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Abstract

The electrical properties of a planar charged surface in a general electrolyte solution are examined. Analytical expressions
for the electrical potential, surface excess of co-ions, double-layer free energy, and entropy are derived. A perturbation
method is proposed for the resolution of the Poisson—Boltzmann equation governing the electrical potential distribution. The
analysis extends the classic Gouy—Chapman’s result to an arbitrary a:b electrolyte solution. The present approach yields a
system of linear ordinary differential equations, which can be solved to an arbitrary order, in principle. The performance of
the present perturbation solution is satisfactory for conditions normally encountered in practice. For example, if the
second-order solution is adopted, deviations in the electrical potential and thermodynamic properties examined are less than
5%. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The electrical potential distribution for a charged surface immersed in an electrolyte solution at equilibrium is
approximately described by the Poisson—-Boltzmann equation [1]. Solving this equation represents a first step in
describing the basic properties of a colloidal suspension such as its stability and thermodynamic properties.
Unfortunately, due to its non-linear nature, the only solvable case is a planar surface in a symmetric electrolyte
solution. The problem was solved by Gouy and Chapman [1] for the case of constant surface potential about one
century ago. Since then, a considerable amount of effort has been exerted to extend their result to a more
realistic case, such as curved surfaces, asymmetric electrolytes, and various surface conditions. La Mer et al. [21,
for example, solved the Poisson-Boltzmann equation in spherical geometry for a general electrolyte. The
solution takes the form of a complicated infinite series; each term involves an integral which needs to be
determined numerically. Dukhin et al. [3,4] considered a spherical surface in a 1:1 electrolyte solution. A
perturbation method is proposed in which the electrical potential is expanded in terms of the negative powers of
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the position variable. The same approach was adopted by Sigal and Shamansky [5] to derive the electrical
potential for a cylindrical surface and 1:1 electrolytes. By applying the same perturbation method, Lekkerkerker
[6] was able to obtain the electrical free energy for both cylindrical and spherical surfaces and 1:1 electrolytes.
In a study of a charged sphere in v:v, 1:2, and 2:1 electrolyte solutions, Stokes [7] suggested a perturbation
method in which the derivative of the electrical potential is expanded in a negative power series of the position
variable. An approximate solution, which is based on an empirical parameter was derived by Parlange [8] for the
case of a spherical surface and 1:1 electrolytes. The same approach was adopted by Ohshima et al. [9] for a
spherical surface in 1:1 and 2:1 electrolyte solutions. Bentz [10] considered a sphere in a solution containing any
combination of monovalent and divalent ions. An approximate closed form for the electrical potential was
derived. Hsu and Kuo [11] were able to obtain an approximate expression for the electrical potential for planar
surfaces and a:b electrolytes. The derivation is based on a semi-empirical polynomial function, which is
characterized by the valences of ions. Similar approach was also adopted for the case of cylindrical and
spherical surfaces [12]. Some other studies about the resolution of Poisson—Boltzmann equation include, for
instance, spherical surface in v:v electrolytes [13], spherical surface in 1:1 electrolytes [14—17], cylindrical and
spherical surfaces in a:b electrolytes {18], and planar surface in 1:2, 2:1 and v:v electrolytes [19].

As can be seen from the above discussions, although relevant analyses are ample in the literature, most of
them are limited to symmetric electrolytes, especially 1:1 electrolytes. The problem of a general a:b electrolyte
has not been solved satisfactorily. The available results are either of numerical nature or involve some empirical
assumptions. In the present study, this problem is solved through a perturbation method. The solution procedure
is mathematically rigorous.

2. Analysis

The distribution of the scaled electrical potential ¢ in the electrical double layer near a planar charged
surface in an a:b electrolyte solution can be described by [1]

d%y g

— 1
dX? a+b (1)

where ¢ = F¢/RT, X =«r, g=exp(by)—exp(—ay), and x*> = F2a(a+ b)C®/e,£,RT. In these expres-
sions, ¢ is the electrical potential, F and R denote, respectively, the Faraday constant and the gas constant, &,
and &, are the relative permittivity of the liquid phase and the permittivity of a vacuum, respectively, C_ is the
bulk concentration of cation, T is the absolute temperature, x is the reciprocal Debye length, and r is the
distance from the surface. The boundary conditions associated with Eq. (1) are

