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Abstract

Internal radiation, in the crystal and the melt, is investigated using the P1-approximation for the Bridgman growth of
YAG crystals. Its effects on the interface shape and facet formation are illustrated through three-dimensional simu-

lation. The P1-approximation is first validated by a one-dimensional solution. Further comparison for axisymmetric

cases with the rigorous calculations by Brandon and Derby [J. Crystal Growth 121 (1992) 473] is performed for opaque

melt, and reasonable agreement is obtained for optical distance being <1 cm. The no-slip Rosseland model also gives a

reasonable prediction in the interface shape; however, interface position and facet size are over predicted due to the

poor approximation in the thermal gradients at the interface. Furthermore, melt transparency introduces radiation

heating from the hot zone to the interface. Accordingly, the interface concavity is reduced with the increasing optical

distance of the melt.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Radiation in a participating medium, or the so-called

internal radiation, is important in the crystal growth of

semitransparent crystals like oxides. Both experimental

[1,2] and theoretical [3–6] works have shown that the

internal radiation significantly affects the interface

shape, which is crucial to crystal quality. Morphological

instability can be induced as well [7]. For the growth of

oxide crystals, the induced facet formation at the

growing interface is particularly important. For exam-

ple, the growth of YAG or GGG in the h111i direction,
faceting appears at f211g crystallographic planes [8].

Faceting can affect the crystal quality in several ways.

The most common ones are the stress concentration at

the singular edges and the severe segregation due to

different segregation coefficients at the singular facets.

The dark core in the growth of Bi12SiO20 is also an ex-

ample of the ion segregation due to faceting [9]. There-

fore, the control of facet formation is an important task

in the improvement of crystal quality, and computer

simulation could be very useful in tuning growth

conditions. However, most of the facets observed

in experiments, such as f211g or f110g facets, are

not axisymmetric. Therefore, a three-dimensional (3D)

model is necessary for taking these facets into account,

and this has not yet been carried out until recently. By

using a finite volume method (FVM), Lan and Tu [10]

presented, for the first time, the 3D simulation of facet

formation in the Bridgman growth of YAG crystals. The

interface shape and the facets, as well as the coupled

flow and dopant distribution, are predicted for various

growth conditions. However, their internal radiation

was treated by the simple no-slip Rosseland diffusion

approach, which is valid only for optically thick mate-

rials. For most of oxides, except with high doping, the

crystal (maybe the melt as well) is usually optically

transparent, i.e., having a large optical distance. In such

a case, a more rigorous model is necessary for a better

simulation.

An accurate treatment of the internal radiation is not

a trivial task, even for a 2D geometry. Brandon and
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Derby [3] conducted the first modeling of internal radia-

tion in Bridgman growth of oxide crystals using a rigor-

ous finite element method. Since their solution involved

a finite-element solution of differential–integral equa-

tions, the calculation was extremely tedious and time-

consuming. On the other hand, if the material does not

participate the radiation (zero absorption coefficient),

the face-to-face radiation can be treated by view fac-

tors [4], and this can save computational cost dramati-

cally. However, this situation is rare in practice. In fact,

both approaches are time-consuming for 3D simulation.

To compromise the accuracy and computational load, a

tradeoff is to use the PN -approximation, which expands

the radiation intensity by an orthogonal series of

spherical harmonics [11]. Its simplest form, i.e., the P1-
approximation, is used most because it requires only the

solution of a diffusion-like equation. Matsushima and

Viskanta [12] used the P1-approximation to simulate a

simple 2D Bridgman growth of semiconductor crystals

including the spectral dependence. They also pointed out

that the difference between spectral-band and gray

models is small. The effect of internal radiation in the

Nomenclature

a optical absorption coefficient

~aa normalized optical absorption coefficient

aR Rosseland optical absorption coefficient

A facet plane constant

b facet size

B facet plane constant

Bi Biot number, Bi ¼ hDc=km
c kinetic exponent

C facet plane constant

Cp specific heat

d adiabatic zone length

D facet plane constant

Dc crystal diameter

eg unit vector in the gravity direction

ex unit vector in x-direction
ey unit vector in y-direction
ez unit vector in z-direction
f facet plane function

