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Abstract

Transient nature of dislocation emission from a crack tip gives a new twist to the study
of brittle-to-ductile transition. In a class of materials, only the dislocations traveling at high
speed may escape from the crack tip. The nucleation of a fast moving dislocation, however,
requires a higher level of activation energy, as supported by many experimental data. The present
paper explores this scenario under the restriction that the dislocation moves along the crack
extension plane. Fundamental solutions of moving dislocations are derived, and which provide
the drag forces on the dislocations and the shielding to the crack tip. Nucleation of a fast moving
dislocation is examined under the Peierls–Nabarro theory. Incremental dislocation 4ux is created
continuously from the crack tip, and moves away at a constant speed. At a judgmental time of
dislocation emission, the displacement jump relates to the holding force along the crack extension
plane by a periodic inter-planar potential, and the singular stress induced by the transient and
rate-dependent displacement jump negates the original crack tip singularity. A dynamic overshoot
calculation under quasi-steady assumption provides an escape velocity of dislocations. To achieve
it, extra activation energy is required for the transient dislocation nucleation and that reduces the
dislocation nucleation rate along the crack front. When compared with the rate-insensitive process
of cleavage, the transient dislocation emission process allows us to predict the rate dependency of
the brittle versus ductile behavior of materials. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dislocation emission from a crack tip dictates the brittle-to-ductile transition of ma-
terials (Kelly et al., 1967; Rice and Thomson, 1974; Schoeck, 1991; Rice, 1992; Rice
and Beltz, 1994). A unique behavior of dislocation free zones in the crack-tip vicinity
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was reported by the TEM observation (Kobayashi and Ohr, 1980, 1981, 1984; Ohr,
1985, 1988). The glide planes of dislocations are usually inclined to the cleavage path
(Chiao and Clark, 1989), so that cleavage and dislocation emission are determined by
di;erent stress distributions. A solid may cleave after a certain amount of dislocation
emission. This “quasi-cleavage” case occurs if the emitting dislocations are conIned
by Inite mobility (Hsia and Argon, 1994), or repelled by pileups in front of obstacles
(Hsia et al., 1994), or resisted by lattice friction (Zhu et al., 1996).
InsuLcient attention has been paid to the transient nature of the dislocation emis-

sion, except several transient analyses by Brock and coworkers (Brock and Jolles,
1987; Brock, 1989; Brock and Wu, 1990a, b) for the anti-plane shear case. The tran-
sient e;ect of dislocation emission gives a new twist to the brittle-to-ductile transition.
Atomistic calculations (Yang et al., 1994; Tan and Yang, 1994a, b) indicated that emit-
ted dislocations depart from the crack tip at a velocity of several tenths of the shear
wave speed. In a class of materials, Tan and Yang (1995) showed that the dislocation
emissions are inherently transient; a dislocation is formed near the crack tip by an
atomistic catastrophic process, and the sudden release of energy sets the dislocation in
transient motion.
The present work examines this issue from the continuum mechanics aspect. To

demonstrate the phenomenon under a clear mathematical analysis, our attention is fo-
cused on the case where the dislocation emission plane and the cleavage plane coin-
cide (Rice, 1992). ConIned to that circumstance, dislocation emission and cleavage
are caused by the same stress distribution along the crack extension line, but di;erent
activation mechanisms result in di;erent loading rate responses. A static dislocation
emission theory predicts a strict brittle-or-ductile alternative: the crack either extends
in a form of cleavage or arrests by dislocation emission, regardless the loading rates.
On the other hand, rate e;ect on the brittle versus ductile transition has been empha-
sized by many experimental investigations (e.g., Nitzsche and Hsia (1994) for silicon;
Kim and Roberts (1994) for sapphire; Booth and Roberts (1997) for TiAl single
crystals; and Ebrahimi and Shrivastava (1998) for NiAl single crystals). The paper
by Hirsch and Roberts (1996) summarized many testing data for Si that correlated
the inverse of the brittle-to-ductile transition temperature as a linearly decreasing func-
tion of the logarithmic stress intensity factor rate. The transient nature of dislocation
emission leads to a scenario in a class of materials where an overshoot is essential
for a nucleated dislocation to escape from the crack tip. Accordingly, an escape speed
exists for emission of a dislocation. Only those dislocations traveling above the escape
speed may leave the crack tip, and the slower ones are trapped. The nucleation of a
fast moving dislocation, however, requires a higher level of activation energy, render-
ing the loading rate dependency of the brittle to ductile transition. This situation is
explored under the following assumptions:
(1) Only a plane strain or an anti-plane shear conIguration is considered. The crack

tip region where dislocations nucleate and escape is small comparing to the other
lengths of relevance. Furthermore, the time scale for transient dislocation emission
is small compared to the time scale of remote load variation. By these assumptions,
the geometry under investigation reduces to a semi-inInite crack in an otherwise inI-
nite medium, and the loading is prescribed by the remote stress intensity factors. The
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emission of a climb dislocation, an edge dislocation, or a screw dislocation is driven
by a sustained mode I, II, or III Ield.
(2) The emission process of a dislocation is described by two stages: nucleation

and escape. In the nucleation stage, the Peierls–Nabarro model is used for an incipient
dislocation, as in the static counterparts by Argon (1987), Schoeck (1991, 1994, 1996),
Beltz and Rice (1991, 1992), Rice (1992), Rice et al. (1992), and Rice and Beltz
(1994). In the escape stage, we describe a fully developed dislocation by a Volterra
dislocation.
The transient analyses for both stages rely on the fundamental solutions of moving

