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Effects of centrifugal acceleration on the flows and segregation
in vertical Bridgman crystal growth with steady ampoule

rotation
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Abstract

The effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady
ampoule rotation are investigated through numerical simulation. The numerical model is based on the Boussinesq

approximation in a rotating frame, and the fluid flow, heat and mass transfer, and the growth interface are solved
simultaneously by a robust finite-volume/Newton method. The growth of gallium-doped germanium (GaGe) in the
Grenoble furnace is adopted as an example. The calculated results at small Froude number (Fr551) are consistent with

the previous prediction (Lan, J. Crystal growth 197 (1999) 983). However, at a high rotation speed or in reduced
gravity, where the centrifugal acceleration becomes important (Fr�1), the results are quite different due to the
secondary flow induced. Since the direction of the induced flow is different from that of the buoyancy convection due to

the concave interface, the flow damping is more effective than that due to the Coriolis force alone. More importantly,
radial segregation can be reversed during the flow transition from one to the other. # 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The control of heat flow, dopant segregation,
and the growth interface is an important task in
bulk crystal growth [1,2]. Using external forces to
control crystal growth has been widely adopted
[3–7]. Magnetic fields [4,5], the accelerated crucible

rotation technique (ACRT)[6], and vibration (e.g.,
Ref. [7]) have been found useful. Crystal growth in
a centrifuge (e.g., Refs. [8,9]) and reduced gravity
[10] have also been proposed. However, the
implementation of these techniques is usually
costly and inconvenient. Recently, a novel ap-
proach using steady ampoule rotation for flow and
segregation control was proposed by Lan [11].
With a high enough rotation speed, he found that
the diffusion-controlled limit could be achieved for
the vertical Bridgman (VB) configuration. Yeckel
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et al. [12] also adopted the same idea for the VB
growth of ZnCdTe, and also showed that the
convection in the melt could be significantly
suppressed by steady rotation. Lan [13] also
obtained the scaling law of flow damping by the
Coriolis force; the flow intensity decreases linearly
with the rotation speed, or Ta�1/2. This scaling law
applies to both concave and convex growth
interfaces. A possible application of using steady
rotation to reduce the unsteady and asymmetric
segregation due to an arbitrary gravity orientation
(g-jitter) during crystal growth in space was also
proposed by Lan [14]. Foster [15] also showed
that, using an asymptotic analysis, the rotation
only increases the radial segregation. Unfortu-
nately, in the previous calculations [11–15], due to
the use of a fixed frame and the Boussinesq
approximation, the centrifugal acceleration was
not considered, where the limiting case of the high-
speed rotation is rigid-body rotation. However,
at high-speed rotation or reduced gravity, the
centrifugal force (acceleration) becomes impor-
tant, which is perpendicular to axial temperature
gradients and this can induce convection as well.
Interestingly, the direction of the induced flow is
different from that due to axial gravity for the
concave interface. Therefore, in principle there will
be a transition from one flow regime to the other,
and this will alter radial dopant segregation. In a
recent analysis by Wilcox et al. [16], they
predicted the existence of a minimum convection
for the concave interface through a simple
thermal stability model, where the net accele-
ration of the body force is perpendicular to the
isotherms. Unfortunately, this model does not
consider the Coriolis force that damps the buoy-
ancy flow both for the convex and concave
interfaces.
In this paper, we will present a numerical model

based on a rotating frame with the Boussniesq
approximation so that the centrifugal acceleration
can be considered in a consistent way. The
benchmark system, the growth of gallium-doped
germanium in the Grenoble furnace [11,17,18], is
considered. Some results showing very different
flow and segregation behavior from the previous
calculations are discussed and they may have
interesting applications to crystal growth.

2. Mathematical model and solution

Based on the Boussinesq approximation, the
governing equations in dimensionless form for the
transport processes in the melt during crystal
growth can be described by the conservation laws
for the mass, momentum (in a rotating frame with
a constant angular speed O about the crystal axis,
i.e., X ¼ Oez), energy, and dopant as follows:

r � m ¼ 0; ð1Þ

@m
@t

þ m � r m ¼ �rPþ Prr2m þ F; ð2Þ

@T

@t
þ m � rT ¼ r2T ; ð3Þ

@C

@t
þ m � rC ¼

Pr

Sc
r2C; ð4Þ

where the body force term [19] can be written as:

F ¼ �Pr RaT ðT � TmÞ ½eg þ rFrer
 � Ta1=2Prez�m:

Gravitational Centrifugal Coriolis

acceleration acceleration force

In the above equations, m, P, T , and C are the
dimensionless velocity, pressure, temperature and
dopant concentration, respectively; Tm is the
dimensionless melting temperature. Also, eg, er,
and ez are the unit vectors in the gravitational,
radial and axial direction, respectively, and r is the
dimensionless radial distance. For the VB config-
uration here, eg ¼ �ez. The associated dimension-
less numbers as well as their physical meaning are
summarized as the following:

RaT ¼
bTgDTL

3

nmam
¼
Buoyancy force

Viscous force
;

Ta ¼ 4O2L4=n2m ¼
Coriolis force

Viscous force
;

