity
L length of ampoule
n unit normal vector

Pr Prandtl number, vm=am

r cylindrical coordinate
RaT thermal Rayleigh number,

bTR
3
cg0Tm=nmam

Rav vibrational Rayleigh number,
�bTbvOvTmRc�2=�2nmam�

Rad radiation number, seampT
3
mRc=km

Rc radius of crystal
Ramp radius of ampoule
St Stefan number, rcDH=Cpm

Tm

t time
T temperature
Te� e�ective heater temperature

Tm melting point
Tp peak heater temperature
T1 background ambient temperature

u r-component of velocity
Uh heater moving speed

Uamp ampoule pulling speed
v z-component of velocity
w width of heating pro®le

wr r-component of pulsation velocity
wz z-component of pulsation velocity
z cylindrical coordinate

zp position of peak heater temperature

Greek symbols

a thermal di�usivity
bT thermal expansion coe�cient
e emissivity
Z relative amplitude of vibration, bvO2

v=g0
nm kinematic viscosity, mm=rm

mm viscosity
r density

s Stefan±Boltzmann constant
c stream function
cw pulsation stream function

o vorticity
Ov angular vibration frequency

Superscript
� dimensionless variables

Subscripts

a averaged value
amp ampoule
f feed

c crystal
m melt
max maximum

min minimum
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wave and thermovibration mechanisms were dominant

in the melt, while the Schlichting e�ect was much

smaller. Furthermore, the suppression of thermo-

capillary ¯ow by axial vibration was found possible.

The general applications of vibration for FZ and

Czochralski methods were further illustrated by

Lyubimov et al. [11], again, for the high-frequency

limit. Nevertheless, in the previous study, the e�ects of

vibration on the interface shape and the growth rate

were not incorporated. The induced growth oscillation

has not been discussed as well. For crystal growth

simulation in a self-consistence manner, the moving

interfaces need to be considered simultaneously with

the ®eld variables. Of course, the moving boundary

also imposes an additional challenge task to numerical

simulation. Therefore, in this study, we use vertical

zone melting (VZM), an important process for crystal

growth and puri®cation [18], to illustrate the signi®-

cance of axial vibration with the frequency ranging

from 0.1 to 100 Hz. The high-frequency limit and its

breakdown due to the resonance are further illustrated.

In this paper, using the zone-melting of 2-cm GaAs

in a quartz ampoule as a model system, we will ®rst il-

lustrate how the natural convection can be suppressed

by thermovibration leading to an interface inversion,

which is favorable for crystal growth. The critical vi-

bration intensity for the interface inversion is obtained.
The validity of the high-frequency limit is then exam-

ined by fully time-dependent calculations. From there,
the frequency e�ects and the onset of resonance, as
well as the induced growth oscillation, are then dis-

cussed. In the next section, the governing equations for
both general and high-frequency models are presented
®rst. The numerical solution of these equations is brief

described. The results and discussion is devoted in Sec-
tion 3, followed by brief conclusions and comments in
Section 4.

2. Models and numerical solution

The schematic of the VZM crystal growth used in
this study is depicted in Fig. 1. The furnace is
described by an e�ective heating pro®le Teff�z, t�,
which is speci®ed in modeling. To start crystal growth

from a stationary state, this pro®le can be moved
upward at speed Uh. The vibration is applied in the
axial direction with an amplitude bv and angular fre-

quency Ov (or frequency fv in Hz); Ov � 2pfv: To sim-
plify the calculation, this e�ect is incorporated into the
gravitational acceleration, i.e., g � g0 � bvO2

v cos�Ovt�;
the acceleration is a second derivative of the distance.
Usually, near the middle of the ampoule, a steady-
state growth can be reached in 20 min [9]. Therefore, if

a stable growth is possible, the heating pro®le is kept
stationary and the ampoule is moving downward at
speed Uamp. Ampoule rotation can also be considered,
but it is beyond the scope of present study. The system

is assumed axisymmetric, so that the ¯ow and tempera-
ture ®elds, as well as the growth front (the melt/crystal
interface, hc�r, t�), and the feed/melt interface, hf �r, t�,
are represented in a cylindrical coordinate system
�r, z).
The melt is further assumed incompressible and

