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Effects of Fixed Charge and Dielectric Constant Distributions
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The electrophoretic mobility of a particle coated with an ion-
penetrable charged membrane in a uniform electric field is in-
vestigated. In particular, the effects of the distribution of fixed
charges and that of the dielectric constant in the membrane phase
on the electrophoretic mobility are investigated. The results of
numerical simulation reveal that these effects can be significant.
In particular, for a constant total amount of fixed charges, as-
suming a homogeneous fixed charge distribution may lead to an
appreciable deviation. e 1995 Academic Press, Inc.
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1. INTRODUCTION

The migration of charged particles in electrolyte solutions
as a response (0 an applied electric field is a phenomenon
common to numerous areas. According to the classic result
of Smoluchowski, the magnitude of the electrophoretic mo-
bility of a particle, a measure of its migration velocity in an
electric field, is proportional to the product of the strength
of the applied electric field and the zeta potential of the par-
ticle (1). The derivation of this result is based on a noncon-
ducting, rigid surface model, in which fixed charges are dis-
tributed over the surface of a particle, which is inpenetrable
to electrolytes. Although Smoluchowski’s result is found to
be applicable to various colloidal systems, the rigid surface
model is inappropriate to the description of certain classes
of particles, ¢.g., biological cells. A typical cell is covered by
an ion-penetrable membrane, which usuvally carries fixed
charges due to the dissociation of the functional groups it
bears. This is often simulated by a nonconducting particle
with an adsorbed charged polymer layer (2-5). In this case,
the fixed charges are distributed over a finite volume in space,
~ and a physical solid-liquid interface corresponding to that
in a rigid surface model does not exist. Apparently, the result
of Smoluchowski needs to be modified 1o take this factor
into account. Ohshima and Kondo (6) examined the elec-
trophoretic behavior of a particle coated with an ion-pene-
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trable membrane. The distribution of fixed charges was as-
sumed to be homogeneous, and some experimental data were
gathered to justify the applicability of the theoretical result
(7, 8). The analysis was extended by Hsu er al. (9) to the
case of nonhomogeneously distributed fixed charges. Two
classes of fixed charge distribution were considered, and the
governing equations were solved numerically, It was con-
cluded that the distribution of the fixed charges in the mem-
brane phase has a significant effect on its electrophoretic mo-
bility. Ohshima ( 10) developed a general expression for the
electrophoretic mobility of a rigid spherical particle covered
with a polyelectrolyie layer. In the limiting cases, this expres-
sion reduces to the result for a rigid particle (11), a flat par-
ticle coated with a polyelectrolyte layer (12), or a charged
porous sphere {(13).

Clearly, the behavior of a particle coated with a polyelec-
trolyle layer or membranc is related closely to the charac-
teristics of the membrane phase {14-16), in particular, the
amount and the distribution of the fixed charges and the
diclectric constant. It was found that the difference in the
dielectric constant of the bulk liquid phase and that of the
membrane phase has a significant influence on both the po-
tential distribution and the electrostatic force between two
surfaces (17). In the relevant analyses on the electrophoretic
mobility of a particle coated with a charged membrane, the
dielectric constant and the fixed charge distribution in the
membrane phase are almost always assumed to be constant.
In other words, the effects of the variation of these factors
as a function of the position in the membrane phase on the
electrophoretic mobility are neglected, presumably for an
easier mathematical treatment. The dielectric constant of a
medium is a measure of its molecules to orient themselves
in an electric field. Under typical conditions, the dielectric
constant of water in the buik liquid phase is on the order of
80. This value dropped to about 20 for water near a solid-
liquid interface (1), and to about 6 in the extreme case at
which the water molecules are oriented completely (18).
Intuitively, the nature of the water molecules in the mem-
brane phase is different from that in the bulk liquid phase.
It is closely related to the structure of the membrane. If this
structure is position dependent, the dielectric constant of
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water inside varies accordingly. Similarly, the distribution
of fixed charges can be a function of the position in the
mernbrane phase (14, 13, 19, 20).

In the present study, the electrophoretic mobility of a
planar particle coated with an ion-penetrable charged mem-
brane in a uniform electric field is investigated. Here, the
analysis of Qhshima and Kondo (6) and that of Hsu ef af.
(9) are extended to take into account the variations of the
distribution of fixed charges and the dielectric constant as
functions of the position in the membrane phase.

2. ANALYSIS

By referring to Fig. 1, we consider a planar particle coated
with an ion-penetrable membrane of thickness ¢ immersed in
an a:b electrolyte solution. The system is subject to a uniform
electric field of strength F parallel to the surface of the particle.
The distribution of fluid velocity # is described by (6)

du
173?+p(x)E=0, x=0 [1]
2

d
—u—'yu+p(x)E=O, Oz=x=—d.

