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The critical coagulation concentration (CCC} of cations in a
suspension of negatively charged colloidal particles and arbitrary
a:b electrolyte is derived. Here, a particle comprises a rigid core
and an ion-penetrable surface layer. The latter contains fixed
charges due to either the dissociation of the functional groups it
bears or the adsorption of ions in the liquid phase. We show that,
if the potential in the surface layer is high, the CCC ratio of cations
foltows that predicted by the Schulze—Hardy rule. On the other
hand, if the potential in the surface layer is low, the CCC ratio
deviates appreciably from this rule, in general. On possible excep-
tion is that the fixed charges arise from the exchange of cations
in the liquid phase with the protons of the functional groups in
the surface layer to form a metal complex, and the subsequent
dissociation of this complex. The binding of the cations with disso-
ciated functional groups needs to be strong enough, and there are
sufficiently many functional groups. © 1995 Academic Press, Inc.

Key Words: critical coagulation concentration; asymmetric elec-
trolytes; surface layer, charged, ion-penetrable; fixed charge distri-
bution, nonuniferm; Schulze—Hardy rule; ion-exchange mem-
brane.

I. INTRODUCTION

The critical coagulation concenlration { the minimum con-
centration of ions to induce coagulation of a colloidal disper-
sion) ratio of cations required to destabilize a suspension of
charged colloidal dispersion can be estimated by the classic
Schulze-Hardy rule. For negatively charged particles, this
rule predicts that the CCC ratio of cations is proportional to
the inverse sixth power of their valences (1). For instance,
the CCC ratio of cations of valences 3, 2, and I is
37%:27%:17° Rigorously, the Schulze—Hardy rule is appli-
cable for planar particles having a high surface polential,
and it requires that the clectrolyte in the liguid phase be
symmetric, Despite the fact thal some ol these assumplions
arc obviously violated, the CCC rutio predicted by the
Schulze—Hardy rule is found to match the experimental ob-
servations for a wide class of colloidal dispersions.

The derivation of the Schulze—Hardy rule is based on a
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rigid surface of constant potential. Although the rigid surface
model is adequate for most of inorganic colloids, it is inap-
propriate to some of the dispersed entities in practice, €.g.,
biological cells and particles covered with an artificial mem-
brane (2-7}. In these cases, a particle comprises a rigid,
uncharged core and an ion-penetrable surface layer. The
latter contains fixed charges due to either the dissociation
of the functional groups or the adsorption of ions from the
liquid phase. For instance, the peripheral zone of human
erythrocytes contains a giycoprotein layer about 15 nm thick
which possesses some ionogenic groups and forms the outer
boundary of the lipid layer (8, 9).

In an analysis of the interaction between an ion-penetrable
particle and a solid particle, Terui et al. (10) derived expres-
sions for the interaction potential and the electrostatic inter-
action force between particles. The analysis was extended
to various combinations of two types of particle, and expres-
sions for CCC were derived (11). These analyses (10, 11)
were based on the following conditions: (a) The potential
at the surface of a particle is sufficiently low such that a
linearized version of the governing Poisson-Boltzmann
equation can be employed. (b) The electrolyte is symmetric.
(c) The fixed charges in the surface layer are uniformly
distributed.

In this report, the applicability of the Schulze—Hardy rule
to colloidal particles covered with an ion-penetrable surface
layer is investigated. In particular, the effects of the level of
potential and the type of the fixed charge distribution in the
surface layer on the CCC ratio of cations are exarnined.
Since asymmetric electrolytes are not uncominon in practice,
the relevant result for a general a:b electrolyte solution is
highly desirable. This is also taken into account in the present
analysis.