dislocations presented in the next section. These solutions provide the forces on, and
the crack tip shielding by, a climb, an edge, or a screw dislocation that emits from the
crack tip at a constant speed. The nucleation of a fast moving dislocation is examined
in Section 3 under the Peierls–Nabarro theory, generalized from its counterpart in the
static case. Incremental dislocation 4ux is emitted continuously from the crack tip, and
moves away at an assigned speed. At a judgmental instant of dislocation emission,
the continuous displacement jump along the crack extension line relates to the local
traction by a periodic inter-planar potential, and the singular stress induced by this
transient and rate-dependent dislocation strip negates the original crack tip singularity.
These requirements allow us to determine the dislocation emitting 4ux from the crack
tip, which serves to evaluate the activation energy for a moving dislocation. A dynamic
overshoot calculation under quasi-steady approximation is conducted in Section 4. The
escape velocity of dislocations is obtained by integrating a nonlinear Irst-order dif-
ferential equation. To achieve this escape velocity, extra activation energy is required
for the transient dislocation nucleation, and that consequently reduces the dislocation
nucleation rate along the crack front. When compared with the rate-insensitive process
of cleavage, the velocity related dislocation emission process allows us to predict the
rate dependency of the brittle versus ductile behavior of materials.

2. Fundamental solutions for moving dislocations

Consider the plane strain or anti-plane shear deformation of a linear isotropic elastic
solid. The elasticity properties are assigned by a shear modulus � and a Poisson’s ratio
�. The in-plane coordinates are denoted by x1 and x2. The geometry for dislocation
emission concerns a semi-inInite crack lying along the negative x1-axis in an otherwise
inInite plane. The body is at rest before a time instant t0. At t = t0, a dislocation
suddenly emerges at the crack tip, and propagates rightward along the crack extension
line at a constant velocity v. This section analyzes the excitation by emitting such a
dislocation, termed the fundamental solution of a moving dislocation. The conventional
elastodynamic governing equations are adopted, e.g., see Freund (1990, Section 1:2).
The crack faces and the remote boundary are traction free at all time. The process
of dislocation emission is visualized as follows. Suppose that a pair of dislocations of
opposite Burgers vectors ±bi sit at the crack tip before t = t0, so they exactly cancel
each other. Quantities b1; b2 or b3 correspond to the edge, climb or screw component
of the dislocation. Since t = t0, the dislocation of Burgers vector +bi moves out at
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a velocity v and the dislocation of Burgers vector −bi remains at the crack tip. A
displacement discontinuity of bi is created from the crack tip to the point x1 = 
 along
the crack extension line

ui(x1; 0±; t) =±bi

2
H (
− x1)H (x1)H (t − t0); (1)

where H (•) denotes the Heaviside step function, and 
 = v(t − t0) abbreviates the
location of the dislocation.
Freund (1974, 1990, Section 3:2:2) obtained a particular version of the fundamental

solution for the transient emission of a climb dislocation. Adopting the same method-
ology of Laplace transform and Wiener–Hopf technique, we derive an elastodynamic
semi-inInite crack solution under the excitation of Eq. (1). The traction along the crack
extension line assumes the following simple form (no summation for repeated indices
unless explicitly indicated):

2i(x1; 0; t) =− �ibi

2�(
− x1)

√


x1

F+
i

(
1
v

)
F−
i

(
t − t0
x1

)
H [ci(t − t0)− x1]: (2)

In Eq. (2), the elastic constants and the wave speeds generated by di;erent displacement
discontinuities are �1 = �2 = �=(1− �), �3 = �, c2 = cL, c1 = c3 = cT, with cL and cT
being the longitudinal and transverse wave speeds. The dimensionless F-functions in
Eq. (2) are given by

F±
1;2(�)

√
1± 1=cR�√
1± 1=cT;L�

S±(�); F±
3 (�) =

√
1± 1

cT�
; (3)

where cR is the Rayleigh wave speed. The functions S±(�) come from the standard
process of Wiener–Hopf factorization of the Rayleigh wave function, given by

log S±(�) =− 1
�

∫ 1=cT

1=cL
tan−1


4z2

√
z2 − c−2

L

√
c−2
T − z2

(c−2
T − 2z2)2


 dz

z ± �
: (4)

As � → ∞, both S±(�) and F±
i (�) asymptotically approach unity.

The denominator in the traction expression (2) indicates an inverse singularity in
the vicinity of the moving dislocation. The leading term of the singularity stress is
skew-symmetric with respect to the traveling dislocation core, and has no contribution
to the force on that dislocation, see Hirth and Lothe (1982, Sections 3:2, 3:4). Excluding
this leading term, and taking the limit of x1 → 
 for the remaining part, one obtains
the following expression for the drag stress on dislocation:

�i =−�ibi

2�

F+
i

(
1
v

)[
1
2
F−
i

(
1
v

)
+

1
v
Ḟ
−
i

(
1
v

)]
: (5)

A super-imposed dot on a function denotes the derivative with respect to its argument.
For the case of a moving screw dislocation, the force on it has a simpliIed expression

�3 =− �b3
4�


√
cT + v
cT − v

: (6)
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Fig. 1. Variation of the dimensionless dislocation force factor −4��i
=(�bi) with respect to the normalized
dislocation speed v=cT for representative Poisson’s ratios of � = 0:1, 0.3 and 0.5.

As can be conIrmed by the rigorous analysis by Brock and Wu (1990a), formula (6)
constitutes an exact expression even for the case that dislocation moves at non-uniform
velocity. For the dislocation emission under in-plane deformation, formula (5) is spec-
iIed to

�1;2 =− �b1;2
4�(1− �)


v−1 + c−1
R√

v−2 − c−2
T;L

S+

(
1
v

)

×
{

v−1 + c−1
R − 2c−1

T;L

v−1 − c−1
T;L

S−

(
1
v

)
+ 2(v−1 − c−1

R )Ṡ−

(
1
v

)}
: (7)

We plot in Fig. 1 the variation of −�i, normalized by �ibi=(4�
), with respect to the
dislocation speed, normalized by the shear wave speed, for representative Poisson’s
ratios �=0:1; 0:3 and 0:5. It is observed that the drag stress on the dislocation intensiIes
as the dislocation moves faster. The drag stress on a climb dislocation possesses the
strongest velocity dependence, followed by that of an edge dislocation and then a screw
dislocation. For the cases of climb and edge dislocations moving in a solid of Ixed
shear modulus, the higher the Poisson’s ratio, the larger the drag stresses.
The fundamental solutions (2) quantify the crack tip shielding for various types of

moving dislocations. The shielding stress intensity factors are

K shield
I; II =− �b2;1

(1− �)
√
2�


1 + v=cR√
1 + v=cL;T

S+

(
1
v

)
; K shield

III =− �b3√
2�


√
1 +

v
cT

:

(8)



2436 W. Yang et al. / J. Mech. Phys. Solids 49 (2001) 2431–2453

The Roman subscripts I, II or III denote the opening, sliding or tearing mode of fracture.
For all fracture modes, the strength of the shielding stress intensity factor increases as
the corresponding dislocation speed increases.

