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On-Line Learning Delivery Decision Support System
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Abstract—A production learning system (PLS) based on the tool
model was constructed as a decision support and real-time infor-
mation update system to forecast the cycle time. A tool model in-
cludes a waiting model and a processing model. Each of the waiting
and processing models uses a backpropagation neural network to
establish the relationship between the input and output (time) of
the model. Hence, cycle time estimation, tool group move and con-
firm line item performance (CLIP) value can be obtained based on
the memory stored in the neural network. The result shows that
the forecasting ability of the PLS has an error rate below 8% on
average.

Index Terms—Backpropagation neural network (BPNN), cycle
time estimation, decision support system, tool group move, tool
model.

I. INTRODUCTION

T HE FLOW of lots in an IC fab is like a job shop and very
complex. To model an entire fab as a unit is a tremendous

task. Connors [1] modeled different tool groups found in semi-
conductor wafer fabrication using a queueing network. Kim [3],
Juang [4], Lu [5] and Wein [8] also used queueing theory to an-
alyze IC fabs. Vepsalainen and Morton [7] used an iterative pro-
cedure to generate the average estimated remaining delay. Eht-
eshami [2] used historical average cycle time and added safety
margin to commit a product delivery date.

All methods described above used an “average” feature.
However, this feature cannot be used to characterize the
attributes of each operation and waiting effects in detail. Thus,
a tool model [9], which characterizes the dynamics of a single
tool and considers the operation time as the prime unit, is
proposed. Backpropagation neural networks (BPNN) have
been widely used in several areas and proved to have the ability
to model the nonlinear relationship of a dynamic system. As a
result, BPNN was used in this paper to learn the relationship in
each model [9].

Since the time of each step can be obtained, the estimated
cycle time of a product is the summation of the time estimated
by all tool models related to the operation flow of the product.
The user can predict the cycle time of a product before it is
released. The estimated remaining cycle time of a lot can help to
see whether the lot is late for time delivery or not. The tool move
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suggestion can be a reference to re-configure the tool allocation
within a day, while the confirm line item performance (CLIP)
value represents the percentage of lots scheduled for output in a
week.

II. TOOL MODEL AND PRODUCTIONLEARNING SYSTEM

Tools are the actual machines, while tool groups are virtual
units used to define the flow of a product. Usually, one or more
tools that perform the same operation belong to a tool group. The
flow of a lot or a product is the sequence of the tool groups that
define the operations (or tool groups) it takes but not the speci-
fied tools. The lot flow is related to its product type or typically
its route type. Hence, a lot after processing in the previous step
only knows the next tool group that it should go. Any available
tools belonging to the tool group can serve this lot. If no tool
is available, this lot waits in some place we call a virtual tool
group. Lots waiting in the same tool group will compete for the
same resources, i.e., the tools.

From the viewpoint of a lot, it takes about 200 to 300 steps
to complete the process. The tool model attempts to divide the
flow into the basic elements, or steps, rather than stages. The
tool model concept involves building a model to determine the
time required for a step for a lot. In detail, the tool model can be
divided into two parts, the waiting part (wait in the tool group)
and the processing part (processed in the tool). Since the tool
model is divided into two parts, the lot flow in the tool model is
a stream of waiting, processing, waiting, processing and so on.

The relationships among the tool, the tool group and the lot
flow can be further elaborated. Fig. 1 is a part of the topology of
the tools and virtual tool groups in the fab. The tool group frame
is dotted to represent the virtual condition. For example, tools O
and P are the members of tool group F while tools Q, R, and S
belong to tool group G. A lot K just finishing processing in tool
M is forwarded to the next step, the tool group G. If tools Q, R,
and S are busy, then the lot K waits in the tool group G, where
there may have some waiting lots already. A higher priority lot
will be chosen when a tool is free. Hence, the priority is a critical
attribute for deciding the waiting time in a tool group. The cycle
time of a lot is the summation of the time at each step as

CT (1)

where is the total numbers of steps for the lot. and
are the waiting time and processing time in step, respectively.