2. ANALYSIS

The analysis is begun by considering a planar surface
immersed in an a:b electrolyte solution. As illustrated in
Fig. 1, the surface comprises a rigid core and a charged,
ion-penctrable surface layer of dimensionless thickness 4.
The latter contains fixed charges, and without loss of general-
ity, we assume that these charges are negative.
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FIG. 1. A schematic representation of the system under consideration:
d is the dimensionless thickness of surface layer, i, and 4, are, respectively,
the dimensionless potential at core—surface layer interface and that at sur-
face layer—liquid interface,

2.1, Uniformly Distributed Fixed Charges

Suppose that the distribution of the fixed charges in the
surface layer is uniform with density N,. The electrostatic
potential distribution is governed by

dWldX? = (g + iN/(a + b), i=0,1, [I]

where g = [exp(by) — exp(—a¥)], «* = ala + b)
nle*lege ks, th = edplbksT, X = kr, and N = ZNN,/an’.
In these expressions e, ¢, kg, and T are, respectively, the
elementary charge, the electrostatic potential, the Boltzmann
constant, and the absolute temperature, r is the distance, ¢
and ¢, are, respectively, the permittivity of the vacuum and
the relative permittivity, « denotes the reciprocal Debye
length, Z and N, are, respectively, the valence of fixed
charges and the Avogadro number, n{ is the number concen-
tration of cations in the bulk liquid phase, and i is a region
index (i = 1 for surface layer, i = 0 for double layer region}.
The boundary conditions associated with [1] for an isolated
surface are

¥ >0 and (dy/dX) >0 as X — o [1a]

WX —=d)=(X—~d" )=ty and
(dy/dX ) xg = (d¥/dX )| xuyr  [1b]
¢ = . and (dp/dX) >0 as X0, [lc]
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where . and ¢, are, respectively, the dimensionless poten-
tial at the core—surface layer interface (X = 0) and that at
the surface layer—liquid interface (X = d). It can be shown
that an approximate solution to {1] for the double-layer re-
gion is (12)

tanh{a/4) = [tanh(ary/4)]exp[—k: (X — d)]. [2]

In this expression the parameter k; is defined by

{[(k — 20k, + 2k, M0k, k=4,
- [2a]

T2k + (k= Dka)ik, k> 4,

where k, = 2/ (&' [(K/2)Y*D — 1)}, ky = 2/k"?, and k
=2 + 2b/a. If X is large enough, [2] reduces to

¢ = (4/a)[tanh(agy/d)]exp[ k(X — d)]. [3]

For two identical, parallel surfaces separated by a dimen-

sionless distance L + 24, a differential force balance yields

dFy = — pdd, (4]

where dFy, is the differential electrostatic repulsion force per

unit area between surfaces and p denotes the space charge

density. Integrating [4] from > to d + Li2, X = d + L/2

being the position of the middle plane between surfaces,
gives the electrostatic repulsion force Fy as

Fr = angkgT{(1/b)[exp (i) — 1]

+ (Ha)lexp(—aym) — 11}, [5]

where f,, denotes the dimensionless potential at X = d +
Li2. If L is large enough, i, is low, and its value for two
parallel surfaces is twice that for a single surface. Expanding
Fg in its Taylor series around #,, = 0 and employing [3]
and [5], we have

Fe = ala + byn Tl /2
= 32(1 + b/a)ndksT[tanh*(ay/4)] exp(—k;L). [6]

The electrostatic potential energy, Vg, is calculated by

Ve =«"" f FrdlL

L
- 32(a + byngkgT

[tanh?(ayra/4) ] exp(—ksL).
ak_zK

[7]

The van der Waals attraction energy, V,, is
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VA = *A132K2/12‘H’L2, [8]

where Ay, is the Hamaker constant. The total interaction
energy between surfaces, Vr, is the sum of V, and Vg, i.e.,

Vi=Vy+ Vg (9]
At the CCC of cations, nl,,

Vi=0 atlL =2 [10]
Equations [7] through [10] lead to

o _ tanh® (ayry/4)
" a*(a + b)klexp(4ks)

« (4mege, )’ (kpT)?(192)°

€6A %327\'

[11]

2.1.1. Evaluation of ;. We assume that the surface
layer is sufficiently thick. In this case, . approaches the
dimensionless Donnan potential .. We have

W = o, and d2P/dX =0 as X — 0. [12]
The value of ¢, can be evaluated by applying [12] to [1]
with i = | to give

eXp(P¥pen) — eXp(—apo) + N = 0. (13]

Solving [1] with i = O subject to [1a] yields

W 2 {1 .
X - Sgn(w)(a+b) b[eXP(bl!/) 1]