L [2]

The associated boundary conditions are

u—>—-Uasx—» o [2a]
dufdx-—+0asx—> o [2b]
u=>0Qasx—» —d [2¢]
#(07) = u(0™) [2d]
{duldx)co- = m(dujdx) g, [2e]

where n denotes the viscosity of fluid, v represents the friction
coefficient of the membrane phase, m is a constant, U is the
velocity of the liquid phase far away from the particle, and
p(x) is the space charge density of the electrolyte. The dis-
tribution of electrical potential Y{ x) is described by the Pois-
son equation as

d X

E‘g:HEﬁ(—e:))’ xz0 (31
dleax)dy] _ —plx) ZeN(x) _
dx[ € dx]ﬁ_ €0 &€n 02 x> -d [4]

The boundary conditions associated with these equations
are

y—>0asx - [4a]
dy/dx -+ 0asx—> w [4b]
dyfdx=0asx - —d [4¢]
¥(07) = ¥(0") [4d]
ero(dp/dx)o- = e(dy/dX)or, [4¢]
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FIG. 1. A schematic representation of the system under consideration.

where ¢ and e are, respectively, the permittivity of bulk
liquid and that of vacuum, ¢.{x) is the permittivity of the
membrane phase, e represents the elementary charge, Z is
the valence of fixed charges, and N(x) denotes the fixed
charge distribution in the membrane phase. Solving [1] and
[3] subject to [2a], [2b], [4a], and [4b] gives

frf{)E
7

u(x) = Wxy— U, x=0. [5]

Simiiarly, solving [1] and [3] subject to [2c] and [2e] gives

#(x) = Dexp(Ax) + Dyexp(—Ax)

+E’_‘2Q£Q ) exp(—Ax)R(x)dx
2h -d
_exp(-Ax) x _
o J:d exp(Ax)R{x)dx, 0=x=—d, [6]
where
A= xy/n [6a]
_ &tk d [e(x) dY]  ZeEN(x)
D, = — Diyexp(2Xd) [6¢]
12, R(x)cosh(Ax)dx — (me,eE/n)(d/dx)o
Dg =

A1 + exp(2Ad)]
[6d]

The electrophoretic mobility of a particle, u, ¢can be calculated
by [5] and [6] and under boundary conditions [2d] and
[4d], We obtain
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u= U/E — (frEOf’n)‘P(0+) _ (1/E) membrane — selution
0 [ €
X {[l - exp(zxd)][f_d R(x)cosh(Ax)dx
3 m(e,eoE/n)(dwdx)Fm] / [Ml + exp(2M)) g

0O
—(1/n) f‘d R(x)sinh()\x)dx” . [7)

This expression indicates that the electrophoretic mobility
is a function of Y{0*) and R(x). The latter is dependent on
both the gradient of electrical potential and the fixed charge
distribution.

2.1. Distributions of ¢.(x) and N(x)

By referring to Fig. 2, we assume that €,(x) and N{x) can
be approximated by

ex(x) = (ero — €f0)(x/d) + exo
=ep(st+ 1), —1=<E<0 [8a]

N(x) = (Np — Np)(x/d}Y + Np
=Nyl —t—~tE), —-1<£=<0Q, (8b]

where

s = (&0 — €10}/ €30 [8c]
t = (Ng— No)/ Ny [8d]
£=x/d. [8e]

In these expressions, s (0 < s < l)and (0 < ¢ < 1) are
constant, €., and Np are, respectively, the values of ¢ and
N at the outer boundary of the membrane (x = 0), and
e/o and Nj are, respectively, the values of ¢, and N at the
inner boundary of the membrane (x = —d).

2.2. Potential Distribution

For an a:b electrolyte solution, [3] and [4] become, in a
dimensionless form,

.i ay = fze_by;e__f_ ——
dg[(s.f-l'l)dé_] K[ P M(l —1t IE)},

~1<£<0,
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FIG. 2. A schematic representation of the distributions of dielectric
constant and fixed charges.

-0

where

y = ey/kT [5c]
k* = e2(a’n? + b*n=)/kTex 19d}
K2 = *(e/ o) = e3(@’nT + bIn)kTeoe  [e]
K= dx [9F])
K' = d¥x [98)
M= ZNtjan$(a + b), [%h]

where n% and n® are the bulk concentration of cation and
that of anion, respectively. The associated boundary con-
ditions are

yand (dy/df) > Oast - oo [9i]
dyfdt =0atf=—1 (9]
€ro(dy/dE)o- = eldy/dE)or [9k]
»{07) = y(0™). 91

Due to its nonlinearity, solving [9a] and [9b] directly is
almost impossible. However, under certain conditions, ap-
proximate solutions can be derived. Three methods are dis-
cussed.