g gravitational acceleration

Gn local thermal gradient at the interface

GT thermal gradient of adiabatic zone, GT ¼
ðTH � TCÞ=d

h heat transfer coefficient

hm interface height

DH heat of fusion

J dimensionless irradiance

k thermal conductivity

kcond molecular thermal conductivity

L sample length

n refractive index

~nn normalized refractive index

n unit normal vector

N conduction to radiation ratio, N ¼
kcac=4rT 3

1

NR radiation to conduction ratio, NR ¼
4n2mrT 3

mDc=km
P Pressure

Pe Peclet number, Pe ¼ qCpUampDc=km
Pr Prandtl number, mm=am

R radius of curvature at the interface

Ra ampoule radius

Rad radiation number, Rad ¼ reaT 3
mDc=km

RaT thermal Rayleigh number, gbTD
3
cTm=mmam

Rc crystal radius

St Stefan number, DH=CpmTm
T temperature

T1 temperature at wall 1

T2 temperature at wall 2

Ta ambient temperature distribution

TC cold zone temperature

TH hot zone temperature

Tm melting point

DTkin kinetic supercooling

u x-component of velocity
Ua ampoule pulling speed

Un normal speed of the interface

v y-component of velocity
v velocity vector

w z-component of velocity

Greek symbols

am thermal diffusivity of melt

b kinetic coefficient

bT thermal expansion coefficient

e surface emissivity

c density ratio, q=qm

j thermal conductivity ratio, j ¼ k=km
h dimensionless temperature, h ¼ T=T1.
r Stefan Boltzmann constant

sL dimensionless optical distance, sL ¼ aL
mm kinematic viscosity

Subscripts

a ampoule

c crystal

m melt

x x-direction in the Cartesian coordinate

y y-direction in the Cartesian coordinate

z z-direction in the Cartesian coordinate
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melt for a Czochralski growth of lithium niobate crystals

was studied recently by Tsukada et al. [5] and Kobayashi

et al. [6]. They showed that the melt transparency sig-

nificantly affects the interface morphology and the crit-

ical rotation rate for interface inversion. Although the P1
approximation has been widely used in crystal growth

simulation, its validity has not yet been examined. In

fact, even for the simplest Rosseland diffusion model,

the agreement with the most rigorous model is only

qualitative [13,14].

Therefore, in this paper we adopt the P1-approxi-
mation in a 3D Bridgman model for better simula-

tion of the internal radiation considering faceting. The

effects of internal radiation on the heat flow, interface

shape, and facet formation are investigated. For com-

parison purposes, a benchmark comparison with a

simple 1D model is performed first. Further comparison

is then carried out for the axisymmetric Bridgman

crystal growth simulated by Brandon and Derby [3].

From there, the validity of the P1 model for a wide range
of optical distance can be examined. After the confi-

dence is built, facet formation is considered and its

asymmetric effect on the heat flow is discussed. The so-

lution predicted by the no-slip Rosseland diffusion

model is also presented for comparison. Finally, the

effect of internal radiation in the melt is discussed as

well. In the next section, the model and its numerical

simulation are briefly described. Section 3 is devoted to

the Results and discussion, followed by Conclusions in

Section 4.

2. Model description and numerical solution

A generic Bridgman crystal growth configuration in

shown Fig. 1a. Due to the asymmetric faceting at the

interface, the problem is 3D and thus described by a

Cartesian coordinate (x; y; z). The ambient thermal dis-
tribution Taðx; y; zÞ is assumed to be known. For com-

parison purposes, the typical three-zone heating profile

[3] is used. To focus on the internal radiation and facet

formation, we have adopted a pseudo-steady state ap-

proximation here. The ampoule pulling speed Ua is as-

sumed to be equal to the axial growth rate.

The flow and temperature fields, as well as the melt/

crystal interface, are also represented in the Cartesian

coordinate (x; y; z). The dimensionless variables are de-

fined by scaling length with the crystal diameter Dc,

velocity with am=Dc, and pressure with qma2m=D
2
c , where

qm is the melt density and am, the thermal diffusivity.

The dimensionless temperature is scaled by the equilib-

rium melting point Tm (for a rough interface). For the

convenience of discussion, the variables used in the

equations are all dimensionless unless otherwise stated.