1 1/2
+ [exp(—ay) — 1]} - [14]

Similarly, solving [1] with / = 1 subject to [1b] and applying
[14], we obtain

a
X Sgn(tﬂ)(

172 ] .
P b) {E [exp(by) — 1]

1 172
+ P [exp{—ayr) — 1] + N( — ¢d)} . [14a]

The relation between 4, and i, can be determined by
[14a], [1c], and [12] as

HSU AND KUOQ

1 (1
l.bd = ll’Don + ]TI {E [cxp(b¢Don) - 1]
1
+ [exp(—athpon) — l]} - [15]
If the potential in surface layer is sufficiently high,
tanh(eps/4) = —1, and [11] reduces to
ni. o« 1/[a*(a + b)kiexp(4k,y)]. [16]

Furthermore, if the electrolyte is symmetric (a = & = v),
then k; = 1, and [16] becomes

nl. o« 1/v8. [16a]
This is the same as the result for rigid surfaces, i.e., the
Schulze—Hardy rule. On the other hand, if the surface poten-

tial is low, tanh{ayr:/4) = (ayry/4). In this case, [13] sug-
gests that ¥, = [—N/(a + B)], and [15] leads to

a = thpon + (@ + D)o/ 2N = [-N/2(a + b)]. [17]

Here, N is a function of both 72 and a. On the basis of [11],
we conclude that

ny. « L/lala + b)k3®exp(4ks/5)]. [18]
For symmetric electrolytes, this expression reduces to
nd. o« 1747, f18a]

2.2. Nonuniformly Distributed Fixed Charges

Suppose that the fixed charges in the surface layer arise
from the dissociation of the functional groups it bears ac-
cording to the reaction

AH—-A™ + H', [19]
where AH and A~ are the acidic functional groups and the
conjugated basic groups, respectively. The functional groups
are assumed to distribute uniformly with density N,. We
have, at equilibrium,

K, = (na-)(ny*)/(nan), [20]
where K, represents the equilibrium constant, #4-, #ay, and
ny+, are, respectively, the number concentrations of A~,

AH, and H*. A number balance for the functional groups
yields
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N{)NA = Hag T Na-—. [21]

The distribution of H* follows the Boltzmann distribution

ny+ = nyrexp(— ), [22]
where n{;+ represents the number concentration of H* in the
bulk liquid phase. Suppose that the bulk concentrations of
H" and OH ™ are negligible compared to that of the electro-
lyte. Then the potential distribution for an isolated surface
is governed by

d*yldX? =g+ iNJ/Ha+b), i=0,1. [23]
The symbols used here are the same as those used in Section
2.1, except that the dimensionless fixed charge distribution
is denoted by N,. The value of N, can be determined by
[20] through [22], we have

N, = (NoNa/an )1 + (ni+/K)exp(—y)]. [23a]

Integrating [23]} with i =
[14], we have

l subject to [Ib] and applying

ﬂ 1/2 l B
X ('Jf)( n b) {b [exp(by) — 1]
1 142
+ 2 [exp(—ay) — 1] + Ny, — Nb(llfd)} » [24]
where

Ny = (NoNafand) Inlexp(y) + (nh+/K;)]. [24a]

Employing {1c] and [12] to [24] yields

n exp{iy) + nYy /K,
exp{t¥pon) + YK,

i
N(Z D {b[ exp(bfpen) — 1

1
+ (;) (exp(—aypan,} — 1]} - [25]

Similarly, applying [12] to [23] with i = | gives

€xp ( b‘anon) — eXp ( _aq'jDon)
N(Z = 1)

1 + nf+[exp{—pon) 1/ K,

= 0. [25a]
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If n}+/K, — 0, ie., the dissociation of the functional
groups is complete, then [25] and [25a] reduce to [15] and
{13], respectively, with N = N(Z = 1). In this case, the
CCC ratio of cations is described by [16] if the potential is
high and by [18] if the potential is low. On the other hand,
if (nfi+/K,) * 1 and the potential in the surface layer is
low, [25a] yields

(pann + (81 + SZ)I."}Don + g2 = 01 [26]

where
g =1+ nh/K, [26a)
g; = N(Z= 1) a + b). [26b]