=t at X=0 (23)
Yy—>0anddy/dX —0as X > (2b)

where i, denotes the scaled surface potential. Integrating Eq. (1) once and applying Eq. (2b) gives, after some
algebraic manipulations,

:—; = —sgn( %)(%)1/2 )
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where k=2 +2b/a, and

Y =exp(ay/2) (3a)
LY PR I 3b
=3 k—2 k=2 | (3v)

Eq. (3) can be recast as

dY
= —sm(4)0"” (4
where
1—¢ 2 —&
"4 (1_1+eYz+1+‘»sY4/(1 K (42)
k—4 b—a
Tk T b+b’ (4b)
The last expression suggests that || < 1. The boundary condition associated with Eq. (3) is
Y=Y,at X=0 (5)
where Y, = exp(ay,/2). Suppose that ¥ can be expanded as
Y=K,+ ) ¢"K,. (6)
n=1

Substituting Eq. (6) into Eq. (4) gives

where
Ay = 1K (72)
2
A= —K,K,— (1 —4K3+3K3; —4K3InK,)/8A, (7b)

A, = —K K, — [(1-3K3)K? - 4K,(1 - K} + 2K In K, ) K,

+2K2(1-K§+2K3 InK,—2K; In® K,)] /44, - A2/24, (7c)

Eq. (7) leads to the following system of linear differential equations:

dk,
=A,, n=0,1,2, ... (8)
dx
The associated boundary conditions can be obtained by substituting Eq. (5) into Eq. (6). We have
K,=exp(ay,/2) at X=0 (8a)

K,=0, n=12,...,aX=0. (8b)
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It can be shown that the solution to Eq. (8) subject to Eqgs. (8a) and (8b) is (Appendix A)

X 1+2Z 9
0T 1=z (9a)
K, =K1.Z_K1,Z(X=O) (9b)
K,=K,;—K,,(X=0) (9¢c)
where
a
Z= [tanh(% ”exp( -X) (9d)
422 272 | =3 22 —~4
K1'Z=—————-—3(1_Z)2 =(2+Z+§Z +'5—Z +T’7_5-Z + ) (96)
Kypm———s [(2+322+ 2z + 75+ ...)
2,2 3(1 _Z)z 2 45 30
~(Z2+ 322+ R+ 25+ .. YK, (X =0)
—(Z+3zZmz-LZ%)K},(X=0)] (9f)

Often, the surface potential as a function of surface charge density is required [18]. We define the scaled
surface charge density, p, as [20]

p= —aFo/2e,¢e,RTk (10)

where o is the surface charge density. It can be shown that
a(dy
p=2(5 (1)
2\dX /) x-o
On the basis of Egs. (3a), (6), (7) and (11), we obtain

1 dY -
( )x=o=°"p('“"’°/2) Af(X=0)+ ¥ s"4,(X=0)

» =|yax (12)
= —sinh(ay,/2) + £B, + £°B,
where
_exp(—ay,) — 4+ 3exp(agy) — 2ayy, exp(ay,)
B, = 8 sinh( ays,/2) (e
5. Bl 1= exp(ady) +ady exp(avy) ~ a*p exp(ayn) /2 (12b)
2= 2sinh( ay,/2)

Applying the method proposed by Hsu and Kuo [18], Eq. (12) can be solved for ¢, to yield (Appendix A)

2
¢Ozz[ln(q—p)+eCl+eC2] (13)
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where
g>=(p*+1)
C,=-GC/8pq
2
C,=—-|C,— 3 2+4C5+4C3C6)/8pq

=(g+p) —4+3(q¢-p)’ - 4(q-p)’In(qg-p)

C,=G{1+[(a-p) 10(q-p)]/pa)

2

Cs= +1-(q-p) +2(q-p)’In(g—p) —2(q—p)* In*(g—p)

3
64 p?