2.2.1. Method 1, low potential. Suppose that the po-
tential in the membrane phase is low, ie., Jay] < | and
|by| < 1. In this case [9a] and [9b] can be approximated as
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d2
£ _ gy,

di E=20

[10a]

E

(sg+ 1) $]=K'2[y*-M(1 —t— 18],

~1<£<0. [10b]

The method of regular perturbation is adopted for the res-
olution of these equations. Expanding y in terms of the power
series in s as

y =2 5"va(E) = w(E) + sv(E) + s*3(£) + 0(s%), [11]

n=0

where 0(s*) denotes the sums of the terms of degree higher
than three in 5. Substituting this expression into [10a], {10b],
and [%i] to [91] and coilecting terms on the same order in s
vield a set of linear differential equations, which can be solved
analytically, The result is ( Appendix A)

y=ae X+ s(b e ") + 5o e + 0(5Y), 0s¢

[12a]
y=[aeX + ae ¥ - Mt — 14+ 0]

£

+ S[bze"'f + hye Kt — % (1 + K'g)yeXt

4 K"
ENER S
S
TS 2

3 1 +3 K’2a3 4| ,—Kt .3
I6Ka3E + 0 £le + 0(s"),

a Ms ,
,_L‘E(l —K’f)e‘“~——]+s [cze"f%—c;e K

3
+ — K’a2£3

-1<f=<0, [12b]
where a,, @, as, by, by, b, ¢, ¢z, and ¢ are defined in
Appendix A. The mobility of a particle can be evaluated by
substituting [12a] and [12b] into [7]. The result obtained
is summarized in Appendix A.

2.2.2. Method 2, 0 <t <1 Supposethat0 << 1. We
expand y into power series of two perturbation parameters,
sandt, as

n

S Vo = Yoo + Sy1o + o + - - - [13]

-
I
M8
3
L8

b
]
=
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It follows that
exp(by) = exp{byoo) [l + s(byio) + t(byo) + - -

exp(—ay)
= exp{—ayoo)[1 — s(ayio) — Hayo}) — - - -]

-1 [13a]

[13b]

Substituting these expression into [9a], [9b], and [9i] to
[91] and collecting terms on the same order in s and ¢ yield
a set of linear differential equations {( Appendix B). It can be
shown that an approximate solution to these equations takes
the form { Appendix B)

y = (a)| + sb) + tch)yexp(—K¥),
¥ = Yoon T @2€xXp{kné) + asexp{—knf)
+ 5{[bh + (a2/4)(E + kmE") XD (Kb )
+ [y + (@5/4)(E — knE?)exp(— k) }

Kmk)
(KM +E)]+ - -,

0<t [l4a]

+ [ chexp(k,,E) + chexp(—
-1=§=0,

where a\, a5, ai. b}, b5, b5, ¢\, ¢, and ¢} are defined in
Appendix B. The mobility of a particle can be evaluated by
substituting [14a] and [14b] into [7). The result obtained
is summarized in Appendix B.

2.2.3. Method 3. We consider the same sets of pertur-
bation equations and the associated boundary conditions
in method 2. According to [14b], the solution to the equa-
tion corresponding to %Y in method 2 for —1 < £ < 0,
[Bib], is

[14b]

Yoo = Voon + a@bexp(k,) + asexp(—x.f),

-1s£<0, [15]
where yp,, can be determined by [B5], and «,, is defined in
[B7]. Since «,, > oo as d = oo, the last term on the right-
hand side of [15] must vanish. In other words, a’ vanishes
as d — co. Also, since ygp = ypo (£ = 0)at £ =0, [15]
reduces to

+ [Voo(£ = 0) — yponlexp(xmE),
—1<£<0

Yoo = Vpon

(16]

The value of ¥y, (£ = 0) can be calculated by solving [BIf].
We have

exp{hVpoa) — 1

YoolE=0) = Klzl b

exp{ —@Vpon) — |
a

+

]/{(Kz — K'?) X [exp(b¥pan)

—exp(_ayDon)]—KzM(a-l_b)} +yDon- [17]
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Substituting [16] into [ B2b] gives Y= Yban 88 d = 0 {20b]
d? K" Yoo = Voon 88 § > —1 [20c]
dJ’;o - [& exp(byo) + a exp(—ave)] Vo o
£ a+b yio—> 0as £ — —1 (20d]
= = [¥00(£ = 0) = yoonlkm(1 + xpmé)exp(knmé) = Fa(f), Vo> 0asf— —1. [20e]

-1<s£=<0,

(18]

Expanding yy in this expression into its Taylor series around
Voon giVes

d2y10 2 -
A [k — 8 explemé)yio = Fa(£), —l<sE<O,
[19]
where
2
6 = [b7exp(bynen) — a’exp(~aypen)]

X [¥00(§ = 0) — Yponl. [19a]

If 8 > Q, the solution to [19] is
” 2 172
Yio = b1J; K_B explknt/2)