Solving [26] for ., and noting that g, ® g, for a typical
Ny, we obtain

Yoon = — (82181 + 283/87). [27]
In this case, [25] leads to
(g — Wpon)/ 81 = Heml28. [28]
Substituting [27] into [28] gives
Wa =~ —g2l2g1, [29]
and therefore
tanh(ay,/4) = —NyN./Bg,(a + b)n,. [30]
Substituting this expression into [11] yields [18]. It can be

shown that if nji+/K, 1 and the potential in the surface
layer is high, the variation of nl. is described by [16].

2.3. Binding of Cations to Functional Groups

Suppose that the fixed charges in the surface layer arise
from the interaction between the cations in the liquid phase
with the functional groups in the surface layer through two
steps in series: exchange of cations with the protons of func-
tional groups to form a metal complex, followed by the
dissociation of this complex to yield fixed charges. The first
step can be expressed by

CH, + M = CM + gH", [31]
where CH,, M“*, and CM represent, respectively, the func-

tional group, the cation, and the metal complex. If we define
the equilibrium constant of [31] as K}, then

K, = (ncm) (nH+)“'I(”CHH) (e ), (32]
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where ncy, . fiow, and mye+ denote, respectively, the number
concentration of CH,, CM, and M*“*. The distribution of
M** follows the Boltzmann distribution, i.e.,

v+ = naexp(—ayr). [33]

The dissociation of metal complex CM can be expressed by
CM =C" + M*, [34]
where C*” is the dissociated functional groups which yield

negative fixed charges in the surface layer. Suppose that the
equilibrium constant of [34] is K,. Then
K. = (nce)(nye+ )/ (nem), [35]

where ncs- is the number concentration of C* . The overall
reaction of [31] and [34] is

CH,=C" +aH". [36]
The associated equilibrium constant K is
[37]

K.=KK. = (nc“')(”H+)a/(ncua’)-

The distribution of H* is described by [22], and a number
balance for the functional groups gives

NNy = nc- + ngy, + Mem. [38]
The potential distribution for the present case is
d’YldX* = (g + iN)/(a + b), i=0,1. [39]

The symbols used here are the same as those used in
Section 2.1, except that the dimensionless fixed charge distri-
bution is denoted by N.. The value of N, can be determined
by [22], [33], [35], [37], and [38] as

0
N, — (NoNa/na) ‘ [39a]

{1+ [[(nw)/K]
+ (n3/Ko)lexp(—ay) )

Integrating [39] with § =
[14], we obtain

1 subject to [1b] and applying

dy 2
dx Sg"("”)(a T b

2
) {E[exp(btp)— 1]

1 1/2
+ o [exp(—ay) — 1] + Ny — Nd(#”a)} . [40]

HSU AND KUO

where

Ny = (NoNa/an) Inlexp(ap) + [(nii+)*/K.]

+ (n3/K.)]. [40a]

Employing [1c] and [12] to [40] yields

In { exp(aga) + [(nf)*/K] + (nY/K.) }
exp(a@fipen) + [(n+) /K] + (nd/K.)

1

1
“NZ=-1D {E [exp(bpe) — 1]

+ é [exp(—apo) — 1]} . [413

The value of i, is determined by employing [12] to [39]
with { = 1 to give

exXp(bfpon) — eXp{—aifpe,)

n N(Z = a) _
1+ {[(n?{+)a/Kc} + (HSIKE)}CXP(_CH}!’DDH)

0.
[41a}

If the potential in the surface layer is high, n?, is described
by [16]. In the following discussion, we assume that the
potential is low. On the basis of [41b], we have

Wion + (1/a) (g3 + @° g2} oo + 82 = 0, {42]
where
g =1+ (nh)VK, + ndK,. [42a]

Solving [42] yields

Ynon = { £2
. (g3 + a’g)la

283
" [(g: + azgz):’d]"’} -

From [41] we have

a(Ws = o)/ 81 = Yie/28>. [44]