Newtonian, while the ¯ow is laminar. The Boussinesq
approximation is also adopted. Dimensionless vari-
ables are de®ned by scaling length by Rc, time t by
R2

c=am, velocity by am=Rc, and temperature by the

melting point Tm, where am is the thermal di�usivity
of the melt. For the convenience of representation, all
the variables de®ned afterwards with a superscript �

are dimensionless unless otherwise stated. The govern-
ing equations for the time-dependent heat transfer and
¯uid ¯ow in terms of dimensionless stream function

c�, vortivity o�, and temperature T� can be written as
the following:

Equation of motion
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� @

@r�

�
o�

r�
@c�

@z�
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�
o�

r�
@c�
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�
Fig. 1. Schematic sketch of vertical zone-melting (VZM).
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In the above equations, RaT and Z are the thermal

Rayleigh number and the relative amplitude of gravity
modulation, respectively, de®ned as follows:

RaT � bTR
3
cg0Tm

nmam

; Z � bvO2
v

g0
,

where bT is the thermal expansion coe�cient, g0 the
normal gravitational acceleration, nm the melt kin-

ematic viscosity, and ai the thermal di�usivity of phase
i; i represents the melt (m), the feed (f), the crystal (c),
or the ampoule (amp). Also, the dimensionless thermal
di�usivity is de®ned by a�i � ai=am: The Prandtl num-

ber Pr is de®ned as usual; Pr � nm=am: The stream
function c and vortivity o (dimensional) are de®ned in
terms of radial (u ) and axial (v ) velocities, respectively,

as

u � ÿ 1

rmr

@c
@z

, v � 1

rmr

@c
@ r

�4�

and

o � @u

@z
ÿ @v
@r

�5�

Again, the dimensionless stream functionc� is de®ned

by scaling c by rmamRc, while o� is de®ned by scaling
o by am=R

2
c :

To solve the previous equations, boundary con-

ditions are required. Most of the boundary conditions
can be found elsewhere [19]. In brief, the no-slip
boundary conditions are adopted for solid boundaries,

where the density di�erence between solid and the melt
is neglected. Since the melt velocity is usually much
larger than the interface speed, such an approximation

is believed to be reasonable. Heat transfer from the
system to the ambient is governed by convection and

radiation:

ÿÿnkamp � r�T �
� � Bi

�
T � ÿ T �eff �z�, t� �

�
� Rad

h
T �4 ÿ T �eff�z�, t� �4

i
,

�6�

where kamp is the ratio of ampoule thermal conduc-
tivity to the melt, Bi � hRc=km the Biot number, and

Rad � seampT
3
mRc=km the radiation number; km is the

thermal conductivity of the melt, s the Stefan-Boltz-
mann constant, eamp the ampoule emissivity. Further-

more, Teff�z, t� is the e�ective ambient temperature,
which is described by a Fermi-like distribution:

Teff�z� � T1 � Tp ÿ T1
exp

ÿ��zÿ zp�t�
��ÿ w

�
=a� 1

, �7�

and

zp�t� � zp0 �
�t
0

Uh dt, �8�

where Tp and T1 are the peak and background tem-
peratures, respectively, the parameters w and a are re-

lated to the width of the distribution, zp�t� is the
position of Tp, and zp0 the initial position of Tp.
Again, the dimensionless T � is de®ned by scaling T by

Tm. An example of this distribution is shown on the
RHS of Fig. 1, which is similar to that measured from
a typical zone heater furnace [20]. The top surface of
the system is assumed adiabatic. A more realistic

boundary condition can be used if necessary.
At the feed/melt and the melt/crystal interfaces, the

Stefan boundary condition is used:

ki�n � r�T � �
��
i ÿ �n � r�T � �

��
m

� gSt

�
U �amp �

@h�i
@ t�

�
n � ez � 0, i � f, c,

�9�

where St � rcDH=Cpm
Tm is the Stefan number and g �

rc=rm the density ratio of solid and the melt. As

shown in Eq. (9), the higher the Stefan number (or
heat of fusion), the smaller the interface velocity is
a�ected by the heat ¯ow.
The above governing equations and their associated

boundary conditions can only be solved numerically.
We have developed e�cient ®nite-volume schemes
using Newton's method with a solution tracking capa-

bility and the DASPK solver for time integration
[19,21] for solving these equations. Detailed description
of the numerical method can be found elsewhere [19].