The pseudo-steady governing equations describing con-

vection in the melt (m) are as follows:

r 
 m ¼ 0; ð1Þ

m 
 rm ¼ �rP þ Prr2m � PrRaTðT � 1Þeg; ð2Þ

where m; P ; and T are the dimensionless velocity, pres-

sure, and temperature, respectively. Pr is the Prandtl

Fig. 1. (a) Schematic sketch of a Bridgman growth YAG crystal; (b) a sample mesh at the interface with {2 1 1} facets; the growth

direction is in [1 1 1].
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number (Pr � mm=am); mm, the kinematic viscosity. In Eq.
(2), the thermal Rayleigh number RaT in the source term
is defined as

RaT � gbTTmD
3
c

ammm
;

where g is the gravitational acceleration and bT, the

thermal expansion coefficient. Furthermore, the gravity

unit vector eg ¼ �ex is pointing downward, as shown in

Fig. 1a.

The dimensionless equations for heat transfer in the

melt and the crystal are described through the P1-
approximation as follows:

Melt

t 
 rT ¼ r 
 jmðT ÞrT þ ~aamNRðJm � T 4Þ; ð3Þ

Crystal

Pecex 
 rT ¼ r 
 jcðT ÞrT þ ~aacNRðJc � ~nn2cT
4Þ: ð4Þ

where ~aai � aiDc is the dimensionless optical absorption

coefficient; ~nni � ni=nm, the normalized refractive index of
phase i; Ji, the dimensionless irradiance being scaled by

4nmrT 4
m, where nm and r are the refractive index of the

melt and the Stefan Boltzmann constant, respectively.

The radiation to conduction ratio NR � 4n2mrT 3
mDc=km

is an important dimensionless number for the internal

radiation. Also, jiðT Þ � kiðT Þ=km is the dimensionless

thermal conductivity of the melt (m) or crystal (c), and

Pei � qiCpiUaDc=km is the Peclet number of crystal or

ampoule (a); km, the thermal conductivity of the melt at
Tm. Also, qi;Cpi , and ki are the density, specific heat, and
thermal conductivity of the phase iði ¼ c, m, or a), re-

spectively.

The radiative heat transfer is described by the P1
approximation for the melt (m) and the crystal (c) is as

follows:

r 
 1

3~aai
rJi � ~aaiNRðJi � ~nn2i T

4Þ ¼ 0 ði ¼ m; cÞ: ð5Þ

The ampoule is assumed to be opaque, which is rea-

sonable for refractory metals like molybdenum here and

the heat transfer is dictated by a typical convective/

conduction heat transfer:

Peaex 
 rT ¼ r 
 jaðT ÞrT : ð6Þ

As shown in Eqs. (3) and (4), the P1 approximation in-

troduces a source term to consider the internal heating

or cooling due to radiation. On the other hand, the

Rosseland diffusion approximation is much simpler,

without solving any additional differential equations, by

treating the thermal conductivity (in the dimensional

form) as:

ki ¼ kcondi þ 16n2i rT
3

3aR
ði ¼ m; cÞ ð7Þ

where kcondi is the contribution due to conduction and

the second term is due to radiation; aR, the Rosseland
mean absorption coefficient. Apparently, the internal

radiation enhances the heat transfer (heating or cooling

effect). Taking the crystal (i ¼ c) as an example, due to

the increase of crystal conductivity, the interface con-

vexity increases with the decreasing absorption coeffi-

cient aR [10]. Because the Rosseland approximation is

not accurate near the boundary and it is valid only for

optically thick materials, we do not anticipate a satis-

factory solution from there. Furthermore, for a consis-

tent formation, a jump (slip) boundary condition, such

as the Deissler�s condition [11], is needed. However, in

the recent studies by Vizman et al. [13,14] and Lan and

Tu [10], no special treatment, i.e., the no-slip model, was

considered. In this report, we also adopt the no-slip

Rosseland diffusion model for comparison. In fact, the

use of the slip boundary condition complicates the

treatment of the Stefan condition because two temper-

atures at the interface are necessary for calculation.

The thermal boundary conditions at the melt/solid

interfaces are set by the total heat flux balances. For

example, at the growth front:

n 
 rT jm þ NR

3~aam
n 
 rJmjm � n 
 jcrT jc �

NR

3~aac
n 
 rJcjc

� ccPemStðex 
 nÞ ¼ 0; ð8Þ

where ~nn is the unit normal vector at the growth inter-

face pointing to the melt. The Stefan number St �
DH=ðCpmTmÞ scales the heat of fusion (DH ) released

during solidification to the sensible heat in the melt;

cc ¼ qc=qm. In most cases, the melt is assumed to be

opaque. Because we still allow an emissivity for the melt,

the radiation in the crystal side can be modified as the

following for an opaque melt:

n 
 rT jm � n 
 jcrT jc �
NR

3~aac
n 
 rJcjc � ccPemStðex 
 nÞ ¼ 0;

ð9Þ

where

�n 
 rJcjc ¼
3~aac�m
4� 2�m

ðJc � ~nn2cT
4Þ; ð10Þ

where �m is the surface emissivity of the melt.