Fr ¼ O2L=g ¼
Centrifugal acceleration

Gravitational acceleration
;

where L is the domain length, DT the temperature
difference between the hot and cold zones, mm the
melt viscosity, and g the gravitational acceleration.
In addition, Pr ¼ nm=am is the Prandtl number and
Sc ¼ nm=D the Schmidt number, where nm is the
kinematic viscosity and am and D are the thermal
and dopant diffusivities, respectively. For most of
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the dopants in the melt, Sc�1. Therefore, the
dopant field, and thus the segregation, are
dominated by the convection rather than by
molecular diffusion.
In the above equations, the melt is assumed

incompressible and the Boussinesq approximation
is adopted. There is a controversy about the use of
the fixed frame or the rotating frame in presenting
the Boussinesq approximation. In the fixed frame
approach, the density variation is put in the body
force only, and the effect of centrifugal accelera-
tion, which will generate pressure gradients in the
radial direction, cannot be considered explicitly.
As a result, at zero gravity, the steady ampoule
rotation should result in a rigid-body rotation in
the melt. However, in the rotating frame, the
centrifugal force, i.e., rFrer, resembles a gravita-
tional acceleration, and the density variation due
to the temperature difference could be considered
as shown above. Therefore, even at zero gravity,
the thermal gradient in the axial direction, which is
perpendicular to the centrifugal force, can induce
flow. At normal gravity, the gravitational accel-
eration g is usually much larger than the centrifu-
gal acceleration (rO2) at a moderate rotation
speed, so that the Froude number (Fr) is small
and this effect can be neglected. However, when
the centrifugal force is the dominant force, like in a
high-g centrifuge or reduced gravity environment,
the rigid-body rotation solution is not valid any
more, and the Sweet–Eddington flow [20] may be
induced.
With suitable boundary conditions [11], the

above governing equations can be solved numeri-
cally by an efficient finite-volume/Newton method
[11,18] with second-order accuracy. Detailed nu-
merical implementation can be found elsewhere.

3. Results and discussion

For VB crystal growth, due to its thermally
stable configuration and thus weaker buoyancy
flow, the flow damping by ampoule rotation is
usually effective as proposed by Lan [11]. For
comparison purposes, we again take the growth of
gallium-doped germanium (GaGe) in the Greno-
ble furnace as an example. This problem, without

rotation, was also investigated by Adornato and
Brown [17]. Extensive benchmark numerical com-
parisons were also performed [18] and therefore it
serves as a good candidate for the theoretical study
here. The typical flow damping by the steady
ampoule rotation is shown in Fig. 1 for
RaT ¼ 2:489� 108 (at normal gravity) and
2.489� 106 (at 0.01 g). Some typical flow struc-
tures are illustrated in Fig. 2. As shown in Fig. 1,
at a lower rotation speed (or Ta), the flow intensity
(|Cmax, min|) for the major flow cell (in front of the
interface) is suppressed significantly by rotation,
and the scaling law (for Fr=0) follows nicely with
the boundary layer approximation, i.e.,
|Cmax|�Ta�1/2. However, as the rotation speed
increases, the discrepancy of the two models
(Fr ¼ 0 and >0) increases. At 100 RPM, rFr (or
RcO2=g) is about 0.056 for 1 g and 5.6 for 0.01 g
(about 0.223 at 20RPM), where Rc is the crystal
radius being 0.5 cm here. The flow intensity of the
secondary cell, which is induced by the centrifugal
acceleration, is also plotted. As shown, the

Fig. 1. Variation of flow intensity with the increasing Taylor

number for RaT=2.489� 106 (0.01 g) and 2.489� 108 (normal

gravity); Ua ¼ 0. The primary cell is the flow in front of the

interface. The result for the convex interface (by exchanging the

crystal and melt thermal conductivities) is also added at the top.
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centrifugal force begins to dominate at high Ta
number, and its flow intensity approaches to the
limit of RaT ¼ 0, which is the basic flow due to the
centrifugal force alone. Because the flow direction
of the secondary cell (due to axial thermal
gradients) induced by the centrifugal force is
different from that of the primary cell (due to
radial thermal gradients), as illustrated by Fig. 2,
the flow damping of the major cell becomes much
more effective than that by the Coriolis force
alone, as shown in Fig. 1. Finally, further increas-
ing the rotation speed, the secondary cell prevails
and the major cell in front of the growth interface
disappears. Clearly, the flow transition will lead to
the minimum convection near the interface, and
the segregation seems to approach the diffusion
limit due to the concave interface. Meanwhile, if
the rotation speed is slightly higher, a minimum

segregation can be expected, which will be
illustrated shortly. Furthermore, the rotation
speed for the minimum convection predicted by
Wilcox et al. [16] is overestimated being about
50% to 100% higher.
If the growth rate is considered by setting the

ampoule pulling speed Ua as �4� 10�4 cm/s, the
dopant segregation can be investigated. Some
pseudo-steady state calculations are shown in
Fig. 3 for the radial segregation; typical flow and
dopant fields are included for comparison. As
shown, as predicted by Lan [11], a diffusion-
limited regime, such as the case for 100RPM, can
be approached. However, due to the centrifugal
acceleration, there is some distortion of the dopant
field along the ampoule wall. Further increasing
the rotation speed will increase dopant mixing
in the bulk melt. Nevertheless, near the growth