-1
64

C°=[] q(q— p)]/ g

The free energy of an electrical double layer, F,,, can be calculated by (Appendix A)

F,

el

f"(f’od"

0

—2(a + b)CSRT P

- [ dodp
K 0

4(a +b)

~ 0 2
= — CIRT(D, + &D, + £°D,)

where ¢, is the surface potential, and

=pl(p+q)—q+1

1+
D,=|-3In

1+g¢ q3 2
D,=|m P I

p 14 q

+%[81n

4
+%(—-18q——+22p—8a1—a4) +,'—6(45-—41r2—
q

11'2

q 3 al
tq-p|ln(g+p) +2¢ -39+ -2+

In*(p+q)

1+g¢

4 1
—6q-—+8p——]ln(p+q)
q p

3

(13a)
(13b)

(13¢c)

(13d)

(13e)

(13f)

(13g)

(14)

(14a)

(14b)

(14¢)

In these expressions, a; and a, are defined in Appendix A, and B;,, is the Bernoulli number of order 3/2.
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The entropy of an electrical double layer, S, is calculated by [11]

dF,
sel = a;-
3F, 2(a+b)
= 2; + ——aK—cf}R(F0 + &F, + &°F,)

where

Fo=ph(p+q)

A

1 p?
Fi=la=2,-p ln(p+q)+-;—5

2q3 2p2
Fz=%(2q—7+7 In*(p+q)

(2] 6+2 2p 4+7)1( +q)
+3 —69+———F——=5+7p|ln(p+gq
\p 9 ¢ 4

. 13 4p 4
+3 —-—IOq——T—'——3‘+16p
q q q

The surface excess of co-ions, I', can be evaluated by [11]

r -2({-0o k OF,
= e— — + ——
k \ aF 2RT 3

= —2C(Gy + £G, + £*G,) /k

where
Go=p—q+1
1+q p’ @, m?
Gl—[zL %ln( 5 )]ln(p+q)+2q—7—p+—2—-2+?
1+q) 34° 2 2p?
G =Lln( +——-3¢g————|In*(p+gq)
2 ]6[ P q q3 (
+2 6 2 4
+3|8 A 2+ S ap|n(pra)
p 9 4 q
41 4p 4
+3 8q———+ s +—5+6p—8a;—a,
@ q
7w°B
+,’~6(45—4w2———3l3).

(15)

(152)

(15b)

(15¢)

(16)

(16a)

(16b)

(16c)
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The amount of co-ions adsorbed near the solid-liquid interface can be calculated by [11]

r= iixc;’f:[exp(blp) - 1]dx. (17)

3. Discussion

According to Eq. (4b), & vanishes for the case of a symmetric electrolyte. In this case, Egs. (6), (9a) and (9d)
lead to

_ 1+ [tanh(ay,/4)]exp(—X) (18
1 — [tanh( ay,/4)]exp(—X) )

This is consistent with the classic result of Gouy and Chapmann [1]. Note that for electrolytes often encountered
in practice, a,b < 3, and |¢| < 1/2. The rate of convergence of Eq. (6) is satisfactory.

Compared with the solution derived by La Mer et al. [2] for the case of a:b electrolytes, the result obtained in
the present analysis is more simpler in both mathematical representation and numerical calculation. The former
involves an infinite series, and each term contains an integral which needs to be determined numerically. The
approach adopted by Hsu and Kuo [11] involves an empirical fourth-order polynomial, which is assumed on the
basis of the qualitative behavior of the electrical potential distribution. In contrast, the present perturbation
method is mathematically rigorous, and provides essentially the exact solution, if sufficient terms are used in
Eq. (6).

If ¢ is positive, then b > a by Eq. (4b). In this case, a surface is negatively charged and K, is smaller than
unity. The electrical potential increases from a negative value to 0 as the distance from the surface increases
from O to . The greater the &, the slower the rate of increase of the electrical potential. That is, for two values
of &, £, and &,, if &, > &,, then [¢(e)| > [¥(s,)| at a fixed position.

The performance of the present perturbation method in the prediction of the electrical potential and
thermodynamic properties of an electrical double layer is illustrated in Tables 1 and 2. An uncharged surface is
chosen as the reference state. The second-order perturbation solution is used, and the exact values are based on
the numerical solution of Eq. (1). For the electrical potential, ¢ equally spaced points in the range 0 < X < 2 are

Table 1
Averaged percent deviations (%) of the present perturbation method from the corresponding exact values in the electrical potential and
thermodynamic properties of an electrical double layer

ab & E, EFel ES:I E,

12 1/3 3.18 231 2.76 2.03
1:3 1/2 4.06 3.49 3.82 2.11
2:1 -1/3 3.22 1.86 2.23 1.59
2:3 1/5 247 1.08 1.41 0.93
31 -1/2 4.29 3.04 3.26 2.75
3:2 -1/5 2.55 0.82 1.25 0.69