Because the ampoule is also opaque, the treatment

at the material/ampoule is similar. For example, at the

crystal/ampoule interface,

n 
 jarT ja � n 
 jcrT jc �
NR

3~aac
n 
 rJc ¼ 0: ð11Þ

Again, the treatment of the boundary condition for the

irradiance is similar:

�n 
 rJcjc ¼
3~aac�a
4� 2�a

ðJc � ~nn2cT
4Þ; ð12Þ
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where n is the unit normal vector pointing to the am-

poule and �a, the surface emissivity of the ampoule. The
heat exchange between the ampoule and the furnace is

by both radiation and convection according to the en-

ergy balance along the ampoule surface,

�n 
 jarT ja ¼ BiðT � TaÞ þRadðT 4 � T 4
a Þ; ð13Þ

where n is the unit normal vector on the ampoule surface
pointing outwards; Bi � hDc=km, the Biot number, and
Rad � r�aT 3

mDc=km the radiation number. For compar-

ison, the effective furnace temperature Ta is the same as
the one used by Brandon and Derby [3]. The hot- and

cold-zone temperatures are assumed to be constant,

while the temperature profile inside the adiabatic zone

(0:5ðL� dÞ < x < 0:5ðLþ dÞ) is assumed linear:

Ta ¼ Tm þ GTðx� 0:5LÞ; ð14Þ

where GT is the thermal gradient in the adiabatic zone,

i.e., GT ¼ ðTH � TCÞ=d, where d is the length of the

adiabatic zone. Temperature at the top and bottom

surfaces is set to be the furnace temperature there. Al-

though this treatment is somewhat different from that

used in [3], the end effect is small.

Also, the temperature at the melt/crystal interface for

a rough surface is assumed to be at the equilibrium

melting temperature of the material; the supercooling at

the rough surface is neglected. For a convex interface,

this is a reasonable assumption because the supercooling

at the singular faces (facets) is much larger. On the

contrary, for a concave interface, the 2D screw growth

mechanism shows no superheating in the facet. In such a

case, the supercooling at the rough surface becomes

important [8]. Due to the internal radiation in the

crystal, which is usually much larger than that in

the melt, the interface appears to be convex in most of

the cases. For a convex interface, if a facet exists, the

interface is defined by its crystallographic plane and the

highest supercooling in the plane needs to be equal to

the kinetic supercooling DTkin. Therefore, at the facet the
lowest temperature is defined by

T ¼ Tm � DTkin: ð15Þ

The supercooling DTkin is a kinetic data and it also de-

pends on the mechanisms of facet formation. In general,

for a facet plane, it is related to the growth rate. The

simplest form may be taken as the following:

DTkin ¼ bUc
n ¼ b½jUajðn 
 exÞ�c; ð16Þ

where b is a kinetic coefficient; Un, normal growth rate

at the interface, and c is a constant depending on the

mechanisms. For example, if the facet is formed by a

screw dislocation (growth), c is about 0.5. For a given

growth rate, DTkin also depends on the interface shape.

However, for a given facet, ðn 
 exÞ is fixed. Therefore,
once a steady-state growth rate is achieved, for a given

facet, DTkin can be used as an input parameter (from the

kinetic data). Therefore, for the f211g facet, the maxi-

mum supercooling is known if the growth rate is speci-

fied. In fact, our approach for treating the faceting is

similar to the one proposed by Brice [1] and Voronkov

[15], which is based on a simple geometry reasoning that

the facet size b (diameter) can be estimated by

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8DTkinR=Gn

p
; ð17Þ

where R is the radius of curvature of the melting point

isotherm and Gn, local thermal gradient. However, ob-

taining R and Gn a priori is not possible without the

detailed heat flow simulation. Therefore, in the present

report, their concept for facet formation is adopted, but

the interface shape and the local thermal gradients are

coupled with the heat flow calculation. Apparently, the

estimation of the local thermal gradient Gn is crucial in

estimating the facet size.