+ b§Y2(~2— ] ”Zexp(xmfﬂ)]
K

m

- Jz[xie”zexp(rcms/m]

mn

xf Yol (2/ 58" 2 exp(xmk/ 2) Fol §)
-1

d
w(e) ¢

+ Y, [-K—zv B”zexp(xm.fﬂ)]

v J" Jol(2/ k)0 2exp (k[ 2) Fol §)
-1

WE) 4%,

—-1=£=<0,

[20]

where b} and b3 are constant, J, is the first Bessel function
of second order, Y, is the second Bessel function of second
order, and W ({) is the Wronskian of J, and Y5, i.e.,

wig) = {Jz[;z* Glfzexp(xm-fﬂ)])”z [Ki B”ZGXD(KmE/Z)]

nr m

- J’z[% B”ZCXD(KmEﬂ)}Yz[Kl 8”2€XD(Km$/2)”

m

X 8'2exp(k£/2), —1<E<0. [20a]
In this expression, J5 and Y 5 are, respectively, the derivative

of J, and that of ¥, with respect to £. Note that

Based on [B2d] and [20d], #] = b} =0, and [20] becomes

Yo = _Jz[i 8”2exp(,«<m5/2)]
K

EYal(2/ km)0 2 exp (kb [ 2)Fo(£)
x f—; (&) a

+ Yz[% Hlfzexp(xm&'/fl)]

m

XJ'E ']2[(2/"(:71)8Uzexp(ﬂmE/z)Fa(E)d&_’

-t W(£)

—-1<t=<0.

f21]

Similarly, the solution to [B3b] is

Yoo = —Jz[l BUZCXP(KME./z)]
K

m

8 Yo[(2/K,)8" 2exp (kb /2) Fol £)
X L W) a
+ Yz[%ﬂ”zexp(xmﬁﬂ)]
% ¢ J;,_[(Z/x,,,)ﬂ”Zexp(me/Z)Fb(E)dE’
-1 W({E)
~l=sé<0, [22]
where
Fo(£Yy = K M(1 + £). [22a]

If 6 <0, ¥4 and 3y, can be obtained by replacing J; and
Y,in[20a], [21], and [22] with [; and K, I, and K being
respectively the modified first Bessel function of second order
and the modified second Bessel function of second order.
The sign of fl is a function of both the type of electrolyte and
Ypon- Table 1 summarizes the variation of # under conditions
commonly encountered in practice.

3. RESULTS AND DISCUSSION

A comparison of the potential distribution predicted by
the first method (for the case where the polential is low),
[12a] and [12b], with the exact numerical soluticn is shown
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TABLE 1
Variation in the Sign of Parameter s and the Form of Solution
as a Function of the Type of Electrolyte and the Magnitude
of Ppon

Membrane ah Fboa # Solution
Positively charged 31 >0.55 >0 oot VielJ, Y2)
(Z>0) 2:1 =0.46 + you (2, ¥a)
1:1, 1.2 All values
1:3,2:2  All values
Negatively charged 1:3 < —0.55
(Z=<0) 1:2 < —0.46
1:1, 2:1 All values
31,22 All values
Positively charged 31 <(.55 g <0 Yoo T Yo (]2, Kg)
(Z > 0) 2 <0.46 + Yo ([2, Kg)
Negatively charged  1:3 > —0.55
(Z<O 1:2 > —{(.46

Note. Yoo, Vio (2, Y2), and yy; (S5, ¥») are defined in [16], [21], and [22]
respectively; ¥ (F, K2), and yy, (5, Ko} are obtained by replacing J, with
I and ¥, with K, in [21] and [22], respectively.

in Fig. 3. The result shown in this figure reveals that the
perturbation approach leads to a satisfactory approximation,
even the zeroth-order solution is very close to the exact value.
The potential distribution calculated by the second method,
[14a] and [14b], is illustrated in Fig. 4. The exact numerical
solution is also shown in this figure for comparison. As can
be seen from Fig. 4, the first-order perturbation solution is
reasonably accurate.

Figure 5 shows the effect of the distribution of the dielectric
constant in the membrane phase on the electrophoretic mo-
bility of a particle at various values of parameter A. This
figure suggests that the greater the value of A, the smaller the
absolute magnitude of electrophoretic mobility. This is be-
cause for a fixed viscosity #, the greater the value of A, the
greater the friction factor of the membrane phase. If X is
small, the electrophoretic mobility is insensitive to the vari-
ation in both s and €}y/¢,. However, if A is too large, these
factors can have a significant effect on electrophoretic mo-
bility.

The effect of fixed charge distribution in the membrane
phase on the electrophoretic mobility of a particle at a con-
stant total amount of fixed charges is presented in Table 2,
The result shown in this table indicates that the distribution
of fixed charges has a significant effect on the electrophoretic
mobility. In other words, assuming that the distribution of
fixed charges is homogeneous may lead to an appreciable
deviation.