In most applications, the vibration frequency is
usually in the order of 0.1 to 103 Hz. However, the
time constant for ¯uid ¯ow (for GaAs) is about R2

c=nm
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being about 300 s, while for heat transfer it is about
20 s �R2

c=am�: For a steady growth to be achieved, 10

to 20 min is necessary in general. Therefore, for high
frequency vibration, the solution of the full equations
is extremely time consuming because the stepsize for

integration needs to be smaller than the period of vi-
bration, while the integration time is very long (longer
than 10 min) before a steady state could be achieved.

In order to overcome the di�culty, we have adopted
the high-frequency approximation [22] to previous
equations by taking the time average over one period

of vibration �2p=Ov). We assume that the frequency is
high enough for the period to be small with respect to
the hydrodynamic and thermal times. Also, the
induced vibration amplitude of the ®eld variables is

assumed small. After the time average over the fast
terms, as well as neglecting the higher order terms, the
governing equation for the equation of motion is

slightly changed:
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:

In the above equation, w�z is the dimensionless axial
pulsation velocity, which can be determined by the pul-
sation stream function c�w as follows:
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Also, c�w is set to zero at boundaries. The pulsation
velocities are related to the pulsation stream function

c�w as:

w�r � ÿ
1

r�
@c�w
@z�

, w�z �
1

r�
@c�w
@ r�

: �12�

The dimensionless number Rav in Eq. (10) is the vi-
brational Rayleigh number. It is de®ned as:

Rav �
ÿ
bTbvOvTmRc

�2
2nmam

:

Since this dimensionless number is the only parameter
appearing in Eq. (10) for thermovibration, it is clear

that the averaged ®elds are independent of the vi-
bration amplitude or frequency as long as bvOv is kept

constant. In fact, such a result is only valid for the
high-frequency limit. As will be shown shortly, the ap-
proximation breaks down for fv < 2 Hz, where the res-

onance starts to kick in, which corresponds to a
dimensionless angular frequency of about 3.6 � 103.
Once the resonance exists, the high-frequency approxi-

mation gives an erroneous result. An interesting obser-
vation from both models is that the scaling relations
for Z and Rav are di�erent; bvO2

v is for Z and b2vO
2
v for

Rav. However, if the frequency is high enough, the
result depends only on the scaling of bvOv, not bvO2

v:
Other time-averaged equations are in the same form

as Eqs. (2) and (3). The su�x `a' for the ®eld variables

is used to indicate the time-averaged properties. The
solution scheme for the high-frequency model is also
the same as the full approximation. However, since

only the large time scale needs to be taken care, the

Table 1

Physical properties and some input parameters [24±26]

GaAs

rc � rf � 5:71 g cmÿ3(assumed to be the same as rm)

rm � 5:71 g cmÿ3

mm � 1:967� 10ÿ2 g cmÿ1 sÿ1

Tm � 1511 K

DH � 726 J gÿ1

h � 4:096� 10ÿ4 W cmÿ2 Kÿ1

kc � kf � 0:07 W cmÿ1 Kÿ1

km � 0:14 W cmÿ1 Kÿ1

Cpc
� Cpf

� Cpm
� 0:42 J gÿ1 Kÿ1

bT � 1:16� 10ÿ4 Kÿ1

Quartz (ampoule)

ramp � 2:2 g cmÿ3

kamp � 0:035 W cmÿ1 Kÿ1

Cpamp
� 0:188 J gÿ1 Kÿ1

eamp � 0:7

Other input parameters

L � 15 cm

Rc � 1 cm

Ramp � 1:2 cm

Tp � 1800 K

Tv � 898 K

w � 1:25 cm

a � 0:2 cm

zp0 � 7:5 cm

bv � 0±10 cm

fv � 0:1±100 Hz

Uamp � ÿ1 cm/h (for pseudo-steady state calculations)