2.3.1, Small No,. If the number of functional groups is
small, the potential in the surface layer is low, and g; > g,.
Following the procedure presented in 2.2 we obtain
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Yoo = —[(ags/gs) + (2a°g3/g3)]. [45]
Substituting [45] into [44] yields
g = —ag./2g;. [46]
Suppose that (nl/K.) < [(n%+)*/K.]. Then
g =1+ (nd")K. = (nh+)"/K.. [47]
In this case, it can be shown that
tanh(aa/4) > —aK NoNA/[8(nt+)"(a + b)n]. [48]

Substituting [48] into [11] yields
ni. o [(n5-)*"a"*(a + bYki exp(4k/5)]. (49]

For symmetric electrolytes, this expression becomes

[49a]

nae o« 1/[(np )™ ],
Similarly, if (n2/K,) = [(n%+)*/K.], then
g =1+ nl/K, = nlK.. [50]
We have
tanh(at,/4) ~ —aK NoNA/[8(a + b)(n2)?]. [51]
Substituting [51] into [11] gives
na. @ 1/[a"(a + b)Y k3 exp(4ks/9)]. [52]
For symmetric electrolytes, this expression becomes
nl e 1fp?3, [52a]

If the magnitude of (n2/K,) and that of [(r}+)*/K.] are of
the same order, the expression for n}. is complicated. How-
ever, the value of nJ. is bounded by [49] and [52]. If both
(n3/K.) and [(n}+)"/K,] are small, g; = 1. According to
[46]

tanh(aya/4) = —aN,N./[8(a + b)nl]. [53]

Substituting this expression into [11] yields
nae « 1/[a'?(a + bYk3 exp(4k;/5)]. [54]
For symmetric electrolytes, [54] leads to

ne. o« 1/v®3

[54a]
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TABLE 1
Summary of the Discussions in Section 2.4.1°
Dissociation Relative
K, K. of CM concentration CcCC
Small Small Difficult Tien, ¥ Agt
nom & ne- —
Small Large Easy Aoy, 2 flem (49]
Large Small Difficult Ticm P Moy, [52]
Large Large Easy nc P Aoy,
e B Aem [54]
Note. The value of Ny is small.

2.3.2. Small K,. A small K, implies that the binding
between C*~ and M** is strong. In this case, g, = nY/K,.
Since the dissociation of CM is negligible, C*~ is small, and
the potential in the surface layer is low. Furthermore, if N,
is small, g5 > g,, and nY. is described by [52]. If N, is
large enough that g, ® g;, then [44] gives

Wpen = —(1/a + 2{a’g,). [55]
Substituting [55] into [45] vields
dg = —1/a. [56]
We have
tanh(ayy/4) = apa/4 = —1/4. [57]

In this case, ng, is described by [16]. In other words, the
Schulze—Hardy rule is applicable, even if the potential in
the surface layer is low.

DISCUSSION

According to [ 35], K, — o implies sy — 0. This suggests
that the binding of the dissociated functional groups with
cations is weak. Furthermore, if @ = 1, then g; = g, and
[46] reduces to [29]. Thus, 2.3.1 is a special case of 2.2.
Note that if K, is small, both (ny+)/K, and ney explap)/
ree- are large, which implies ney, 3 nce-. Similarly, various
relative magnitudes of K, and K, lead to different results.
These are summarized in Table 1.

Section 2.3 is a generalization of Section 2.2. This is
because the functional groups in the surface layer may exist
in three possible torms in the former, namely, CH,, C*~,
and CM. Here, M** and H" are competing with each other
for the association with C*~. In the case of large K., the
association of M** with functional groups is negligible, and
the amount of fixed charges increases. This is consistent with
[40]. The results discussed in Section 2.3 can be regarded as
a neutralization effect in which the charged groups in the
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TABLE 2
Variation in the Ratio (n)),.;/(#s )3 as a Function of the Type of Electrolyte Used

Uniform or Cation binding, ¥, small

nonuniform Cation binding,

fixed charges K. large, K. small K, small, K, large K. large, K, large Ny large, K, small
ab [18] [49]° [52] [54] [161
3:3 1.000 1.000 1.000 1.000 1.000
32 1.147 1.147 1.079 1.147 0.958
31 1.270 1.270 1.142 1.270 0.652
2:3 1.886 3.616 x 10" 1.188 1.363 11.494
2:2 2.250 4.315 x 10" 1.310 1.627 11.391
2:1 2.736 5247 x 10" 1.461 1.978 9.582
1:3 5.545 1.620 x 10% 1.589 2303 1035.876
1:2 6.645 1.942 x 107 1.758 2.759 809.947
1:1 9.000 2.630 x 10°7 2.080 3.737 729.000

Note. The numerator and the denominator are, respectively, the value of #2, for an a:b electrolyte and that for a 3:3 electrolyte.