Ifa=#b=vands=1t=0,then y= yy,and [16] becomes

¥(E) = ¥oon T [¥(0) + Ynen]exp(né), [23]

235

0.0 ~

eV /KT
] §
o =}

|
>
X

|
2
»

L1 gl 1. ITEENEEE AR ENE NN SR NERE

T Tr—TTT 1 T T 7T rr1rrrrr1
1 2
%/d

FIG. 3. Comparison of the potential distribution based on [12a] and
[12b] with the exact numerical value for the case o/, = I, b = i, d =
10nm, T=298K, ¢ =785, 5=1=05,Z=~1,and nf = Nj = 001
M. O, exact value; A, y, + sy solid line, y, + 5v; + §%»s; dashed line, yp.
The solid line and the dashed line are essentially the same.

where
Ypon = (KT/ve)in[vM + (vIM? + 1)) [23a]
$0) = (kT/ve){In[vM + (v2M? + 1)1/?]
—(1/oMYv2 M2+ 1)2— 1} (23b]
M = ZNjy/2vng [23c]
Ko = (200202 el gegk TYVH(1 + 02824, [23d]
0,00 —8—@e—0-28—B-
]
005 ]
T
. —0.10 4
- ]
@ ]
k0.15§ -
]
-0.20 Iﬁﬁ—mﬁ— T
-1 ] 1 2
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FIG. 4. Comparison of the potential distribution based on [14a] and
[14b] with the exact numerical value for the case elofe, = 0.5, a:b = 2:1, d
=10nm, T=298K,=785,5=¢=052Z=—1,and n® = Ng= 0.01
M. 0, exact value; A, Yoo + Dors ™, Yoo + Syio; solid line, Yo + $¥10 + Dor;
dashed line, -
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Furthermore, if d > (1/A)and m = 1, we have

(et cloty €loco) [90)/ k] + (¥pon/N)
. (n n)‘“o”( ) (1/%m) + (1/N)

+ ZeNy/ah2.

[24]

Furthermore, if ¢y = ¢, [24] be¢omes the result obtained
by Ohshima and Kondo (6).

10 =1m"!

(a}

0.1

ulpms~ 'em)
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FIG. 5. Effect of the distribution of the dielectric constant in the mem-
brane phase on the electrophoretic mobility of a particle at various values
of .(aym=1,9=891 X 10"* Ns/m?% a:b=2:1,d=10nm, T =298 K,
6= 785 eofe, = 05,1 =0.5,Z = —1,and n® = Nj = 0.01 M. Define ¥,
as 100% X [|u(s = 0.0 — |uls = 0.8)|)/ |ul{s = 0.0)]. ¥, = 18.61% for A
= | X 10°/m, 6.34% for A = 1 X 10%/m, and 5.31% for A = | X 107/m. (b)
5 =t =0.5, and the values of the rest of the parameters are the same as (a).
Define Y3 as 100% X [| plero/e; = 1.0)] ~ |ulero/ec = 021/ | ulelofe, = 1.0}].
¥: = 1.66% for A = 1 X 10%m, 0.55% for A = 1 X 10%/m, and 0.52% for A
=1 X 10°/m.

HSU AND FAN

TABLE 2
The Effect of the Distribution of the Fixed Charges in the
Membrane Phase on the Electrophoretic Mobility of a Particle

A (Ifm) 1% 10° 1% 108 1% 107
t = 0.0, Nofn® = 0.75 —0,5267 —3.4246 —4.6291
1=05, No/np = 1.00 —0.4520 —3.1590 —4.2996
t= 1.0, Nofm® = 1.50 —0.3005 —2.6126 —~3.6190

Note. The total amount of hixed charges is constant. The entry is electro-
phoretic mobility (ums™ V~! ¢m), and the parameters used are m = 1, 5 =
891 X 107 Ns/m?%, @b = 1:l, d= 10 nm, T=298 K, ¢, = 78.5, 5 = 0.5,

=—1,1° =001 M, and ¢;0/e. = 1.

APPENDIX A

The perturbation equations and the associated boundary
conditions for the case where the potential in the membrane
phase is low are summarized below,

Zeroth-Order Perturbation Equations

d*y/dt* = K’y, 0<¢ [Al]
yofdt? = K yo— M(—tf+1—-1)], —-1<t<0

[A2]

The associated boundary ¢onditions are
Yoand (dyo/dE) > Oas & — {A3]
dyo/dE=0atf=—1 [A4]
¥o(07) = po(07) {A5]
KZ(dyo/dE)g=0- = K'*(dyo/dE)o+- [A6]

First-Order Perturbation Equations

A’y jdE* =Ky, 0s¢ [A7]

@ d*yy | d*n 2 _
dg+‘§d52 pr: =K?, —-1<£<0. [A8]

The associated boundary conditions are
v and (dy,/dE) > 0asf - o [A9]
dy /dE=0at £ =—1 [A10]
NE=0T)y=y(£=07) [Al1]
KX (dy, [ dE)—o- = K'*(d01 /1 dE)gm0r- [A12]

ith-Order Perturbation Equations

The expression for ith-order perturbation equation, i =
2,3, ..., can be represented by
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d’y;/dE? = Ky, 0<¢§ [A13]
dyi-i d Vi s
= TS — 1l ==L Al
df +£ dEz d!;'2 =Ky, 1<£=<0 [ 4]
The associated boundary conditions are
y;and (dy;/dE)—>0Qas £ — oo [Al5]
dyifdE=0atf=—1 [Al6]
Yi(E=07) =y (E=0") [A17]
Kz(dyr'/df)fﬂl‘ = K'z(dyx'/df)gzoh [A1B]