Uh � 0 cm/h (for fully transint calculations)

Dimensionless groups

Pr � 0:059; RaT � 0ÿ 8:51� 105; Z � 0ÿ 402:84;
Rav � 0ÿ 3:01� 108,
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stable integration stepsize can be much larger, and
thus the computation e�ort is reduced dramatically.

It should be pointed out again that the di�culty for
solving the full equations for the `moving boundary'
problem is much higher than that for the `®xed bound-

ary' one. For the moving boundary problem, the
boundary shape is not relaxed until the temperature
®eld reaches a steady state. In other words, the zone

shape is determined by the large time scale (in the
order of several minutes at least). Therefore, tremen-
dous integration e�ort is required to reach the steady

'harmonic' state. Therefore, for getting a harmonic
state, our strategy to reduce the computational cost is
to use looser convergence criteria at the beginning. As
the overall zone shape is approaching to a stable zone,

which can be detected by the interface de¯ection, we
are then tightening up the convergence criteria for inte-
gration.

3. Results and discussion

Before showing calculated results, we have per-

formed extensive benchmark for the numerical simu-
lation of VZM crystal growth [9,19] for both steady
and unsteady states. Good agreement with the results

obtained by using FLUENT, a commercial CFD pack-
age, has been obtained [9]. Detailed code veri®cation
can be found elsewhere as well [9,23], which will not

repeated here. The physical properties and some input
parameters used in the following calculations are listed
in Table 1 [24,25], where some typical values for the
dimensionless groups are given. Due to the tempera-

ture di�erence, the viscosity varies about 30% in the
molten zone. Therefore, an averaged value is used [26].
Furthermore, to match the RaT at normal gravity

reported in Ref. [25], the thermal expansion value bT is
also adjusted for comparison purposes. In the follow-
ing sections, we will ®rst illustrate the e�ects of axial

vibration at the high-frequency limit. The veri®cation
of the high-frequency model will then be discussed
through the comparison with the full model. Further-

more, from the full model, the e�ects of frequency can
then be examined, followed by the discussion of the
e�ects on the interface rate oscillation.

3.1. E�ects of thermovibration: high-frequency limit

When the vibration frequency is high enough, a har-

monic growth state may be obtained. Through the
nonlinear coupling of the oscillatory terms, the heat
¯ow, in the time-average sense, due to thermovibration

could be quite di�erent from the typical buoyancy ¯ow
due to radial heating. To illustrate that, we pick up a
steady zone-melting of GaAs for consideration, where

the pseudo-steady state model can be used. The growth
rate is set to be 1 cm/h (or Uamp � ÿ1 cm/h). Fig. 2

shows the results at di�erent thermal (RaT) and vi-
brational (Rav) Rayleigh numbers. First of all, let's
examine the results due to the buoyancy convection

�Rav � 0). They are shown from Fig. 2(a)±(c); RaT �
8:51� 105 corresponds to the normal gravity con-
dition. As shown, under normal gravity the convective

Fig. 2. E�ects of buoyancy convection and vibration on the

¯ow, thermal ®elds, and interface shapes. (a) RaT � 0,

Rav � 0; (b) RaT � 8:51� 104, Rav � 0; (c) RaT � 8:51� 105,

Rav � 0; (d) Rav � 3:01� 106, RaT � 0; (e) Rav � 3:01� 107,

RaT � 0; (f) Rav � 3:01� 108, RaT � 0; (g) Rav � 3:01� 106,

RaT � 8:51� 104; (h) Rav � 3:01� 107, RaT � 8:51� 105; (i)