Once the kinetic information is known, to implement

the facet calculation is straightforward. Take the growth

in the ½111� direction with f211g facets as an example.

We first align the ½111� direction with the x-axis. By a

simple rotation transformation, the ½�1101� is in the z-
direction, while ½�1121� is in the y-direction. Furthermore,
the plane normal of the three f211g facets can be easily

obtained as well, as shown in Fig. 1b: they are 4ex=
ffiffiffi
3

p
�

ey=
ffiffiffi
6

p
þ ez=

ffiffiffi
2

p
; 4ex=

ffiffiffi
3

p
þ ey=

ffiffiffi
6

p
þ ez=

ffiffiffi
2

p
, and 4ex=

ffiffiffi
3

p
�

ey=
ffiffiffi
6

p
� ez=

ffiffiffi
2

p
, respectively, in the (1 1 2), (1 2 1), and

(2 1 1) planes. Because at the growth axis, y ¼ 0 and

z ¼ 0, one can use a plane equation, i.e., f ðx; y; zÞ ¼
xþ By þ Czþ D ¼ 0, to define each facet, where B;C,
and D are constants; �D ¼ x0, the intersection of the

plane with the x-axis. The plane constants B and C can

be easily calculated from the normal vector (rf ); e.g.,
for the [1 1 2] plane, B ¼ 1=ð4

ffiffiffi
2

p
Þ and C ¼

ffiffiffi
3

p
=ð4

ffiffiffi
2

p
Þ.

During calculation, the location of Tm is found first for

the rough surface, where the thermal boundary condi-

tion, Eq. (8), is used for the energy equation. Then the

interface is cut by the facet plane; at the beginning one

can use the melt height at y ¼ 0 and z ¼ 0 to start with.

If the new interface of the cut plane is lower than the

rough one, the interface shape is updated. Based the new

interface shape, the temperature as well as other vari-

ables, are then updated, and the highest supercooling in

the each facet can be found. If the supercooling is higher

than the kinetic one, the plane is moved upward by in-

creasing x0. This procedure continues until all the su-

percooling constraints are satisfied and all the facets are

tested. Because the interface is defined by the nodes as

shown in Fig. 1a, the vertices are then interpolated from

the node values. Both nodes and vertices are used for

remeshing. This procedure is robust, and no special

treatment is needed after finding the interface shape.

The above governing equations and their associated

boundary conditions are solved by an efficient FVM
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scheme using multigrid acceleration [16] for the free

boundary problem. Two levels of grids are used in the

calculation. In the first level, there are 16� 21� 30 (in

the radial, angular, and axial directions, respectively)

finite volumes in the melt and 16� 21� 15 in the crys-

tal, and 5� 21� 45 in the ampoule. The second level

doubles the finite volumes in each direction, i.e., 32�
42� 60 cells in the melt. The calculations are performed

in personal computers (PIII/1.2GHz CPU with 512M

SRAM), and one calculation takes about 2 h in CPU

time. For all cases, the results based on the coarse and

fine grids are about the same. Detailed description of the

numerical method can be found elsewhere [16].

3. Results and discussion

Before presenting the results for facet formation, we

have performed extensive comparison with previous

calculations. By using the present code, the first com-

parison is conducted for a simple 1D system [11] con-

sisting of two parallel large black plates having fixed

dimensionless temperatures at h1 ¼ 1 and h2 ¼ 0:5, re-
spectively; h ¼ T=T1, where T1 is the temperature at wall
1. Between two plates is an absorbing–emitting medium

(sL ¼ aL ¼ 1; �1 ¼ �2 ¼ 1) and there is no phase change.

The calculated results using P1-approximation at differ-

ent conduction-to-radiation parameters (N � ka=4rT 3
1 )

are shown in Fig. 2, where the exact solutions (solid lines)

and the previous 1D P1 calculations (thick dashed lines)

are put together for comparison. As shown, they are in

good agreement, except for small N values (N ¼ 0:01).
For N ¼ 10, the heat conduction is dominant and the

thermal profile is pretty much linear. With the increasing

internal radiation or decreasing N value, one can see the

temperature gradient increases near two walls. This is

typical due to radiation cooling. Larger thermal jumps at

the wall for N ¼ 0 indicating little emission and ab-

sorption in the medium, so that radiation takes place

from surface to surface. Of course, the P1 approximation
is not suitable at this limit.