The solution to [A1], [A2],[A7].{A8],[A13], and [A14]
subject to [A3]-[A6], [A9]-[A12], and {A15]-[A18]is
[12a] and [12b], where

@y = ay + ay + M(1 —¢) [Al9a]
a = a;e° K + M |K' [A19b]
by=by+ b — M/K”? [A19d]
b, = [K'(K — K')b; + Mt

+ K(az + a2)/41/[K(K + K')] [A19¢e]

by = (/A {(K+ KN {a:(3K" + 1 + K'?)e¥’
—@m3K — 1 — KHe ™'} - [K(ay, + as) + 4Mt)e™X)/

K[(K—-KYe ™ —(K+ K)eX'] [Al19f]
=t [A19g]
_ . , bz _ 5a3 b}K’
Cz_{c3K(K K)+K[32K’ 4 312 4
[K'(K + K')] [AlSh]
= 5 = E ' e K l K’
C3—'[ (BK’ b2+ 8 +Kb3) +4(K+K)€
a  9a 23K'a; S5K'?a, K’a
X(SK’+ 8 8 4 g b
1 as  9a
_ r 2 - ty oK 34783
3K'b,+ K b2)+4(K+K)e (8K’+ 2

2 ’ v 2 3
+ 31; % 5K4 = K8a3 + by + 3Ky + K'2b3)}/

KK - KYe ®— (K+ K')e"’]} . [A19i]
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On the basis of [12a] and [12b] we have

Y(0*) = kT(a, + sb, + s°c;)/e [A20a]
dvy/dx = —kTK(a, + sb; + s%¢))/ed as x - 0% [A20b]
]
G, = f R{x)cosh{Ax)dx
-d
_ & 1 - Wz . 1 — T[
2 W W»
+& -1 1-W M1 d sinh Ad
2 Wy W d Az A
cosh Ad sinh Ad stM
Y ) ) [ « _1)+K’2]

D1 1 W, 1 T |
Sl o) 2o
2 WY w3 Wy L W w2

Wl ., 2d 2
—_— | — —_ — = +— R
+ 2 {w? wl o ow (d w, wi

o221 3)
Wa Wr W3
F[2 2 Tof , . 2d 2
+2|S5-=-=2 +=+ =
2 [w% wi o owy (d W, w2

D, [d*W, 3W. 2d 2
+—3[———2+ 2(d +—+—5)
2 W, wi L
3 T 2 2 6
(3 Y
2 3 2 2 I 1
F,[d&*T T 2d 2
+—3[ 2t 2(d +—+—2)
2 W W2 Wo W3
d* W, 3W1 ) Zd 6 6
-+ -2, 2) S5
1 wi Wy Wi Wz Wy
L Df24 2,
2 |wi wi e
4 {d*W, 3W- 2d 2
)
Wy Ll Wl W w1
4 4 T
+ dwT]_;[dw l_?)wz (dz_fv_d-l-%)”
2 2 2 2 2 3
LR 24 T,
2 (wi oW ow



238

_Wi[d3T2 3T2(d.2 2d+£)]+ d* W,
2

Wy w3 wy w3 Wy

wil ow wi wy

O
G, = J:d R(x)sinh(Ax)dx

_%[1—W2+1—Tl]

wy i)

Fpfl-T 1 — W
e
2 W W,

d

d cosh )\d sinh Ad
A P

- [M(t -1} + ‘;?f](l — cosh Ad)

2 |wi w, Wi

T 2
__l[dZ _d+izl}

Wo Wo w3

F |2 2 T, 2d 2
+ =St -—|d+—+ =

2 [w% wi wz( W %)
He )

W) W) wi

D W W 2 2
1Dy a Wy | 3W; a’2+—d+—2

2 Wy wi W, Wi

a*r, 3T 2d 2 6 6
+_I__2](d2__+_2)__4+_4]

Wy wy Wy W3 Wy W3

3

+§ ﬂ+3_?;2 d2+% _12_2

2 Wo w3 Wy W3

Wy W%

+d3W|_3W.(d2 2d i) 6 6]

wy oW

&[2_4 214 d'W,
2

wi  wi W

3 4
_i[%+%(d2+£+i)]fﬂ
1 1

w | w w, w? Wy
4 [d’T, 3T 2d 2
Wi Wa Wy Wa W3

3
—i[—d W‘—3W’(d2—2d %)” [A20c]
Wi
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§{§+Ed%
2

wi o owi o ow

_A[dTy 3T, 24 2)]_dW
Wo Wy W2 Wa w Wy
W |44 2 2
+i[d ‘—3—2‘(d2——d+—2)”. [A20d]
Wi W w1 LA

In these expressions, w, = (A + &'}, wo = (A — «), W, =
exp(wid), Wy = exp(—wd), T\ = exp(wd), T
exp(—wyd), S = ab(a + b)neE [y, and

Dy = (a, + sby + s%c3) S [A20e]
D; =[—s(a:/4) — $’[(a2/32K') + (b/4)]1S/d  [A20f]
Dy = [(—sa:K'14) + 5°[(5a2/32) — (boK' /D)1 S/ d*

[A20g]

= s3(3a,K'/16)S/d? [A20h]
D, = s?a,K"?S/32d* [A20i]
Fy=(as+ sh; + 52¢3)S [A20i]

Fi=[—s(as/4) + $°[{a3/32K") — (b3/D)]1S/d  [A20k]
Fy = [s(asK'[4) + 57((5aa/32) + (baK'14)11S/ o

[A201]
Fy = —s*(3a;K'/16)S/d* [A20m]
Fy = sa,K'2S/324%. [A20n]

Substituting [ A20a] through [ A20d ] into [ 7] yields the elec-
trophoretic mobility of a particle.