3. Transient dislocation nucleation

This section deals with the transient dislocation nucleation from a crack tip. Advances
in the static theory of dislocation nucleation highlight the use of Peierls–Nabarro model,
as addressed by Argon (1987), Schoeck (1991, 1994, 1996), Beltz and Rice (1991,
1992), Rice (1992), Rice et al. (1992), Rice and Beltz (1994), and Wang et al. (1996);
see also the references therein. Under the Peierls–Nabarro model, the gradual build-up
of the dislocation in front of the crack tip is formulated by the emission of a density of
inInitesimal dislocations out of the crack tip, and the physical trace of such a gradual
dislocation emission was observed recently in nanoscopic resolution near an atomisti-
cally sharp crack in single crystal silicon (Xing et al., 2000). The Peierls framework
of dislocation emission from a crack tip eliminates the uncertain parameter of core
radius, and provides a dislocation core structure from the periodic lattice viewpoint. A
counterpart for the transient nucleation is attempted here by exploiting the fundamental
solutions in the previous section.
The remote loading is applied by a stress intensity factor KM. Throughout this work,

the Latin indices i = 1; 2; 3 (for stress and displacement components) correspond to
the Roman indices M = II; I; III (for fracture modes). The loading rate of the stress
intensity factor is relatively slow so that an equilibrium stress Ield is achieved before
the emission of dislocation at t = 0. Before the emergence of a fully developed dis-
location (whose Burgers vector has an amplitude b), a dislocation 4ux of incremental
Burgers vectors is continuously generated at the crack tip. The incremental dislocations
travel along the crack extension line at a prescribed speed v, so that a moving Peierls–
Nabarro dislocation dynamically takes shape. To quantify the above ideas, let us denote
the emission 4ux of incremental dislocations from the crack tip by (b=tcr)Bi(1− t=tcr),
with Bi(s) (i=1; 2; 3) being a dimensionless crack tip dislocation 4ux function, and tcr
a critical time to be deIned later. The process variable s counts from the critical time
(s = 0) back to the initial instant of dislocation nucleation (s = 1). The displacement
jump along the crack extension line at a time t ¿ 0 is given by

ui(x1; 0+; t)− ui(x1; 0−; t) ≡ �i(x1; t) = b
∫ 1

1+�−t=tcr
Bi(s) ds: (9)

Henceforth, we label the slip length of the incipient dislocation at the critical time as
lcr = vtcr, and deIne a dimensionless variable � as x1=lcr. The value �= 0 denotes the
crack tip and the value � = 1 locates the leading edge of the incipient dislocation at
the critical moment.
Generated by the emitting dislocation 4ux, a transient stress adds to the previ-

ously equilibrium stress Ield. The fundamental solutions presented in the previous
section enable us to write the traction along the crack extension line by the following
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superposition integral for any x1 less than cit:

2i(x1; 0; t) =
1√
2�x1

{
KM − �ib√

2�lcr
F+
i

(
1
v

)

×
∫ 1

1+�i−t=tcr
F−
i

(
s− 1 + t=tcr

v�

) √
s− 1 + (t=tcr)Bi(s)
s− �− 1 + t=tcr

ds

}
; (10)

where �i = (v=ci)�. The square root singularity near the crack is indicated explicitly in
Eq. (10). Due to the transient formation of the incipient dislocation, the stress intensity
factor at the crack tip is shielded, and reduced to

K tip
M (t) = KM − �ib√

2�lcr
F+
i

(
1
v

)∫ 1

1−t=tcr

Bi(s)√
s− 1 + t=tcr

ds: (11)

At the critical time tcr, the incipient transient dislocation is ready to transform into
a fully developed dislocation. Two conditions are imposed at that moment. First, the
transient stress Ield due to the dislocation nucleation should completely shield the
crack tip, rendering the crack tip stress intensity vanishes at t = tcr,

KM =
�ib√
2�lcr

F+
i

(
1
v

)∫ 1

0

Bi(s)√
s

ds: (12)

The second condition states that the traction given in Eq. (10) should relate to the
displacement jump given in Eq. (9) by an inter-planar lattice relation

2i(x1; 0; tcr) = �i�[�i(x1; tcr)=b] =
9�
9�i

; (13)

where � is a periodic function that has to be inferred by a solid-state physics calculation
for a given material. The quantity � in Eq. (13) is termed inter-planar energy. Rice
(1992), Rice and Beltz (1994), among many others, adopted a Frenkel sinusoidal form
in the cases of gliding dislocations. As a departure from the quasi-static analysis, a
dimensionless factor c(v) is introduced to scale the rate e;ect:

�= c(v)
��us
b

sin
[
2�
b

(
�+

�
�

)]
; (14)

where � and � may refer either mode II (edge dislocation) or mode III (screw dis-
location) case. In Eq. (14), �us is the unstable stacking energy, and V = � + �=� the
relative atomic displacement undergone by atoms on the opposite sides of the glid-
ing plane. Relation (14) highlights a dimensionless variable �us=�ib characterizing the
lattice resistance to dislocation nucleation. The estimate of �us=�ib (see Rice, 1992)
indicates that it falls within the range of 0.03–0.1 for many materials. The calculations
in the sequel are conducted at a representative value of �us=�b=1=2�2 ≈ 0:050675 (see
Wang, 1995).
Transient dislocation emission, on the one hand, has to shield the crack tip that

was previously presided under a stress intensity factor KM; on the other hand, the
dislocation emission has to conquer the rate-dependent inter-planar resistance � in
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Eq. (14). The former is given in Eq. (12) and has a velocity dependence of F+
i (1=v),

while the latter is given in Eq. (14) and has a velocity dependence of c(v). At the
critical time tcr, the velocity dependences of the driving force KM and the resistance �
should be consistent, leading to

c(v) = F+
i

(
1
v

)
: (15)

Also at t = tcr, the expression (9) reduces to

�i(x1; tcr) = b
∫ 1

�
Bi(s) ds: (16)

Consequently, the dislocation emission 4ux Bi(s) has another interpretation as the dis-
location density function at the critical time tcr.
Substituting Eqs. (16) and (10) into Eq. (13), one obtains the governing equation

for the 4ux of incremental dislocations:

�

[∫ 1

�
Bi(s) ds

]
=

1√
2�x1

{
KM

�i
− b√

2�lcr
F+
i

(
1
v

)∫ 1

�i
F−
i

(
s
v�

) √
sBi(s)
s− �

ds

}
:

(17)

The governing equation (17) is valid for x1 ranging from 0 to lcr (or for � ranging from
0 to 1), with lcr furnished by Eq. (12). It is a singular nonlinear integral equation and
casts in the form of generalized Peierls equation. Numerical solution for the dislocation
density Bi(s) and the slip length lcr can be facilitated by a Chebyshev polynomial
expansion to remove the singular integration in Eq. (17). CoeLcients of the expansion
are solved by Newton–Raphson iteration. Details of the numerical scheme are illustrated
in the appendix, as an extension for the scheme used by Beltz and Rice (1991, 1992),
by Rice and Beltz (1994), and by Wang et al. (1996). When Bi(s) is known, one can
integrate according to Eq. (16) to get the displacement jump �i at the critical time.
Alternatively, one may change the dislocation density function Bi to the inter-planar

slip �i, then Eq. (17) is formulated in a di;erent form:

�
[
�i(x1; lcr)

b

]

=
1√
2�x1

{
KM

�i
+

F+
i (1=v)√
2�

∫ lcr−(v=ci)x1

0

√
l

l− x1
F−
i

(
l

vx1

)
d�i(l)
dl

dl

}
: (18)

In the quasi-static limit, the above formulation naturally reduces to the one proposed
by Rice (1992),

�
[
�i(x1; lcr)

b

]
=

1
2�

√
x1

∫ lcr

0

( √
l

l− x1
− 1√

l

)
d�i(l)
dl

dl;

∫ lcr

0

d�i(l)
dl

dl√
l
=−

√
2�

KM

�i
: (19)
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Fig. 2. Critical energy release rates Gcr=�us for spontaneous nucleation of a transient dislocation of normalized
velocity v=cR for mode II.

Under the periodic relation (14), the solution of Eq. (17) is non-unique. Under the same
load, the displacement jump at the crack tip �i(0; lcr) may locate at di;erent intervals
of � versus � curve. If �i(0; lcr) locates at the ascending portion of the �–� curve, the
solution is stable while the solution is unstable if �i(0; lcr) locates at the descending
portion. The remote load can be expressed by the energy release rate. Since the crack
is non-propagating, the energy release rate relates to the applied stress intensity factors
by

G =
1− �2

E
(K2

I + K2
II) +

1
2�

K2
III: (20)

Under prescribed G, a moving dislocation will nucleate spontaneously if �i(0; lcr)
exceeds a pivotal value of b=2. Otherwise the transient dislocation has to nucleate by
thermal activation. The critical energy release rate that causes a crack tip displacement
jump of b=2 is labeled by Gcr. When the remote energy release rate reaches Gcr, a
complete dislocation may be nucleated and is ready to emit. Fig. 2 plots the mode
II curve of the required applied load levels Gcr=�us versus the normalized dislocation
velocity v=cR. The critical energy release rate increases as the dislocation velocity
increases. The calculation was carried out under a Ixed set of materials parameters.
The Poisson’s ratio � is taken as 0.3, and the Rayleigh wave speed is Ixed at cR =
2000 m=s. Relations among the longitudinal, transverse and Rayleigh wave speeds (see,
for example, Freund, 1990) lead to cL = 4040 m=s and cT = 2159 m=s.

The discussion in the sequel is restricted to the case of G 6 Gcr. Fig. 3 plots
typical �=b versus x1=b curves under di;erent applied load levels G=�us for mode II
case. The solution in the Irst ascending portion of the �–� curve is termed the Irst
stable solution, and plotted in solid lines. The Irst stable solution shares the feature
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Fig. 3. �=b versus x1=b curves for transient Peierls–Nabarro dislocation under di;erent applied load, mode
II: (a) v = 0; (b) v = 0:3cR; (c) v = 0:5cR.