With the increase of internal radiation (smaller N ),
except near the boundary the temperature profile is quite

linear having smaller gradients. This gives the reasoning

for the Rosseland diffusion approximation using an en-

hanced thermal conductivity. In other words, due to

internal radiation, the material tends to be more ther-

mally conductive. However, near the walls, the Rosse-

land approximation starts to fail. To approximate the

steep thermal gradient at the boundary, the jump

boundary condition is often used. Therefore, it is clear

Fig. 2. Nondimensional temperature distribution for combined

internal radiation and conduction across a gray slab of nondi-

mensional optical thickness sL ¼ 1, between two walls with a

temperature ratio of 0.5 (h ¼ T2=T1 ¼ 0:5).

Table 1

Physical properties and some input parameters [3,10]

YAG

qc ¼ 4:3 g cm�3

qm ¼ 4:3 g cm�3

aR ¼ 1,10,100 cm�1

Tm ¼ 1970:0 �C
DH ¼ 455:5 J g�1

kcondc ¼ kc ¼ 0:1 Wcm�1 �C�1

km ¼ 0:05 Wcm�1 �C�1

Cpm ¼ 1:0 J g�1 �C�1

Cpc ¼ 0:39 J g�1 �C�1

bT ¼ 2:7� 10�5 K�1

lm ¼ 0:4 g cm�1 s�1

nm ¼ 1:8

nc ¼ 1:8

am ¼ 1, 5, 10, and 1 (opaque) cm�1

am ¼ 1, 10, 100 and 1 (opaque) cm�1

em ¼ 0:9

ec ¼ 0:3

Molybdenum

qa ¼ 9:35 g cm�3

ka ¼ 1: Wcm�1 �C�1

Cpa ¼ 0:276 J g�1 �C�1

em ¼ 0:3

Other input parameters

L ¼ 15 cm

Rc ¼ 0:65 cm; (Dc ¼ 2 Rc ¼ 1:3 cm)

Ra ¼ 0:967 cm

h ¼ 4:5� 10�2 Wcm�5 �C�1

TH ¼ 2170 �C
TC ¼ 1770 �C
GT ¼ 80 �Ccm�1

d ¼ 0:3175 cm

Ua ¼ �1� 10�4 cm s�1

Dimensionless groups

Pr ¼ 8; RaT ¼ 1:21� 105
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that the Rosseland approximation is not accurate near

the boundary. Unfortunately, for crystal growth, the

interface happens to be at the boundary, i.e., a free

boundary problem. Therefore, nontrivial errors in in-

terface calculation by the Rosseland model can be an-

ticipated. On the other hand, the use of the jump

condition at the interface complicates the numerical

treatment of the Stefan boundary condition, where two

temperatures are required at the interface, and the

thermal gradient from heat conduction is also not real-

istic. Hence, the jump condition was not considered in

the previous reports [10,13,14]. For comparison pur-

poses, we do not introduce the slip condition as well in

this report.

Although the P1 approximation seems to be reason-

able for the 1D problem, the applications to 2D or

3D problems are still uncertain, especially for crystal

growth. In fact, as discussed in the previous reports [e.g.,

11], the P1 approximation performed poorly for optically
thin medium, and may be substantially in error for

multidimensional geometries with large aspect ratios

and/or surface emission dominates over medium emis-

sion. Therefore, the second comparison is conducted for

an axisymmetric configuration, which was examined

carefully by Brandon and Derby [3] using a rigorous

finite element approach. The data and parameters used

in the simulation are summarized in Table 1 [3]. The

melt here is also assumed to be opaque. Therefore, we

only vary the optical absorption coefficient of crystal,

i.e., ac, for comparison. Figs. 3 and 4 shows the com-

parison of the calculated temperature profiles at the

centerline for ac ¼ 10 and 1 cm�1, respectively. As

shown, for the optically thick case (or ac � 1 cm�1) in

Fig. 3, the temperature profiles obtained from different

models are very close. However, for ac ¼ 1 cm�1 in Fig.

4, the difference among models increases, especially near

the interface. The Rosseland model over predicts the

interface position, while under estimates the thermal

gradient in the crystal near the interface. If we put the

calculated interfaces together for comparison in Fig. 5,

Fig. 3. Comparison of calculated axial temperature distribu-

tions (at the centerline) with the one obtained by Brandon and

Derby [3] for ac ¼ 10 cm�1; the melt is assumed to be opaque.