APPENDIX B

The perturbation equations and the associated boundary
conditions for the case 0 < ¢ < | are summarized below.

Zeroth-Order Perturbation Equations

d:”ym_

Fri a+b[em(byoo) exp(—ayw)], 0<§E [Blal
d’yoo _ L. [€XD(BYe0) — eXD(—ayoo)
Fra - K atb M,

—1=<§(<0. [Blb]

The associated boundary conditions are

Yoo and (dyee/dE) = O as £ — [Blic}
dve/dE=0atf=—1 {B1d]
Yoo(07) = ypo(07) [Ble]

K*(dvoo/ dEY—o0- = K'*(dyoo/dE)e-o. [BIf]
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First-Order Perturbation Equations

The equations corresponding to the coefficients of 5'¢° are

d*vi _ K?
a2 a+b [5 exp(bypo)
+ aexp(—ayow)lyio, 0<f [Ba]
dzJ/JO Voo dzyt}o _ K?
dE? dt +§ d£2 = 7t b[b exp{b¥yao)
+aexp(—ayw)lyw, —L<E<0. [B2b]
The associated boundary conditions are
yio and (dyo/dE) > Oas - [B2¢]
dvip/dt=0at = —1 [B2d]
V1ol =07) =yl = 07) [B2e]
KX (dyio/dE)s—o- = K'*(dyio/dE)so+. [B2f]

The equations corresponding to the coefficients of 5% are

dzJ”m . K?
d£2 o+ b [ £ exp(byo)
+ aexp(~ayp)]yo, 0= [B3al
d2y K!2
?21 = 5 [ exp (o) + @ exp(—ayen)]yon
+ K?2M(1+1), —1=<£=<0. [B3b]
The associated boundary conditions are
Yor and (dyo,/dE) > 0asE - [B3c]
dvoi/dE=0atf= -1 [B3d]
Yol =07) = yo (£ =07) [B3e]
Kz(dyolfdf)km = K’z(dym/dg)5=0+. [B3f]

Suppose that d » (1/x), and Yoo = ¥pon a8 £ = —1
(or x = d). In this case

(d*yoo/dE?) —~ Qas £ — —1 [B4]
and {B2a] becomes
eXp(byDcm) - E:xp(_a-'yDDn) - M(a “+ b) = Q0. [B5]

This expression can be used to determine the value of ypg,.
Here, we assume that (6)
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Y50 = Yoon T AVoo [B6]
72
Py [b exp(byoo) + a exp(—ayuw)]
KrZ
o [b exp{bypon) + @ eXp(—@Vpen)] = k2., [B7]

a+ b

where |Ay| < 1. Expanding oo around yp,, for —1 < £ <
0, expanding ygp around 0 for 0 < £, expanding exp(&vyg)
and exp(—ayy) around 0, and employing [B6], [Bla]
through [B3f] reduce to the following set of equations and
the associated boundary conditions.

Zeroth-Order Equations

A Yoo/ dE* = K*yg, 02

£ [BBa]
d*yoo/dE* = k3 (Voo — Ypon), —1<£<0.

[B8b]

The associated boundary conditions are {Blc} through [B1f]
and

Yoo = Vpon at £ = —1. [B&c]
First-Order Equations
dz
dgy,;o = szIOJ 0 = E [B9a]
d* d d*
d?’ + ;;“ + d;’” = khye, —1<E=0. [B9b]

The associated boundary conditions are [ B2¢] through [ B2f].

Ay /dE = Ky, 0<& [B10a]
dzym/dfz = szym + K*M(1 + £), ~1l=g=<0.
[Bi0Ob]

The associated boundary conditions are [ B3c¢] through [B3f].
Solving [ B8a] through [Bi0b] gives

y=1(a) + sb|, + rc))exp(—KE)+ - -, 0=¢ [Blla]
¥ = Yoon + a2€Xp{kmf) + asexp(—«mf)
+ 5{[b5 + (a2/4)(E + xpk?)]exp(xm)
+ [b5 + (a5/4)(E — kb )exp(—kmé) }
+ 1l chexp(knE) + c5exp(—kmE) — (K'/kpm)?
XM+ H]+ -,

-1 <= £<0.