that the displacement jump along the crack extension line decreases rapidly from its
maximum value at the crack tip to zero at x1 = lcr. The solution in the Irst descending
portion of the �–� curve is termed the Irst unstable solution and plotted in dot lines.
These curves might climb up somewhat and then decline. Graph (a) corresponds to the
quasi-static limit. The result from the present calculation agrees with that reported by
Rice and Beltz (1994), giving conIrmation for the present numerical scheme. Graphs
(b) and (c) correspond to the case of v=0:3cR and 0:5cR, respectively. As predicted in
Fig. 2, the load levels to produce similar displacement jump increase as the dislocation
emission speed v increases. Under the same applied load, the excited displacement
discontinuity is smaller and more focused near the crack tip for the transient nucleation
than those for the quasi-static dislocation nucleation.
When G¡Gcr, the dislocation has to be nucleated by thermal activation. The energy

required for the thermal activation depends on the traveling speed of nucleated dislo-
cation, while the latter has to exceed an escape velocity (a concept to be introduced in
the next section) to accomplish dislocation emission. Transient dislocation nucleation
excites both the strain energy and the kinetic energy inside the solid. The kinetic energy
radiates out from the crack tip and the moving dislocation, and complicates the direct
link between the activation energy and the inter-planar lattice potential. However, the
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Fig. 4. ConIguration to evaluate the di;erential energy before and after the nucleation of a transient dis-
location. Area A(t) is bounded by contour C(t) composed of four parts: the exterior curve Cext , the crack
faces, a small circle around the crack tip, and the horizontal paths l+(t) and l−(t).

di;erence in energy (strain energy plus kinetic energy) before and after the nucleation
of a transient dislocation can be evaluated by a time evolving contour shown in Fig. 4.
Through integration of the linear momentum equation in the domain of space and time,
Freund (1990, Section 5:2) stated an energetic relation among the energies evaluated
at di;erent times and the stress power accumulated through its boundary. Applying his
result to the present case of a stationary crack with a discontinuity strip extending with
time, we have

VU [�i(x1; tcr)] =Uinterplanar[�i(x1; tcr)] +
∫∫
A (tcr)

(W + T ) dA

−
∫∫
A (0)

(W + T ) dA

=
∫ lcr

0
�[�i(x1; tcr)] dx1 +

∫ tcr

0

∮
C(t)

∑
i

∑
j

jinj
9ui

9t dC dt: (21)

In Eq. (21), Uinterplanar[�i(x1; tcr)] denotes the inter-planar energy due to a displacement
jump of �i(x1; tcr) caused by the incipient dislocation, and the symbols W and T
denote the strain energy and the kinetic energy within the area of A(t), bounded by
the curve C(t) shown in Fig. 4. The Irst equality of Eq. (21) states that the total energy
gained by nucleating an incipient dislocation (denoted by VU ) equals the energy stored
in the inter-planar bonds by forming a Peierls–Nabarro dislocation, plus the strain
energy and the kinetic energy changes within the continuum. The second equality of
Eq. (21) consists of two manipulations. First, the inter-planar energy is evaluated by
the inter-planar potential �[�i(x1; tcr)], as discussed in several works (Schoeck, 1991;
Beltz and Rice, 1991, 1992; Rice, 1992; Rice et al., 1992; Rice and Beltz, 1994), while
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the kinetic energy of inter-planar bonding is ignored due to its negligible inertia. The
other manipulation converts the energy change within the continuum by the energy
4ux accumulated along the evolving contour C(t) with an outside unit normal ni. We
divide C(t) into four parts: the exterior curve Cext, the crack faces, a small circle
enclosing the crack tip, and the horizontal paths l+(t) and l−(t) above and below
the incipient Peierls–Nabarro dislocation. Along the exterior curve Cext, traction is
prescribed and is independent of time. Prior to the arrival of stress wave generated by
the transient dislocation, there is no energy 4ow through Cext. Consequently, there is
no contribution to the energy 4ux integral if Cext is drawn suLciently far from the
crack tip. The traction-free condition along the crack face eliminates its contribution
to the energy equation. Moreover, the contribution from a circle around the crack tip
vanishes as the circle shrinks onto the crack tip, since the particle velocity Ield dui=dt
is non-singular near a stationary crack tip. The only contribution of the last term in
Eq. (21) comes from the discontinuity line created by the incipient dislocation. Above
and beneath the incipient dislocation, the normals are given by (n1; n2) = (0;∓1) and
non-trivial displacements are u±i in the path of l±(t). Recall that �i = u+i − u−i , one
reduces Eq. (21) to

VU [�i(x1; tcr)] =
∫ lcr

0
�[�i(x1; tcr)] dx1 −

∫ tcr

0

∫ vt

0
2i(x1; t)

9�i(x1; t)
9t dx1dt: (22)

Substituting the expression (9) for �i into Eq. (22), and switching the order of inte-
gration, one obtains∫ tcr

0

∫ vt

0
2i(x1; t)

9�i(x1; t)
9t dx1 dt

=blcr

∫ 1

0
Bi(s∗)

{∫ 1

1−s∗
2i[lcr(s+ s∗ − 1); tcrs] ds

}
ds∗: (23)

Substituting Eq. (10) for 2i into Eq. (23), changing the order of integration, then
substituting back into Eq. (22), one Inally arrives at

VU [�i(x1; tcr)] =
∫ lcr

0
�[�i(x1; tcr)] dx1 − KM

∫ lcr

0

�i(x1; t)√
2�x1

dx1

+
�ib2

2�
F+
i

(
1
v

)∫ 1

0
Bi(s∗)

∫ 1

v=cis∗
*i

(
s∗

s
;
ci
v

)
Bi(s′) ds′ ds∗ (24)

where

*i(r; q) =




∫ r

0
F−
i

(
1
v,

)
d,√

,(1− ,)2
if r ¡ 1;

−
∫ q

r
F−
i

(
1
v,

)
d,√

,(1− ,)2
if r ¿ 1:

(25)

In the spirit of Rice and Beltz (1994), the activation energy for an incipient dislocation
moving at a velocity v may be deIned as the energy barrier between two possible
solutions of Eqs. (17) and (12). The activation energy for the nucleation of a straight
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Fig. 5. Two-dimensional normalized activation energy VU act=(�b2) versus the normalized energy release
rate G=Gcr , under the dislocation velocity v=cR = 0; 0:1; 0:2; 0:3; 0:4; 0:5.

dislocation is

VU act[�i(x1; tcr)] = VU [�sadi (x1; tcr)]−VU [�min
i (x1; tcr)]; (26)

where �min
i (x1; tcr) denotes the Irst stable solution, and �sadi (x1; tcr) the Irst unstable

solution. Fig. 5 shows the normalized activation energy VU act=(�b2) versus the applied
loads G=Gcr curve for mode II case, under v=cR values of 0; 0:1; 0:2; 0:3; 0:4 and 0.5.
At a Ixed dislocation velocity, the energy required to activate a dislocation declines
as the applied energy release rate increases, and diminishes when G approaches Gcr.
At a Ixed value of applied stress intensity factor, the activation energy for dislocation
nucleation increases with the emitting velocity. The increased activation energy serves
to inject more kinetic energy to nucleate a fast moving dislocation.