Rav � 3:01� 108, RaT � 8:51� 105: Uamp � ÿ1 cm/h.
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heat transfer is signi®cant in the melt zone. As a result,

the growth interface can be inverted from convex to
concave. As mentioned before, the concave interface
shape (Fig. 2(c)) is not favorable in the growth of

single crystals. Therefore, the growth situation in case
Fig. 2(c) needs to be modi®ed for the need of crystal
growth. The maximum velocity in Fig. 2(c) is about

2.56 cm/s at the centerline (near the middle of the
zone), while it is about 2.7778� 10ÿ4 cm/s in Fig. 2(a)

and 0.157 cm/s in Fig. 2(b).
On the other hand, with the thermovibration alone,

as shown from Fig. 2(d) and (e), two vortices are

induced, and the ¯ows are very di�erent from that due
to the buoyancy force shown in Fig. 2(c). As will be il-

lustrated shortly, even for the time-dependent ¯ow, the
¯ow structures are similar in a period of vibration, but
the ¯ows are somewhat modi®ed by the vibration.

Clearly, with the axial vibration, near the heater, the
melt is pumped inward from the zone surface to the
zone center making the radial heating more e�cient.

As a result, the growth interface is ¯attened, but still
convex. Such a growth interface is thus preferred for

singe crystal growth. More importantly, since the ther-
movibrational convection is driven by the thermal gra-
dients. As the isotherms are ¯attened horizontally,

further increasing vibration does not a�ect much the
¯attened isotherms. This can be further understood by

the source term of Eq. (10); @Ta=@r is the driving force
for the pulsation ¯ow. Therefore, as shown, the inter-
face shapes are not changed much even though Rav

has been increased by two orders of magnitude from
Fig. 2(a)±(c). Nevertheless, further increasing Rav, on
the contrary, induces secondary cells that have a di�er-

ent ¯ow direction from the main cells. Although the
secondary cell may not be signi®cant enough to modify

the local heat transfer due to the small Prandtl number
�Pr � 0:059), it may a�ect signi®cantly the radial
solute segregation due to the much larger Schmidt

number for most impurities.
The maximum velocity for Fig. 2(d) is about 0.216

cm/s, while 0.528 and 1.188 cm/s for Fig. 2(e) and (f),
respectively. It should be pointed out that the vibration
shown here, even for Fig. 2(d), is very severe. For the

case of 1 kHz vibration, the vibration amplitude ranges
from 0.03162 to 0.3162 cm for cases Fig. 2(d)±(f);
bvfv � 100 cm/s for Fig. 2(e) and 316.2 cm/s for Fig.

2(f). This is because the Prandtl number of GaAs is
not very high that signi®cant ¯ow is necessary to a�ect

the thermal ®eld and thus the growth interface. In the
horizontal Bridgman con®guration studied by Uspens-
kii and Favier [15], bvfv � 103 cm/s is necessary to

damp the convection, which is about one order of
magnitude higher than our cases. Indeed, as we com-
bine both the buoyancy and thermovibration modes, it

is clearer that why such a strong vibration action is
necessary.

The combined e�ects of two forces are illustrated
from Fig. 2(g)±(i). Again, with vibration, the concave

growth interface due to the buoyancy force is resolved,
and the growth interface becomes very ¯at or slightly
convex. As compared with cases Fig. 2(f) and (i), at

Rav � 3:01� 108, the e�ect of buoyancy force is barely
seen. Accordingly, the buoyancy convection is sup-
pressed, which is consistent with the observation by

Uspenskii and Favier [15]. However, they applied the
vibration horizontally with bvfv � 103 cm/s and the
maximum melt velocity was reduced three times. In

our case Fig. 2(i), bvfv � 316:2 cm/s, and the maximum
velocity is reduced from 2.56 cm/s in Fig. 2(c) to 1.188
cm/s in Fig. 2(i). Interestingly, the maximum velocity
for case Fig. 2(h) is about 1.2 cm/s. In other words,

completely suppressing the buoyancy ¯ow does not
reduce much the maximum velocity because the vi-
bration also generates its own ¯ow. Furthermore, even

though Rav1108 may be the limit that could be
reached in practice, our purpose here is not to totally
suppress the buoyancy ¯ow, but to obtain a convex