An uncharged surface is chosen as the reference state in the evaluation of the thermodynamic properties. The second-order perturbation
solution is used, and the exact values are based on the numerical solution of Eq. (1). Parameters used are: ionic strength =1 mol/m?,
T=298.15K, &, =78, and yy=—1. E,, Er, Es,, and E are defined in Egs. (19) and (20).
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Table 2
Averaged percent deviations (%) of the present perturbation method from the corresponding exact values in the electrical potential and
thermodynamic properties of an electrical double layer

ab & E, E,-gl Esel Ep

1:2 1/3 342 2.48 2.82 2.15
1:3 1/2 4.11 3.67 3.94 241
2:1 -1/3 2.78 1.61 2.05 1.37
2:3 1/5 2,63 1.15 1.43 1.03
3:1 -1/2 3.96 2.89 3.10 2.60
32 —-1/5 247 0.74 1.02 0.48

An uncharged surface is chosen as the reference state in the evaluation of the thermodynamic properties. The second-order perturbation
solution is used, and the exact values are based on the numerical solution of Eq. (1). Parameters used are the same as those in Table 1 except
that: ionic strength = 100 mol/m’. ¢ = — 1. E,, Eg, Es ,and Ep are defined in Eqgs. (19) and (20).

chosen, and the electrical potentials at these points are evaluated. The averaged percent deviation in i, E,, is

defined as

g -y

E,=| X ~’—¢—,——’/z X 100% (19)
j=1 i

where ¢; is the scaled electrical potential at point j estimated by the second-order perturbation solution, and

;" the corresponding exact value. The percent deviation in the thermodynamic property P, E,, is defined as

*

P *
where P denotes the value of the thermodynamic property based on the second-order perturbation solution, and
P* is the corresponding exact value. As can be seen from Tables 1 and 2, the deviations based on the
second-order perturbation solution are less than 5% for both low and high ionic strength.

It can be shown that D, D,, and D, defined in Egs. (14a), (14b) and (14c) are of the same sign. Therefore,
if £ is positive, then the perturbation result for free energy approaches to the corresponding exact value
monotonically, and if & is negative, then it approaches to that in an oscillating manner. Similar arguments can
be applied to the cases of entropy and surface excess of co-ions.

For a positively charged surface, if we define ¥ = exp(—by/2), k=2 +2a/b, and €= (a—b)/(a + b),
the present analysis leads to the same results as those obtained for a negatively charged surface.

In a study of the effect of ion size on the spatial variation of electrical potential, Bhuiyan et al. [19]
considered the case of a planar surface in 1:2, 2:1, and v:v electrolyte solutions. The governing Poisson—Boltz-
mann equation was solved through direct integration, and an iterative procedure proposed. In contrast to their
analysis, an arbitrary a:b electrolyte solution is considered in the present study. A perturbation method is
adopted for the resolution of the Poisson—Boltzmann equation, and an approximate analytical solution derived.
Compared with the iterative expression of Bhuiyan et al. for the electrical potential, the present analytical result
is more desirable. This is because that mathematical manipulations on the electrical potential such as integration
and differentiation are necessary in the subsequent estimation of the thermodynamic properties of the system
under consideration.

E,=

X 100%, P=F,S§, ol (20)

4. Conclusion

In summary, the Poisson—Boltzmann equation for the case a planar charged surface immersed in a general
a:b electrolyte solution is solved analytically by adopting a perturbation method. The result obtained is used to
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derive the free energy, entropy, and surface excess of co-ions of an electrical double layer. We show that the
rate of convergence of the present perturbation solution is satisfactory. For example, if the second-order solution
is adopted, the deviations in the electrical potential and the thermodynamic properties examined are less than
5%.
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Appendix A

The relations necessary for the derivation of Eq. (7) are summarized as below:

1Y1(§: K) In K, + o] = | K K (A1)
nY=1In e"K, | =In gl—|+e —
n=0 ° Ko KO 2K§
1-¢ = u
myz z%(l—s)[ngo(-—l) e"|[ K3+ e(2KoK,) + €2 (2K, K, + K})] (A2
=1K3+e(KoK, — K}) + e*(K2 - 2K, K, + K, K, + &%)
(1—3) v 4e 8e2
/=9 =2(1- —1)"en|YH 1+ InY+-———In?Y
4(1+€) 4 6‘) E( ) 1__8 (1"8)2
4
0
3
az(Kg —-2K3K, + EK(}K,Z + K2K,
+4KK, In Ky —2Kg In K, + 2K In” K,)
The derivation of Eqgs. (9a)-(9¢) are based on the expressions below:
dX=-dz/Z (Ada)
Ky=1+2) 2" (Adb)
n=1
-4z =
1-K2=——=-4Y nz" (Adc)
T
® Z2n+l
InK,=2 A4d
1 o EO 2n+1 (A4d)
= (1-2)"
1nz=—2‘,( - ) (Ade)
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—2(Z*+4Z+1)

1-3K3= AAf
P, =8—A(](1—-4K§+3K3—4K31nK0)
- © 2n+1
= (22 +4Zz+1) - (1+2)*
2(1 - 2)° ( )= ),E’O 2n+1 (Adg)
——Siz— 1 +Z+32°+32° + 32 +
_3(1_2)2( 5 5 35 )
-1
Kiz=—[PIdX (A4h)
P2=—éiz4—(1+zz+lz2+2z3+ﬁz“+ ) (A41)
1 9(1_2)4 5 175
64 4
Ki,=———(1+Z+ 822+ 373+ Z7* + ... Adj
1.2 9(1_2)4( 20 3 350 ) (A4))
A? (1+2)° (1-2)° (1-2z)
P,= = - K- Pl - K,P A4k
24, 4z ! az ! 2z U (Adk)
1
P, =F[(1—3K§)K,2—4K0(1—Kg+2K§1nKO)K,
1]
+2K3(1 - K2 +2K2 In Ko — 2K} In? K,)]
Z2+4Z+1 14z (1+2)° i z2n! 1+z\* (1+2)°
=— — K?-2——K, + —
4z Pt -zt Tz -y \ S+ (1—2) Z(1-2)’
o ZZn+l
n§02n+1—222(1+§22+§z4+%26+...)]
(A41)
-1
Kyz=—/(Py+ P)IdX (A4m)
I=(1-2)*/Z. (A4n)
The expressions necessary for the derivation of Eq. (13) are summarized as below:
C,= —p(Ci2 — 4 +3C%—4C%, InCy) /[ (8P + £C5)q] (A5a)
C 1/9(q —p)] —1}C?
.- Co, W/ata=n] -1G (As)
q 2
Cy=—4p(q?C?+1—Cly+2Cf InC,p — 2C, In’ Cio)/ (8P + £Cy) (A5c)
(q_P)Ca C:f
Co=(g-p)—¢ +¢? (AS5d)

8pqg |~ 128p’q°
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Note C,, is the first-order approximation of Y,. Substituting C,, into Eqs. (ASa), (A5b) and (A5c) gives

32 5 C3C4 C;
C,=—[Cy+e C4—-'? + e C“——S?—+64p4 /8pq (A6a)
2 C,Cs C3
Cy=—{(Cs+CICs) + ¢ <,‘,2—8—pz+2€3€6 C, 57
. G cic [X e ay
+e&*|C3 — -8—pz—+ 6ap +2C 2Cel Cyp — 3 - 64p4 + C CA_?[—TE /2pq (A6b)

C,C, C3C
Co=—|Cs+elCpp— Cis 857 | Gap® /2p (Aéc)
In these expressions,
1 q-—p 1
Cy, = Cs|6pg - 7+ —4(q-p)|— g 9P In(q - p)|/64p%q (A6d)
9(q-p) 9
Cy(C, = C3/8p%)  (a-p)’Ci[In*(q —p)]
2= 3252 + ) (A6e)
p pq
_ G{Cn=CsCu/8p* + Ci/64p") | (G -Ci/8p")  (a-p)’C
13 32p2 64p2 32p2q2
, 4P CG-(/g+4-p)n*(a=p) = 2g=p)in(a=p) +3(a=p)] (Asf)
32p2q2
Expressing (¢C; + £2Cy) in terms of the increasing order of &, Eq. (13) can be recovered.
In the integration of Eq. (14), C, and C, needed to be expressed in terms of p and g. We have
q P 1 q
C=t-— - — 4 —4|[1-— - —|In(p+ A7
=175, " 20 20 ( 2 2q) (p+a) (A7a)
3 2 2
q q p pP
SO0 A N
8p~ 4p” 2p 2q 44
p’ q p 1 1 1 1 1
+ . — i pu—
8¢ 4p® 4¢> 4p® 2pg 44" 8p’q 8pg’
mn(pte) (o 4 4 P P P g p 1
2 2p® 2p*  2p 2g 2¢* 2¢° 2p° 2¢° pq
]n2 + 3 3
(r+9) 4 94 PP (ATb)
8 P P 49 49
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The following relations are useful:
pdp =qdq
din(g+p)=dp/q
In[(1+ ¢) /p] =2tanh™'(q - p)
W=q-p
InW=—In(p+gq)
p=(1- W2)/2W
g=(1+W?)/2W
dp=—[(1+W?)/2W?]|dw