4. Dislocation escape from a crack tip

Assisted by the thermal activation process, a moving dislocation is formed under the
Peierls–Nabarro model described in the previous section. The fate of such a nucleated
dislocation raises the next question: can it escape from the crack tip? Wang et al.
(1996) devised a Peierls–Nabarro approach that uniIes the formulation for dislocation
nucleation and dislocation escape in the quasi-static case. Mathematical intricacy for
a transient analysis, however, makes a uniIed Peierls–Nabarro formulation diLcult
for transient dislocation emission. To simplify the discussion, we replace the Peierls–
Nabarro dislocation to a fully developed Volterra dislocation. The escape problem is
formulated by a complete dislocation of magnitude b, which nucleates at 
 = 
0 and
moves at a velocity v0 under an applied stress intensity factor KM. The activation
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energy required to nucleate such a dislocation can be found from Fig. 5. The range of

0 falls within 1–1:5b. The total force fi(
0; v0) on such a dislocation consists of the
driving force by the remote K Ield, the crack tip drag on the transient dislocation, and
the lattice resistance to the dislocation motion. Accordingly,

fi(
0; v0) = b
{

KM√
2�
0

− �ib
2�
0

F+
i

(
1
v0

)
[
1
2
F−
i

(
1
v0

)
+

1
v0

Ḟ
−
i

(
1
v0

)]
− �Lattice(v0)

}
; (27)

where the second term in the curved parentheses is evaluated through Eq. (5), and the
last term represents the lattice resistance to the dislocation motion, commonly known
as the dislocation mobility curve, see Hirth and Lothe (1982, Section 7:7). For a
dislocation moves at an inInitesimal speed, one has

fi(
0; 0) = b
{

KM√
2�
0

− �Mb
4�
0

− �Lattice(0)
}

: (28)

If fi(
0; 0) is non-negative, a dislocation nucleated at 
0 can escape from the crack,
regardless its velocity. The remaining part of the paper deals with the case of negative
fi(
0; 0). The nucleated dislocation at any velocity will Irst decelerate, that will lead
to two possibilities. For a slow moving dislocation, it decelerates, then stops, and
eventually retreats to the crack tip. On the other hand, a fast moving dislocation may
overshoot the dragging barrier and escape from the crack.
The stress analysis for a dislocation moving at non-uniform speed is hardly tractable,

except for the mode III case in which the exact expressions were given by Brock and
co-workers (Brock, 1989; Brock and Wu, 1990a, b). For a smooth deceleration, we
approximate the stress Ield in the vicinity of the moving dislocation by the stress Ield
as if the dislocation moved out from the crack tip at the current velocity to the current
location. We term this approximation the “quasi-steady approximation” for the stress
Ield in the vicinity of the moving dislocation. For the special case of screw dislocations,
the dislocation drag force derived under quasi-steady approximation happens to coincide
with the exact analysis of Brock and Wu (1990a) for a screw dislocation moving
at non-uniform speed. We anticipate that the quasi-steady approximation holds for a
climb and an edge dislocation. Under this approximation, a Newtonian type equation
for dislocation motion is derived as follows:

m̃i
dv
dt

= b
{

KM√
2�


− �ib
2�


F+
i

(
1
v

)[
1
2
F−
i

(
1
v

)
+

1
v
Ḟ
−
i

(
1
v

)]

−sgn(v)�Lattice(v)
}

;

d

dt

= v; 
(0) = 
0; v(0) = v0: (29)
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For the case of small v=cT, the “e;ective mass” m̃i of a dislocation is given by

m̃1 =
1 + (cT=cL)4

c2T

W0

L
; m̃2 =

[
3
1 + (cT=cL)4

c2T
− 4

c2L

]
W0

L
; m̃3 =

1
c2T

W0

L
(30)

and W0=L = (�b2=4�)ln R=
0 denotes the self-energy per unit length of a straight and
stationary screw dislocation. Symbol R denotes the outside radius of the dislocation in
its strain energy evaluation. The above expressions of the e;ective mass for a screw, an
edge and a climb dislocation were due to Frank (1949), and Weertman (1961, 1967)
and for the case that v=cT is small. We notice in Eq. (29) the lattice resistance switches
sign when the dislocation motion is reversed.
The equation system (29) describes a two-dimensional autonomous dynamic system

in the 
–v phase plane. The trajectories in the phase plane are uniquely determined.
Typical portraits for the phase trajectories are illustrated in Fig. 6a for the mode II case
and Fig. 6b for the mode III case, with abscissa 
=b and ordinate v=cT. Rate independent
dislocation mobility curve �lattice(v) = �c is adopted. The material parameters are Ixed
at KM=�

√
b=0:19 and �c=�=0:01. To evaluate W0=L in Eq. (30), we choose the ratio

R=
0 as 1000. The critical point for the system locates at 
= 
̃ and v=0 in the phase
plane, with 
̃ given by


̃=
K2
M

8��2c

(
1−

√
1− 2�ib

K2
M

�c

)2
: (31)

The condition of KM ¿
√
2�ib�c is implied in this equation. Fig. 7a and b plot the nor-

malized critical point 
̃=b with respect to the applied stress intensity factors, normalized
by �

√
b, for an edge and a screw dislocation. For both cases, the critical points draw

close the nucleation position as the remote stress intensity factor increases.
Under a Ixed value of KM less than the critical value of spontaneous nucleation, the

escape velocity ṽ bears the following meaning. If v0 ¡ṽ, a dislocation that nucleates
at 
= 
0 can never reach 
̃; if v0 ¿ṽ, the same dislocation can overshoot through 
̃,
and accelerate to escape from the crack tip. Only dislocations nucleated at larger than
the escape velocity can emanate from the crack tip, though more activation energy is
required for their nucleation. The escape velocity ṽ can be resolved as follows. One
rewrites Eq. (29) as

dv
d


=
b

m̃iv

{
KM√
2�


− �ib
2�


F+
i

(
1
v

)[
1
2
F−
i

(
1
v

)
+

1
v
Ḟ
−
i

(
1
v

)]

−sgn(v)�Lattice(v)
}

; (32)

which is a Irst-order nonlinear ordinary di;erential equation in the phase plane. In-
tegrating it from the critical point 
 = 
̃ and v = 0 backward, one obtains the escape
velocity ṽ as the v value at 
=
0. We choose 
0 =1:25b in the numerical calculations.
Fig. 8a and b plot the normalized escape velocities ṽ=cT with respect to the applied
stress intensity factors, normalized by �

√
b, for an edge and a screw dislocation. For

both cases, the escape velocity declines as the remote stress intensity factor increases,
and diminishes when the remote stress intensity factor approaches the critical value for



2446 W. Yang et al. / J. Mech. Phys. Solids 49 (2001) 2431–2453

Fig. 6. Trajectories in the phase plan span by the abscissa 
=b and the ordinate v=cT, under a load
level of KM=�

√
b = 0:19: (a) edge dislocation; (b) screw dislocation. Figs. 6 and 7 are plotted under

�lattice(v) = �c = 0:01� and R=
0 = 1000.

spontaneous nucleation. Combining Figs. 8 and 5, one concludes that the activation
energy for a dislocation to escape from the crack tip decreases as the applied stress
intensity factor increases.

5. Loading rate e ect on brittle-to-ductile transition

Three-dimensional calculation for a protruding dislocation loop is cumbersome for
the transient situation. For the quasi-static case, Rice and Beltz (1994) reported that
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Fig. 7. Normalized critical point 
̃=b versus normalized applied stress intensity factor KM=(�
√

b) curves:
(a) edge dislocation; (b) screw dislocation.

the three-dimensional activation energy VE for such a protruding loop approximately
relates to the two-dimensional activation energy VU act by

VE ≈ 5 ∼ 10b×VU act : (33)

For thermal activated nucleation, the nucleation rate is given by (Matthews et al., 1976)

vnu =
nnucT
b

exp
(
− VE

KBT

)
; (34)
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Fig. 8. Normalized escape velocity ṽ=cT versus normalized applied stress intensity factor KM=(�
√

b) curves,

0 = 1:25b: (a) edge dislocation; (b) screw dislocation.

where nnu ∼ 1=(10b) is the number of nucleation sites per unit length of crack front,
KB the Boltzmann constant, and T the temperature in Kelvin. Substituting Eqs. (33),
(26) and (24) into Eq. (34), one Inds that the nucleation rate decreases exponentially
with respect to v0. Recalling that v0 has to exceed ṽ to escape from the crack tip,
one realizes that the higher the escape velocity, the lower the nucleation rate of the
dislocation.
As the loading rate varies, dislocation emission responds di;erently from cleavage.

The load level to excite a transient dislocation depends on the loading rate; while
the cleavage behavior, as a bond rupture process governed by a GriLth type energy
criterion, depends only on the current stress along the cleavage plane near the crack
tip, as demonstrated by many experiments, as well as by atomistic simulation (Tan
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and Yang, 1994a). Under a slow loading rate, there will be ample time for disloca-
tion emission even if it requires a high level of activation energy to escape from the
crack tip. Dislocation emission intervenes when the applied stress intensity factor KM

is considerably lower than the value for cleavage. Under a fast loading rate, the lim-
ited loading period only allows dislocations of low activation energy to escape from
the crack tip. To lower the energy barrier, the applied energy release rate should be
raised. Therefore, the load level at which transient dislocation emission occurs relies
on the loading rate. Therefore, a fast loading rate promotes cleavage, or brittle material
behavior; while a slow loading rate promotes dislocation emission, or ductile material
behavior. The brittle to ductile transition of materials at a slower load rate is beneIted
from the available time to activate dislocations that overcome the energy barrier for a
transient escape from the crack tip.
The following two cases may further quantify the discussion. First consider the case

of Gcr(0)¡Gcleave. Prompt dislocation nucleation is achieved, and nucleated disloca-
tions may eventually escape from the crack tip. Loading rate e;ect intervenes only if
the dislocation emission is not fast enough to relieve the crack tip stress. To quan-
tify the process, one can Ind an upper bound v+ of dislocation velocity from Fig. 2
according to the cleavage energy Gcleave:

Gcr(v+) = Gcleave: (35)

Dimensional consideration dictates that the maximum stress at the blunted crack tip
scales with K̇

√
b=v+. A fast loading rate embrittles the material by demanding a high

value of the dislocation emission speed v+.
Next consider the case of Gcr(0)¿Gcleave. Thus dislocation nucleation controls the

brittle-to-ductile transition. The rate of dislocation generation is given in Eq. (34) with
the activation energy given by Eq. (33). That activation energy should be evaluated at
a crack emission velocity whose lower bound is given by Fig. 8 as

v− = ṽ(Gcleave=Gcr(0)): (36)

On the other hand, the rate of stressing is measured by K̇=Kcleave. Dimensional consider-
ation dictates that the maximum stress at the blunted crack tip scales with K̇=(Kcleavevnub).
At the brittle-to-ductile transition temperature Tc, one should have

1
Tc

=
KB

VE(v−)
ln
(
CKcleavennucT

K̇

)
; (37)

where C is a dimensionless constant and the VE(v−) value is furnished by Eqs. (33),
(36) and Fig. 3. The rate dependence of the transition temperature is supported by many
testing data (Nitzsche and Hsia, 1994; Kim and Roberts, 1994; Hirsch and Roberts,
1996; Booth and Roberts, 1997; Ebrahimi and Shrivastava, 1998).