“pH is 7 in the butk liquid phase.

* The result for a high potential in the surface layer is the same as this column.

surface layer are neutralized by the adsorption of free cat-
ions.

Table 2 shows the variation in the ratio (n2, of a: electro-
lyte/nl. of 3:3 electrolyte) for the case where the potential
in the surface layer is low. As can be seen from this table,
if the potential is low, the Schulze—Hardy rule is inappropri-
ate. One possible exception is that the binding of cations
with dissociated functional groups is strong, and N is large
enough. As shown in the third column of Table 2, if the
functional groups in the surface layer are inactive (small
K.), the CCC ratio can be extraordinarily large.

According to [20], a small K, implies that the functional
group AH is inactive. In this case, if N, is large, following
the same procedure as that employed in the derivation of
[27]-[30] for g, 3 g, leads to

nd. o 1/[a(a + b)kiexp(dks)]. [58]

Similarly, a small K] {or K.) implies that the functional
group CH, is inactive. If &, is large, following the same
procedure as that employed in the derivation of [55]-[57]
for g; & g5 yields [16].

For rigid particies in an a:& electrolyte solution if the rate
of surface dissociation reaction is fast, the surface potential
is approximately constant, In this case, the CCC ratio of
cations can be obtained from [11] by replacing ¢y with i,
the dimensionless surface potential; i.e.,

00 = tanh® (aprof4)
* 7 a%(a + bYklexp(4ks)
% (4meee,)’ (haT)°(192)°

EGA %3271'

[59]

CONCLUSION

We conclude that if the surface potential of the dispersed
entities is high, the CCC ratio of cations for particles covered

by an ion-penetrable membrane bearing negative charges
follows the Schulze—Hardy rule. On the other hand, for low
surface potentials, this ratio deviates appreciably from the
Schulze—Hardy rule, except that the cations in the liquid
phase are capable of binding strongly to the functional
groups in the surface layer, and there are sufficiently many
functional groups.
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APPENDIX: NOTATIONS

a valence of cation

b valence of anion

Az Hamaker constant

d dimensionless thickness of surface layer
e elementary charge

Fr electrostatic repulsion force per unit area
g function of electrostatic potential

g quantity defined by [26a]

22 quantity defined by [26b]

g3 quantity defined by [42a]

{ index representing the region

k 2 + (2b/a), a measure of the degree of asymmetry

of electrolyte

ki .k, functions of k defined after [2a]
ki linear combination of k; and k; defined by [2a]
kp Boltzmann constant

K, equilibrium constant defined by [20]
K’ equilibrium constant defined by [32]
K. equilibrium constant defined by [37]
K. equilibrium constant defined by [35]
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dimensionless distance between two surfaces

number concentration of cations in bulk liguid
phase

critical number concentration of cations

number concentration of species {

dimensionless fixed charge distribution

distribution of fixed charges or density of functional
groups

Avogadro number

dimensionless fixed charge distribution

dimensionless fixed charge distribution

position variable

absolute temperature

valence of a symmetric electrolyte

van der Waals attraction energy

electrostatic potential energy

total interaction energy

dimensionless position variable

valence of fixed charges

permittivity of the vacuum

relative permittivity

reciprocal Debye length

space charge density

electrostatic potential

dimensionless electrostatic potential

dimensionless surface potential of a rigid sur-
face

v
¥

lIchm
W
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dimensionless potential at the core—surface layer
interface (X = 0)

dimensionless potential at the surface layer—liquid
interface (X = d).

dimensionless Donnan potential

dimensionless potential at the midpoint between
two surfaces
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