[Bl1b]
In these expressions,

a1 = Vpon + a5 + ab [Bllic]
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ai’l = KyDon/[exp(_ZKm) =1 n f{l(f - T’2 _ 1 — W'l)
— (kmK/K' ) (exp(—2x,) + 1] [B11d] 2\ W "1
Fil1 1 2 1 / 1
r - ! — _ —_— —_— = —_ + _ I
ah asexp(—2«,,) . [Blle] 5 [w’22+ W (a’+ sz) " (d w,})]
L= b+ b BIIf
P B mpa 2 g a2
by = [b5 — (a3/4km)( 1 + 3k, + x3,)]exp(2%,,) 2wy owi o owh wh o wi
— (a3/46,)(1 = 3k, + %) [Bllg] Wil 242
, ) , W wh o owi?
b5 = {(K/4)(ay + ab) . p ;
Fy[d°Ty 3T 2 2\ W,
_ 12 ' _ 2 2 Pl 2 + =+ =\ -
(K + KKm)[(a2/4Km) X (1 3Km + Km) + 2 [ wfz + w:’.2 (d wr2 w-'22) W'x
] 2
+ (@331 + 3k, + k2 )exp(26,)1}/ WAl ., 2d 2\ 6 6
T d PR 4 3 [Bl4a]
[Ken(1 — exp(2x,,)) — K2(1 + exp(2x,1] [Bl1h] W Wi oW w w
L=t = (K k)M [BIL] G, = fﬂ R(x)sinh(Ax)dx
—d
¢ = ¢5exp(2k,) + (K'?/k5) M exp(x,)  [Bllj]
U - _ g Lo cosh(Md) | [d cosh(Md) _ sinh(0\d)
¢y = —{(K'/ ) "M ({eXD(K,)/ k) — 1)K o e A ! )y A2

+ K(exp(km) = D)1/ [Kp(exp(25,) — 1) Gy Dol - Ws 1T
2 W wh
+ K'?(exp(2«,,) + 1)] [B11k]
Di[-1 1 A 1 ! 1
PN AR Rl Caiy R L
On the basis of [14a] and [14b] we obtain : 2 : ! : z
Dy[ 2 W 2d 2
$(01) = kT(a) + sb\ + tc))/e [B12] wiroowy W Wi Wi
_ ! ' i + T'l 3 2d 2
d/dx = —kTK(a' + sb', + t¢')/ed as x - 0*  [B13] —— |-+
W3 Wy Wy
0
G’l=f R(x)cosh(Ax)dx LDA[dWy W, 2d 2 T
-4 2 W 2 wh o owi? wh
szsmh()\d)_H,l [iz+d51nh()\d)_cosh(2?\d)] 3Ty d2,£+i 66
A A A A Wi wh W wiE W
L Ds 1‘?’21‘,7’1} Full—T, 1-— W,
2 L W Wa + 2 W + w'
L 2 1
D'l [ 1 l ',2( l ) T’l( 1 )] FJ '_l 1 ’ 1 r l
st == - — AN et S S I L I
Dyf2 2 W 2d 2 . :
+ e (e ) JR[2, 2 Taf, 2, 2
2w wg o ow whoow 2 Wi e W wh Wi
T 2d 2)] W 2d 2
+ — d27_+_’ A | 2 _ - _
le( wr o owg wi (d W) " W'lz)]
Dy[d*WYy 3w 2d 2\ 4T L Td3T : S
P DL (20, 2) T SILT 3T 20, 2 4V
2] w W Wy owy W3 2| wh wh wh o wh W

+3_T(d2_g+_2ﬁ)i_i] _%(dZ_E+i)i+i]’ [B|4b]

wi_z2 wr]Z W’] wflz VL"24 wll4
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where «}, = ku/d, W) = N+ k, wh = N — ki, W
exp(wid), W45 = exp(—wid), T, = exp(wad), T}
exp(—whd), and

o= [ZeEN§(Y — ) /0] — (VstM }d*)(K'/k,,)°  [Bldc]
H = —(ZeENt/nd) [Bl4d]
V= eoeoEkT/e [Bide]
Do = V{s[(sa5/4) + knlad + sbs + 1ch)]
+ Skaah + ko(ah + sbhy + 1ch) }/d® [Bl4f]
Dy = V{(3/2)x,.s%a,
+ Sk[{sah/d) + k. (ah + sbh + tch)]
+ (sahkmf2) + (3/4)sk5ab}/d° [Bldg]
Dy = V[s%kZah + s(256,a5
+ 3skah) + skhab]l/4d*  [Bl4h]
D}y = Vstah/ads [B14i]
o = V{s{(sa3/4) — kulah + sby + ich)]
— Skt + kmlah +oshy e}/ d? [Bl4j]
Fi=V{=(3/2)ks°a}
— sk [(sa3/4) — k(@ + sbs + ich)]
+ (saskm/2) + (3/4)skmast/d® [Bl4k]
Fy = Vas[s*(4km + 2x,) — sk 3,]/4d*  [Bl4l]
Fy = —Vilsay/ad®. [Bl4m]

Substituting [B12], [B13], [Bl4al, and [B14b] into [7]
gives the electrophoretic mobility of a particle.
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