interface for normal gravity growth. Therefore, the
case Fig. 2(h) seems to be satisfactory for our appli-
cation. However, the critical vibration for interface

inversion is important and needs to be found.
The critical vibration can be found by tracing the

solution using Rav as a parameter. Fig. 3 shows the

Fig. 3. E�ect of axial vibration intensity (Rav) on the interface

de¯ection Dhc�Dhc � hcjRc
ÿ hcjr�0�, zone length �hf ÿ hc� at

r � 0, and heat ¯ows. In the ®eld plots, cmin�ÿ1:078, cmax�
9:547� 10ÿ3 g/s, and Tmax � 1643:09 K for a;

cmin � ÿ0:7403, cmax � 0:2636 g/s, and Tmax � 1657:01 K for

b; cmin � ÿ0:6648, cmax � 0:3198 g/s, and Tmax � 1657:81 K

for c.
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e�ects of vibration on the interface de¯ection �Dhc �
hcjr�Rc

ÿ hcjr�0� and the zone length. From there, the

critical Rav (about 2.2 � 107) can be found, where the
interface inversion takes place. For GaAs at this value,
bvfv is about 70 cm/s; for fv � 1 kHz, the vibration

amplitude is about 0.7 mm. After the dramatic change,
the interface becomes ¯at. As just explained, the inter-
face de¯ection is not changed much by further increas-

ing Rav due to the small radial thermal gradient near
the growth interface. Nevertheless, again, the newly
formed secondary cell near the growth interface, as

shown in cases Fig. 2(b) and (c), can play an important
role in the local mass transfer leading to di�erent
radial segregations.

3.2. Validity of high-frequency approximation

In the previous section, the e�ect of axial vibration
is illustrated for the high-frequency limit. Now, the

next question is the validity of such an approximation.
Furthermore, since bvfv or Rav is the only parameter in
the high-frequency model, the frequency does not
a�ect the result if Rav is kept the same. However, in

the full model, the parameters that really matters are
the relative amplitude of gravity modulation Z, or
bvf

2
v, and fv. Therefore, keeping the same bv fv in the

high-frequency limit should have a time-average result
that is independent of frequency. Therefore, to validate
the high-frequency model used in this paper, we have

performed a series calculations using the full model.
After a harmonic result is obtained for all variables,
we then take a time average of the variables for com-

parison.
Two cases are considered using 10 Hz axial vi-

bration for a stationary zone �Uamp � Uh � 0�; one is
with the thermovibration alone �Rav � 3:01� 107 or

Z � 40:284, RaT � 0� and the other also incorporates
the e�ects of buoyancy force �Rav � 3:01� 107,
RaT � 8:51� 105). For 10 Hz vibration, the amplitude

used is 10 cm here. In practice, it may be di�cult to
vibrate the system with such a high amplitude. How-
ever, the high Rav used in Fig. 2(h) is proven just

enough for interface inversion. Therefore, to keep the
same Rav, if we use a smaller amplitude, the frequency
needs to be increased, which increases the compu-
tational e�ort signi®cantly for the full model to get a

harmonic result. The system will take at least 20 to 30
min for the initial transient period to be relaxed. In ad-
dition, as will be discussed later, 10 Hz is high enough

for the high-frequency limit to be achieved. Therefore,
using a higher frequency to examine the high-fre-
quency limit is prohibited here. As a tradeo�, we thus

pick 10 Hz to validate our high-frequency model here;
100 Hz has also been used for further testing, and the
conclusion is the same.