6. Concluding remarks

Transient emission of dislocation from a crack tip gives a new twist to the brittle-to-
ductile behavior of the materials. Two competitions are involved: the competition
between cleavage and dislocation emission, and the competition between transient
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nucleation and transient escape of dislocations from a crack tip. A message of this
paper is the latter competition, along with its consequence that a brittle to ductile tran-
sition depends on the loading rate, as supported by many testing data. The transient
nucleation of a dislocation requires extra activation energy; the faster the moving speed,
the higher the level of energy to activate it. On the other hand, the momentum of a
fast moving dislocation, when nucleated, helps it to overrun the dragging barrier by
the crack tip attraction. Though at a slow nucleation rate, a fast moving dislocation
can escape from the crack tip at a relatively low load level, while a slow moving
dislocation, albeit attempted at rapid nucleation frequency, might fail to get away from
the crack tip. This scenario leads to the loading rate dependency of brittle to ductile
transition commonly observed in experiments.
Three assumptions are incorporated in the present analysis, as tradeo;s to explore

this complicated phenomenon. First, we conIne the plane of dislocation emission to the
crack extension plane. That geometry precludes the possibility of crack tip blunting, as
well as the possibility that cleavage and dislocation emission are presided by di;erent
stress distributions. Second, during the transient nucleation of a Peierls–Nabarro dislo-
cation, the inter-planar relation and the crack tip shielding condition are enforced only
at the moment when its nucleation possibility is examined. During the intermediate
time period, the process is so transient that these two conditions cannot be maintained.
Actually, they can be satisIed only if incremental dislocations travel at non-uniform
speeds, and consequently a clear deInition on the nucleation speed of the dislocation
is lost. The third assumption is the quasi-steady approximation in the analysis for the
dislocation escape process. This assumption is conIrmed in the case of non-uniformly
moving screw dislocations, in which the quasi-steady approximation delivers the exact
result of dislocation drag force as obtained by Brock and Wu (1990a). Further research
is needed to clarify those approximations.
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Appendix Numerical scheme to solve integral equation (17)

In the spirit of Wang et al. (1996), the dislocation density function Bi(s), when
multiplied by

√
s, can be expanded in a truncated sinusoidal series:

√
sBi(s) =

1
2

N∑
n=1

2n sin n3 with s=
1
2
(1 + cos 3): (A.1)

In the numerical solution, N , the number of truncated terms, is chosen as 180, a
suLciently large integer. The sinusoidal expansion (A.1) is equivalent to an expansion
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of Chebyshev polynomials of the second kind. Substituting Eq. (A.1) into Eq. (17),
one obtains

�

[
N∑

n=1

2nDn(�)

]
=

1√
2�lcr�

{
KM

�i
− b√

2�lcr
F+
i

(
1
v

) N∑
n=1

2nTn(�)

}
; (A.2)

where

Dn(�) =
sin(n− 1=2) 
2(2n− 1)

− sin(n+ 1=2) 
2(2n+ 1)

; (A.3)

Tn( ) =−�
2
F−
i

(
1
v

)
cos n − 1

2
F−
i

(
1
v

)∫ �

 i

sin n3 sin 3
cos 3− cos  

d3;

+
1
2

∫  i

0

{
F−
i

[
1 + cos 3
1 + cos  

1
v

]
− F−

i

(
1
v

)}
sin n3 sin 3
cos 3− cos  

d3 (A.4)

and  =cos−1(2�−1),  i=cos−1(2�i−1). In Eq. (A.4), the derivation of the Irst term
involves the integration of a singular kernel by means of the property of Chebyshev
polynomials, the integration of the second term is free of singularity for v¡cR, while
the singularity at 3= is removed in the third term. Thus, the integration in Eq. (A.4)
can be carried out by conventional numerical integration routines.
Eq. (A.2) can be discretized at N points (�1; : : : ; �N ):

�m = (1 + cos 3m)=2; 3m =
m− 1
N

�; m= 1; 2; : : : ; N: (A.5)

A condition complementary to this system is furnished by substituting Eq. (A.1) into
Eq. (12):

√
2�lcrKM =

�
2
�ibF+

i

(
1
v

) N∑
n=1

(−1)n+12n: (A.6)

Eq. (A.6) provides a relation between KM and lcr, either of them may serve as the
loading parameter. If one selects lcr as the loading parameter, (see Wang, 1995), one
can substitute Eqs. (13)–(15) and (A.6) into Eq. (A.2) to arrive at

4��uslcr
�ib2

sin
2�Vm

b
=

N∑
n=1

2n√
�m

[
cos(n�)− 2

�
Tn(�m)

]
: (A.7)

Eqs. (14), (16), (A.1) and V = � + �=� lead to a relation between 2n and Vm. For
the Irst stable solution, the scheme of using 2n as the basic variable gives converge
result. The governing equation becomes

4��uslcr
�ib2

sin

(
2�

N∑
n=1

Bmn2n

)
=

N∑
n=1

Amn2n; (A.8)
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where

Amn =
cos(n�)− (2=�)Tn(3m)√

�m
; Bmn = Dn(3m) +

b
4(1− �)lcr

F+
i

(
1
v

)
Amn:

(A.9)

For the Irst unstable solution, the scheme of using Vm as the basic variable gives
converge result. The governing equation becomes:

Vm =
��us
�

{
4(1− �)lcr

b

N∑
n=1

N∑
k=1

A−1
nk sin

(
2�Vk

b

)
Dn(�m)

+ Fi

(
1
v

)
sin
(
2�Vm

b

)}
: (A.10)

The solution can be carried out by Newton–Raphson method.
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