Fig. 4. Comparison of calculated axial temperature distribu-

tions (at the centerline) with the one obtained by Brandon and

Derby [3] for ac ¼ 1 cm�1; the melt is assumed to be opaque.

Fig. 5. Comparison of calculated interface shapes from differ-

ent models for various optical absorption coefficients of the

crystal; the melt is assumed to be opaque.
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the conclusion is clearer. For the optically thick situa-

tion, the agreement of the interface shapes and positions

from different models is reasonably good. The discrep-

ancy increases with the decreasing ac value. For ac ¼ 1

cm�1, the Rosseland model over predicts the interface

position, while the P1 approximation still agrees with the
rigorous model reasonably well. Nevertheless, if we just

take the interface shape or convexity for comparison,

surprisingly, in all cases, the calculated interface shapes

are very close. In fact, this is consistent with the com-

parison by the Vizman et al. [13,14]. Their calculated

interface shape agrees reasonably well with the one by

Brandon and Derby [3]. Furthermore, as illustrated in

Fig. 5, internal radiation makes the interface much more

convex. As a result, as shown in Fig. 6 (only part of the

domain is shown), the convection (flow velocity) in-

creases with the interface convexity. Because YAG melt

is quite viscous and the convection is not very strong, the

isotherms are not distorted much in all cases. Never-

theless, the weak flow may have profound effect on

dopant distribution [10]. Moreover, for oxide growth,

the key issue for a highly convex interface is the super-

cooling and faceting that have significant effects in do-

pant segregation and crystal quality.

To consider the facet formation, in this study, we

have chosen the growth in the ½111� direction, and the

typical faceting has been found at the f211g planes [8];

the angle between [2 1 1] and [1 1 1] is about 19:47�.
Sometimes, f110g facets can also be found in the ex-

periments, which occurs usually near the edge of the

interface due to the larger critical angle being about

35.26�. For the f211g facets, the position of faceting

depends strongly on the interface shape. For a highly

convex interface, they may appear near the interface

center causing a core in the grown crystal. If we take

faceting into account for a supercooling DTkin of 2 �C,
the calculated thermal and velocity fields using the P1
model for different ac�s are shown in Fig. 7; two different
views are shown. The 3D interface shapes and the tem-

perature distributions at the interfaces are also illus-

trated; the darkest area in the facets has a temperature

of 2 �C lower than the equilibrium melting temperature.

Fig. 6. Calculated thermal and flow fields for various optical absorption coefficients of the crystals by the P1 model; the melt is assumed
to be opaque.
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As shown, increasing the internal radiation in the crystal

pushes the interface upwards. Meanwhile, the interface

becomes more convex. As a result, beside the convection

in the melt is enhanced, the facet formation moves to the

center part of the crystal.

The Rosselland diffusion model gives similar results,

as shown in Fig. 8. However, for ac ¼ 1 cm�1, i.e., a

more optically thin situation, the calculated facets be-

come much larger and three f211g facets join at the

interface center forming a singular point. Between two

facets, a clear singular edge is also formed. These sin-

gular edges and point are often the position for stress

concentration making the crystal much more vulnerable

to thermal stress. As compared with Fig. 7, apparently

the Rosseland diffusion model over predicts the facet

size. As mentioned previously, due to the enhanced

Rosseland thermal conductivity, the thermal gradients

are underestimated near the interface in the crystal. As a

result, for the same supercooling, its calculated facet size

is larger. Therefore, although the calculated interface

shapes by Rosseland model for the case without facets

are quite close to the ones by the P1 model, the calcu-
lated facets turn out to be erroneous. We further take

the interface shapes viewed from the x� y plane for

comparison. As shown in Fig. 9, the difference also in-

creases with the decreasing absorption coefficient of the

crystal (ac).
So far, we have assumed the melt to be opaque. This

assumption is also quite typical and has been used in

many calculations [3,4,10]. Also, Naso et al. [17] did

some measurements showing that the melt is much less

transparent as compared with the crystal. Nevertheless,

many crystal growers still believe that the melt could be

still transparent based on their observation. Unfortu-

nately, an accurate measurement is still difficult and not

available at this stage. Therefore, the effect of internal

radiation in the melt could be interesting and may be

worthwhile to study even though the experimental data

is not available. Similar to the internal radiation in the

crystal, clearly if the melt is transparent to radiation, the

radiation from the hot zone provides a direct heating,

i.e., radiational heating, to the interface. Therefore, the

interface convexity should be reduced. We also consider

this effect for ac ¼ 1 cm�1, and the comparison of the

interface shapes for different absorption coefficient of

the melt (am) is summarized in Fig. 10a and b, for two

different views, respectively. As anticipated, increasing

the internal radiation in the melt reduces interface con-

vexity as well as the position. When the melt and the

crystal have the same optical thickness, the interface

Fig. 7. Effects of absorption coefficient (internal radiation) in the crystal on the thermal and flow fields and the interface shape with