After the initial transient period is removed, Fig. 4
shows the steady oscillation pattern of the thermovi-

bration ¯ow at Rav � 3:01� 107; RaT � 0: The ther-
mal and ¯ow ®elds at the last period are also
illustrated. As shown, even the frequency is high, the

¯ow structures still can respond periodically with time.
Within one vibration period, the size change of each
cell is clear. Even so, the two-cell ¯ow structure still

remains and the change of the interface shape is not
obvious. If we take the last 5 periods for computing
the averaged ¯ow ®eld, we can make a comparison

with the results from the high-frequency model (with
Uamp � 0). As shown in Fig. 5, the agreement on the
¯ow patterns appears to be excellent; the streamlines
are obtained with the interval of �cmax ÿ cmin�=20 for

both plots. Besides the nearly-zero streamline, the
other streamlines are almost overlapped to each other.
Nevertheless, one should not forget that the actual

¯ow ®elds do change periodically with the vibration,
as illustrated in Fig. 4. Since the gravity e�ect is
removed, the upper and lower ¯ow cells shown in Fig.

5 are symmetric to each other. From the application
point of view, if we don't care much about the oscil-
lation of heat ¯ow, the time-average result obtained

from the high-frequency model seems to be satisfac-
tory. The e�ect on the interface shapes can also be
well predicted.
The case with the buoyancy force �RaT � 8:51� 105�

also agrees well with the high-frequency limit. The har-

Fig. 4. Harmonic solution due to axial vibration for RaT � 0

and Rav � 3:01� 107: Some ¯ow patterns and isotherms at

the last period are also illustrated. cmin � ÿ0:3012,
cmax � 0:5387 g/s, and Tmax � 1659:43 K for t � 4:9 s;

cmin � ÿ0:3968, cmax � 0:3847 g/s, and Tmax � 1659:43 K for

t � 4:925 s; cmin � ÿ0:5388, cmax � 0:3012 g/s, and

Tmax � 1659:43 K for t � 4:95 s; cmin � ÿ0:3847,
cmax � 0:3967 g/s, and Tmax � 1659:43 K for t � 4:975 s;

cmin � ÿ0:3012, cmax � 0:5387 g/s, and Tmax � 1659:43 K for

t � 5 s.
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monic oscillation of the ¯ow intensity is shown in Fig.
6. As shown by the ¯ow ®elds at the last period,

because of the buoyancy convection, the ¯ow structure
becomes asymmetric; the upper cell is smaller. More
interestingly, a tiny cell just above the growth interface

moves around periodically with vibration. As just men-
tioned, such an unstable cell may also be responsible

on the local mass transfer leading to growth striations.
The time average of the ¯ow patterns in the last ®ve
periods is shown in Fig. 7. Again, it is in good agree-

ment with the high-frequency approximation. There-
fore, it may be safe to conclude that for high vibration
frequency (at least 10 Hz for now), the high-frequency

model is satisfactory in the averaged ¯ow and the
interface shapes. Furthermore, from the comparison
with the full model, the Schlichting e�ect, which is

ignored in our high-frequency model, is small. Again,
as mentioned before, the vibration amplitude of the
interface is much smaller than the applied one. Never-
theless, the onset of resonance and interface oscillation

still remain a great interest to crystal growers. There-
fore, they need to be discussed in details.

3.3. E�ects of vibration frequency: resonance

As the vibration is utilized in practice, the vibration

frequency is a key parameter that needs to be decided
carefully. We have examined the frequency ranging
from 0.1 to 100 Hz using the full model. Through the

comparison with the high-frequency model using the
same Rav, we can examine the breakdown of the high-
frequency model and the onset of resonance. The e�ect

of frequency on the average ¯ow intensities is summar-
ized in Fig. 8. The amplitude of ¯ow oscillation is also
indicated by the error bars. As shown, if the frequency
is high enough, the high-frequency limit can be

Fig. 5. Comparison of averaged ¯ow patterns from Fig. 4

with that obtained from the high-frequency model.

Fig. 6. Harmonic solution due to axial vibration for

RaT � 8:51� 105 and Rav � 3:01� 107: Some ¯ow patterns

and isotherms at the last period are also illustrated.

cmin � ÿ0:6536, cmax � 0:3475 g/s, and Tmax � 1657:23 K for

t � 4:9 s; cmin � ÿ0:7492, cmax � 0:2803 g/s, and

Tmax � 1657:23 K for t � 4:925 s; cmin � ÿ0:9444,
cmax � 0:2927 g/s, and Tmax � 1657:23 K for t � 4:95 s;

cmin � ÿ0:7352, cmax � 0:2873 g/s, and Tmax � 1657:24 K for

t � 4:975 s; cmin � ÿ0:6536, cmax � 0:3474 g/s, and

Tmax � 1657:23 K for t � 5 s.