In|{1+ tanh™'W ©  Wortl
a, = __[(__fl_)_/fldp=_zf____dw=_2z___2.
w n=0 (2ﬂ+1)
tan"'p o (1) W2+
a,= | dp=[tan"p-l-2tan“(q—p)]ln(p+q)+2Z )
a, © W2n+l
a,=[—dp=2 —_—
’ jq P ,,go (2n+1)3
In|(1+ In( p+
o= [(1+4q)/p]in(p q)dp=_allnw_C¥3
q
3
q 3q l+gq
3 3d =____+___2]
/(4°/p%)dp 7t i

1
f(¢*/P*)dp=p— 7
fzdp=q—ln(l+q)

2 p

P
—dp=g¢q
fq

p2
f?dp=q—tan“p

3
P 1
—dp=qg+—
fq3 g
q q 1+g¢
——-dp=————lln( )
[p3 2p* ? p
}/ 1
fq’ q
1 1
f—=dp=——

n=0 (2n + 1)2
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+
f—dp=—ln( q)
Pq
1
J—dp=tan”'p
- 1 I+
f—po‘—“ ({,+—-In q)
q 2p7 2 p
| 1 | +
L 129)
pPq p
3 3
g In(p+gqg 3 ; l+g¢ 1 3a
(z )dp= —q*—(i——,———ln ln(p+q)—p——-+——l-
p 2 2p- 2p 2
2
g In(p+4q) ! I+q
—p—zd[’= r= In(p+g)~g—In

q

gIn(p+q)
f———d In(p+q)—p+ae

oo

[In(p+gq)dp=pin(p+q)—q

|

pin(p+gq)
f————dp=gqin(p+gq)—p
p*In(p+q)
T dp=(p - p)n(p+a) ~ g+ e
3
p’In(p+gqg 1
———~(—3——)dp= q+;)ln(p+cI)~p—tan"p
gIn(p+gq) —-q l+gq |
——dp= —nf—=||In(p+g)— %~ +—
/ e p [zpz _n( P n(pta)—m+3
In( p + In( p +
p (P3 9, __Inlr q)+m_,p
q
In(p+¢q) In(p+q) (1+q)
————dp=——————1In
p° p p
In(p+gq
f——(2—)dp=(tan"p)ln(p+q)—oz2
In( p+ 1+
fMdp= —-[In(——q) In(p+q)+e
pa p
Sn?(p+ 3 3 l+gq
i-—~(-—f——ﬂ p= = qz—%ln In*(p+q)
2 2p p
1+

!
—(2p+—)1n(p+q)+2q—ln(
r

q)+3a4
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gIn’(p+q) 1+g
J——————=dp=|g—1In > In*(p+q)—2phn(p+gq)+2g+2a,

P
pin*(p+q)
[—————dp=qIn*(p+q)—2pIn(p+gq) +2q
32
p’In*(p+q) 1
po: q+—q— ln2(p+q)—2pln(p+q)+2q+2a2—2(tan_lp)ln(p+q)

a(p=0)=—-=m?/4
a,(p=0)= "IT2E1/2/4
a;(p=0)=7w"B,,,/6
a,(p=0)=—as(p=0)

lim {[In"(p+4)]/p"}=LneR

lim {[in[(1+4)/p]]In(P +¢q)} =0

dp/oT = —p/2T
dp/dk = —p/k

In these expressions, E, ,, and B, , are, respectively, the Euler number of 1/2 order and the Bernoulli number
of 3/2 order.
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