{2 1 1} facets calculated by the P1 model: (a) ac ¼ 100 cm�1; (b) ac ¼ 10 cm�1; (c) ac ¼ 2 cm�1; DTkin ¼ 2 �C. The lower figures are the
interfaces and the color indicates the temperature distribution; the darkest area has 2 �C supercooling.
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shape becomes very flat; it is flatter than the case without

internal radiation, even though the melt thermal con-

ductivity is smaller. Indeed, because the radiation flux is

proportional to T 4, for the same temperature difference

and the optical distance, the radiational heating is larger

than cooling. Similar results were also observed by

Tsukada et al. [5] and Kobayashi et al. [6] for the sim-

ulation of the internal radiation in the Czochralski

growth of LiNbO3 single crystals. In addition, due to the

reduce of the interface convexity by radiative heating,

the convection intensity is also reduced, while the facet

formation moves outwards.

So far, we have illustrated that the interface con-

vexity of YAG Bridgman growth is mainly due to the

higher internal radiation in the crystal, which is partic-

ularly transparent from the thermal 1–5 lm in wave-

length [1]. The faceting is also calculated simultaneously

based on the P1 approximation. Still, there are other

possibilities that could affect the interface convexity,

such as the melt convection and the interface faceting.

However, for Bridgman growth as we illustrated previ-

ously, the convection is rather weak. This is due to the

thermally stable configuration of the Bridgman tech-

nique as well as the viscous melt of YAG. Therefore, this

is also quite different from the cases in Czochralski

growth [6], where the buoyancy flow and the forced

Fig. 9. Comparison of calculated interfaces by the P1 and no-

slip Rosseland diffusion models for various optical absorption

coefficients.

Fig. 8. Effects of absorption coefficient (internal radiation) in the crystal on the thermal and flow fields and the interface shape with

{2 1 1} facets calculated by the no-slip Rosseland diffusion model: (a) ac ¼ 100 cm�1; (b) ac ¼ 10 cm�1; (c) ac ¼ 2 cm�1; DTkin ¼ 2 �C.
The lower figures are the interfaces and the color indicates the temperature; the darkest area has 2 �C supercooling.
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convection due to crystal rotation can be the dominant

factors for the interface morphology. For Bridgman

growth, even with a tilted ampoule, if the tilt angle is not

large, the effect of melt flow on the interface is still very

limited [10]. Regarding the faceting, we have also ob-

served that its effect on the interface convexity is not

profound at all; one can also refer to the illustrations in

[10] based the Rosseland diffusion model. Nevertheless,

both the P1 and the Rosseland diffusion models are suit-

able for optically thick materials. For a highly transpar-

ent (optically thin) material, the faceting could still be an

important factor on the interface convexity. Unfortu-

nately, this is beyond the capability of present simulation.

4. Conclusions

In this study, we have adopted the P1 approximation
to investigate the effects of internal radiation on the heat

flow and facet formation, a formidable 3D problem. The

no-slip Rosseland diffusion model is also used for

comparison. In general, the calculated thermal profiles

and interface shape by the P1 approximation agree rea-

sonable well with those by the rigorous approach for

ac > 1 cm�1, while the Rosseland model over predicts

the interface location. In addition, the thermal gradients

near the interface obtained by the Rosseland model are

also too small to predict reasonably the facet formation.

The effect of absorption coefficient of the melt is also

considered. Decreasing the melt absorbability increases

radiative heating to the interface. As a result, the melt

convexity as well as convection intensity decreases. The

facet formation also moves outwards to the edge.

Interestingly, even though the facets break axisym-

metry, the heat transfer and melt flow are pretty much

symmetric. The growth at different growth directions

may introduce higher asymmetry that may generate a

clearer 3D flow. However, for f211g or f110g facets,

the axisymmetry in the heat flow calculation seems to be

reasonable.
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