Based on the decomposed tool model architecture, the scale
and complexity of modeling are reduced enormously. A neural
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Fig. 1. The relationships among tool, tool group, and lot flow.

Fig. 2. The architecture of BPNN.

network will be used to forecast the waiting time and processing
time of both models.

Since neural networks have the properties of massively par-
allel processing, high memory and learning abilities, they are
capable of modeling the nonlinearity of a complex dynamic
system. Hence, a BPNN shown in Fig. 2 was applied to predict
the times in waiting and processing models. Since each model
contains a BPNN, the number of BPNN for tool groups is equal
to the number of tool groups, and the number of BPNN for tools
is equal to the number of tools. In this paper, the fab under in-
vestigation has about 200 tool groups and 500 tools.

To construct the waiting/processing time model, the first step
is to determine the inputs of the network. There are 12 fac-
tors chosen as the inputs of BPNN for waiting time model and
one output represents the waiting time. The inputs are waiting
wafers, priority of the lot, push index, pull index, month index,
day index, time index, and waiting pods of five priorities (SH,
H, R, N, S). The output is the actual waiting time in minute.
As to the processing model, the most important attribute of the
processing time is the recipe. It is very difficult to acquire the de-
tailed information for each recipe. In our simulation data, tech-
nology can also identify the recipe, which is used for the lot.
Therefore, number of wafers and technology are chosen to clas-
sify the time for one lot processed in a tool. The detailed descrip-
tion of the attributes used in the waiting and processing models
are listed in Tables I and II, respectively.

The production learning system (PLS) is an on line learning
system for a full-scale fab to implement the tool model by ap-
plying a backpropagation neural network. The PLS re-trains
each model periodically. As a result, the models will reflect the
changes in the shop floor as time goes by. Hence, the PLS is a
dynamic learning system that provides real time information for
the fab. The PLS client/server architecture is shown in Fig. 3.

The client program provides several functions. Based on the
estimated time of each step, we can easily get the useful infor-
mation, such as cycle time, tool group move, CLIP and so on.
The computation time for those information is below 10 min in
average. In contrast, the traditional method takes a long time to
resimulate. The server program keeps running, while the client
runs when necessary. The client can run at any place where the
ODBC is connected to the computer that stores the memory of
the neural network.

III. SIMULATION AND RESULTS

The data used in the PLS is collected from a real fab by the
server program. It takes about 3 days and 50 000 data sets for
warming up the system and training the networks. The client
program of the PLS provides the following functions: cycle time
estimation of a product, remaining cycle time estimation of a
lot, tool group move estimation and CLIP. These functions are
described below.

A. Function I: Cycle Time Estimation of a Product

This function is used by marketing sales to obtain product
cycle time estimation before receiving a new order. The sales
simply input the product type, number of wafers and priority
for the lots. The waiting time in the tool group and the pro-
cessing time in the tool of each operation are calculated and
then the total cycle time of the lot is a summation of this se-
quence of steps. Even the lots belonging to a new route can be
predicted because the time a lot spent in the fab depends upon
the attributes mentioned above rather than the route. As long as
the operation in each step has been learned before, the time of
each step is still calculable.

The estimated cycle time of a product A, which is a new order
from a customer, is shown in Fig. 4. The waiting time and pro-
cessing time of each operation are calculated and the forecasted
wafer out information is also shown. Hence, if the product A is
released at 1999-04-30 with priority “R” and with wafer quan-
tity “24,” then the forecasted processing time is about 10.5 days
while the lot takes 10.5 days to wait in the buffers. The fore-
casted wafer out is earlier than the due date (1999-05-23). It
means that this lot can be delivered on time. Based on this in-
formation, the sales can guarantee the on-time delivery to the
customer and accept this new order.

Furthermore, an unusual waiting time may indicate a bottle-
neck. For example, the waiting time of the product in Fig. 4 in
the tool group 85 is up to 360 minutes. It is strange that a lot
with priority “R” will wait 6 hours in the tool group 85. The su-
pervisor should check the capacity or the tool status in the tool
group 85 in order to prevent the bottleneck occurrence.