Fig. 2. Some flow structures selected from Fig. 1; (a)

RaT=2.489� 106 (0.01 g); (b) 2.489� 108 (normal gravity);

For (a), Cmin=�3.168� 10�5 g/s, Cmax=1.127x10�3 g/s, for 2

RPM; Cmin=�3.104� 10�4 g/s, Cmax=7.282� 10�5 g/s, for

10RPM; Cmin=�6.304� 10�4 g/s, Cmax=6.728� 10�7 g/s for

20RPM; For (b) Cmin=�4.466� 10�5 g/s, Cmax=0.0211 g/s,

for 10RPM; Cmin=�4.899� 10�4 g/s, Cmax=2.187� 10�3 g/s,

for 50RPM; Cmin=�1.598� 10�3 g/s, Cmax=3.447� 10�4 g/s

for 100RPM.

Fig. 3. Effects of rotation on radial dopant segregation for

RaT=2.489� 108. Some flow and dopant fields are also

illustrated, where Cmin=�0.00136 g/s, Cmax=0.05576 g/s,

Cmin ¼ 1:0595, and Cmax ¼ 12:9125 for 0 RPM; Cmin=

�6.249� 10�4 g/s, Cmax=0.00221 g/s, Cmin ¼ 1:188, and

Cmax=15.21 for 50RPM; Cmin=�1.741� 10�3 g/s, Cmax=

1.188� 10�4 g/s, Cmin ¼ 1:3191, and Cmax ¼ 12:359 for

100RPM; Cmin=�2.678� 10�3 g/s, Cmax=0g/s, Cmin ¼
2.4556, and Cmax ¼12.067 for 150RPM.
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front, the dopant transport is more or less diffusion
limited. From Fig. 3, it is also clear that the radial
dopant segregation is reversed between 100 and
150RPM due to changing flow direction in front of
the interface (the exchange of two flow cells).
Therefore, as shown in Fig. 3 there is a minimum
radial segregation and it occurs right after the flow
transition. In other words, the use of ampoule
rotation (say 150 RPM) for flow damping and
further segregation control seems to be feasible.
Although the conclusion is similar to the one by
Lan [11], the minimum radial segregation was not
predicted in the previous calculations, where the
rigid-body rotation was the high-speed limit.
A final example is illustrated by dynamic

calculations. Fig. 4 shows the axial dopant segre-
gation in the grown crystal (averaged over the
cross section) for 100RPM. The cases of no

rotation, diffusion-limited, and complete-mixing
are also included for comparison. Again, as
shown, with 100RPM rotation, the axial segrega-
tion is quite close to the diffusion-limited one. On
the other hand, without rotation, the local dopant
mixing due to the buoyancy flow leads to the axial
segregation close to the complete-mixing limit. To
further control the radial segregation, a higher
rotation speed can be used as discussed. From
the calculated results, one may expect to achieve a
uniform axial segregation through a decreasing
rotation speed. In other words, at the beginning
of growth, one can use faster rotation, which leads
to a dopant boundary layer in front of the
interface to build up quickly. As the growth
proceeds, the rotation speed can be gradually
reduced. A similar idea was also adopted by
Ozawa et al. [21] by using a stepwise reduction of a
magnetic field.

4. Conclusions

In this paper, we revise previous calculations by
including the centrifugal acceleration using a
rotating frame. The flow damping and segregation
control by steady ampoule rotation are discussed.
At a low rotation speed or small Froude number,
the flow intensity decreases with the increasing
rotation speed and the rigid-body rotation is the
high-speed limit. With the centrifugal acceleration,
the axial thermal gradient can induce buoyancy
flow due to the radial body force, and its flow
direction is different from that of the buoyancy
flow induced by the concave growth front. As a
result, the flow damping of the primary cell by
rotation becomes even more effective than that by
the Coriolis force alone. The radial segregation
can be reversed right after the flow transition.
With such a flow characteristics, in principle it is
expected that the segregation control by steady
ampoule rotation, both radial and axial, can be
achieved. Furthermore, because both the Coriolis
and centrifugal forces are axisymmetric, the use of
ampoule rotation should be helpful in reducing
asymmetric heat flow and segregation due to
imperfect growth conditions.

Fig. 4. Axial dopant segregation in the grown crystal; the flow

and dopant fields for 100RPM at 4000 s (about 46% solidified)

and 7000 s (about 84% solidified) are included, where

Cmin=�5.331� 10�4 g/s, Cmax=5.217� 10�4 g/s, Cmin=

1.0850, and Cmax=4.417 at 4000 s and Cmin=�1.145�
10�5 g/s, Cmax=4.990� 10�4 g/s, Cmin ¼ 3:94, and Cmax=7.384

at 7000 s. The initial condition is the same as Fig. 2(b) at

100RPM and Uh is the heater moving speed.
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