Fig. 7. Comparison of averaged ¯ow patterns from Fig. 6

with that obtained from the high-frequency model.
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approached. For fv > 5 Hz, the high-frequency model
can be a good approximation. Furthermore, because

Rav (or bv fv) is kept the same, the oscillation ampli-
tude of the ¯ow approaches to a constant at high fre-
quency. On the other hand, at lower frequency (<2

Hz) the high-frequency model starts to break down.
One can easily ®nd the breakdown from the averaged
¯ow patterns illustrated on the top of the ®gure. As

shown, for fv < 2 Hz, the ¯ow ®elds becomes very
di�erent. The calculated zone shapes are very di�erent
as well. Interestingly, the ¯ow intensity of the main cell

increases dramatically near 0.5 Hz indicating the onset
of resonance; the oscillation amplitude increases as
well. Further decreasing the frequency, the e�ect of
resonance decreases.

More importantly, the resonance has a profound
e�ect on the oscillation amplitude of the interface
speed, as shown in Fig. 9. Near 0.5 Hz, there is a

maximum on the oscillation amplitude. A typical crys-
tal growth rate, 1 cm/h, is also indicated in the same
®gure. As shown, for fv < 5 Hz, severe periodic growth

and remelting could appear. Therefore, higher fre-
quency (5 Hz) is necessary to reduce the growth ¯uctu-
ation.

Indeed, as shown by the results so far, although the
high-frequency model works quite well for the fre-
quency ranging from 2 to 100 Hz (and higher of
course), it does not provide any information on the os-

cillation amplitude of the variables in the system. The
¯uctuation amplitude of the interface speed, as well as

the ¯ow intensity, is a key issue that needs to be con-

sidered in practice. Fig. 9 clearly indicates the signi®-
cance of the vibration frequency on the growth rate
¯uctuation. For crystal growth applications, it is clear

that the higher the frequency the better it is. However,
as implemented in practice, there are other problems,
such as the mechanical design and ¯ow instability, that
need to be considered as well.

4. Conclusions

The e�ects of axial vibration on the heat ¯ow, the
growth rate, and the interface shapes are studied nu-
merically for vertical zone-melting. The results provide

some insight on the use of vibration on the process
control, especially, on the zone shape and the ¯ows. It
is found that the axial vibration can be e�ective for
the control of melt ¯ows and the growth interface, but

the critical vibration is not trivial. At high frequency,
the minimum vibration speed (bvfv) is about 70 cm/s or
Rav12:2� 107: For 2-cm GaAs, the high-frequency

model may be used for the frequency greater than 2
Hz. At lower frequency, the model starts to break
down, and the resonance appears at about 0.5 Hz.

Away from the frequency, the ¯uctuation of the inter-
face speed decreases.
To prevent crystal growth from periodic remelting, a

frequency higher than 10 Hz seems to be necessary.
Nevertheless, as the frequency is increased further, the

Fig. 8. E�ect of vibration frequency on the ¯ows and ¯ow

intensity; RaT � 8:51� 105 and Rav � 3:01� 107: The error

bars indicate the amplitude of oscillation. The averaged ¯ow

patterns at 0.5, 2, 10, and 100 Hz are shown on the top of the

®gure.

Fig. 9. E�ect of vibration frequency on the amplitude of oscil-

lation of the interface speed; RaT � 8:51� 105 and

Rav � 3:01� 107: The dashed line at 1 cm/h indicates a typi-

cal interface speed for crystal growth.
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¯ow oscillation decays very slowly. So far, the real ap-
plications of vibration on crystal growth or puri®-

cation seem to be rare. However, from our
calculations, we believe that the axial vibration may be
a useful way to control zone-melting, but this still

requires further experimental veri®cation in the future.
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