The comparison of cycle time estimation is listed in Table
III. For each product, the cycle time of 5 lots with priority “N”
are averaged. There are different numbers of operation for each
product. It is obvious that the error from the PLS can be below
8% in every product cycle time forecast.

B. Function II: Remaining Cycle Time Estimation of a Lot

Much previous research showed that the least slack (LS)
policy and its variants could support better performance for
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TABLE I
THE ATTRIBUTES USED IN THE WAITING MODEL

TABLE II
THE ATTRIBUTES USED IN THE PROCESSINGMODEL

Fig. 3. The client/server architecture of the PLS.

reducing the cycle time mean and variance. In these least slack
policies, the term “estimated remaining cycle time” is the key

component because of its indeterminacy. A good estimated
remaining cycle time could support the accuracy of LS and
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Fig. 4. Estimation of a product cycle time.

TABLE III
THE ERRORS OFFORECASTEDPRODUCT CYCLE TIMES

then enhance the on-time delivery. The manager can adjust the
priorities of the lots that may be too late or too early to commit
their due date based on the estimated remaining cycle time
from the PLS. The formulation of calculating remaining cycle
time of a lot is just modified from Eq. (1) as

(2)

where is the last finished step.
The remaining cycle time estimation can be used to support

the decision system, as shown in Fig. 5. The supervisor can de-
tect the lots that may be delayed, and then change the priorities
of these lots for on-time delivery.

The comparison of the forecasted remaining cycle time
(RCT) and the actual RCT is given in Table IV. The forecasts
of LOT A, LOT D, and LOTF are almost perfect, while the
others are larger. Nevertheless, the forecasts of product cycle
time and the remaining cycle time are both close to the actual
value. This can ensure the correctness of the forecast and then

Fig. 5. The architecture of the closed-loop cycle time forecasting system based
on the tool model.

promise the reliability of the derived function (tool group move
and CLIP).

C. Function III: Tool Group Move Estimation

If the tool group move of the tool group M is N, it means that
there are N wafers processed through the tool group M. Tool
group move is defined as the number of lots completing an op-
eration. For example, if a lot with 24 wafers has been processed
by the tool group M, then 24 tool group moves are added to the
tool group M. Usually, the calculation interval of the tool group
move of tool groups is 1 day. The supervisor watches the fore-
casted tool group moves of all tool groups and may reconfigure
the target throughput of each tool group.

D. Function IV: CLIP

CLIP is an important index to reflect on-time delivery. The
general definition of CLIP is the number of products deliv-
ered on schedule over the number of products that should be
delivered on schedule within a specified interval, say, for ex-
ample, seven days. According to the estimated remaining cycle
time of lots, the forecasted CLIP, which only includes the lots
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TABLE IV
FORECASTEDREMAINING CYCLE TIME OF LOTS

whose due dates are less than seven days, can be obtained. This
function can provide the status of urgent lots that are due to
be shipped within seven days. A typical CLIP calculated on
1999-04-30 is about 0.86. It means that 86% product whose due
date are within the next seven days can be delivered on time. If
the forecasted CLIP is too low, the delayed lots should be ad-
justed to higher priorities in order to commit due date.

IV. CONCLUSION

In order to model a fab in detail, a step instead of a stage was
chosen as the fundamental unit of the fab model. The proposed
tool model is used to forecast the time of each step. According to
the different attributes of the waiting time and processing time,
the tool model is divided into two parts, a waiting model and a
processing model. A backpropagation neural network was ap-
plied to learn the input-output relationship of both submodels.

Based on the tool model, the estimated cycle time of a
product before releasing, estimated remaining cycle time for a
lot, tool move and CLIP can be obtained. The results show that
the on-line learning system, PLS, which on-line updates the
new information of the fab, has a good forecasting ability with
less error. In particular, each function of the PLS can provide
useful information for the supervisor or manager to make better
decisions. Less computation time is another feature of the PLS.
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