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Abstract

The fabrication of gradient index plastic optical fiber in a closed co-extrusion process is simulated theoretically. The concentration

dependency of the diffusivities of monomers in host polymer is taken into account on the basis of a modified free volume theory together with

a generalized Flory–Huggins theory for a three-component polymer solution. The applicability of the model derived is justified by fitting it to

the experimental data reported in the literature, and its performance is found to be satisfactory. We show that the diffusion of a mobile phase

in a polymer solution is dependent upon the structure and the concentration of polymer, and the concentration of the other mobile phase

present.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Investigations on the refractive properties of materials

have been conducted for over thousand years since human

beings are interested on astronomical refraction problems.

To predict exactly the path of light in a refractive material,

however, is impossible until Snell’s law and Fermat’s

principle were proposed hundreds of years ago. The

possibility of applying an inhomogeneous refractive

medium in an optical system was not considered until

Maxwell [1] proposed his spherical symmetric focus lens,

the so-called Maxwell’s fisheye lens. Maxwell’s result was

modified and generalized by Luneburg [2], Morgan [3], and

numerous researchers decades later. In the past decades,

various theoretical studies were performed on the utilization

of distributed elements such as the imaging lenses for

microscopes, telescopes, and photographic lenses, and the

optical fiber for the transmitting of light [1].

Using a gradient index optical element has the advan-

tages such as low image aberration and torsion, sharp

imaging, small number of elements, and high adjustability.

Although theoretical investigations on gradient index media

are ample in the literature, technology counterparts are still

very limited. Techniques for fabricating high quality, low

cost, and desired gradient index distribution materials are

not developed fast enough to keep pace with theoretical

predictions. In his experiment for the verification of the

Schmidt’s theory of sun, Wood [1] prepared the first

gradient index element, a radial-distributed index lens of

gelatin, which was prepared by diffusion of glycerin (higher

refractive index) from the middle of gelatin. Until present,

most of the reported results for distributed refractive index

elements are based upon glass and polymer plastic fibers.

Glass optical fiber can be produced in principle by

exchanging ions with different refractive indices between

glass and surrounding solution [4]. The fabrication of stress-

free, discolored glass optical fiber used as wave guides was

not successful, however, until 1970s. Techniques such as

ion implantation, electron irradiation, vapor deposition, and

others, have also been proposed for the preparation of

colorless, low-loss glass wave guides [1]. Due to its high

cost, low production rate, poor adjustability, and poor

processibility, glass optical fiber tends to be replaced by

plastic optical fiber. Although the optical loss of the latter

was found to be significant in the early stage of its

development, subsequent study showed that this drawback

can be alleviated [5]. Various processes are reported to be

efficient for the fabrication of plastic optical fiber including,
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for example, suspension copolymerization [6,7], internal

diffusion and surface evaporation (IDSE) [8–11], and multi-

layer co-extrusion [12–15].

The performance of an optical fiber depends largely on

its refractive index distribution. That of a cylindrical optical

fiber with a parabolic refractive index distribution in the

radial direction, for example, was found to be satisfactory in

light imaging [1]. A parabolic type refractive index

distribution, nD; can be described by

nD ¼ nD0ð1 2 Arp2Þ; ð1Þ

where nD0 is the highest refractive index, which occurs on

the axis of the fiber, and rp and A are the scaled radial

distance and a constant, respectively. In practice, a

refractive index distribution can be controlled in fabrication

because it correlates with the composition of a fiber as [16]

nD ¼
1 þ 2F

1 2F

� �1=2

ð2Þ

F ¼

X
i

½ðn2
Di 2 1Þ=ðn2

Di þ 2Þ�ðwpi=dpiÞX
i

ðwpi=dpiÞ
ð2aÞ

In these expressions, nDi and dpi are, respectively, the

refractive index and the density of polymer component i;

and wpi is its mass fraction. The key step common to the

processes for preparing plastic optical fiber is the diffusion

of monomers in polymer gels. For simplicity, the diffusiv-

ities of monomers in a polymer solution are usually assumed

as constant [17–19]. Although analytical results can be

derived based on this assumption, it is known that the

diffusivity of a monomer in a polymer solution depends not

only on the concentration and the structure of polymer, but

also on the concentrations of other monomers present [20,

21]. Because these effects can be significant in practice, an

analysis, which takes them into account, is highly desirable.

This is conducted in the present study.

2. Analysis

A schematic representation of the optical fiber fabrica-

tion process under consideration is illustrated in Fig. 1 [14,

15,17]. Poly-methyl methacrylate (PMMA) with monomers

methyl methacrylate (MMA) and benzyl methacrylate

(BzMA) are placed in reservoir tank 1, and PMMA with

monomer MMA are placed in reservoir tank 2; these tanks

are kept at 60 8C. The polymer solution in tank 1 is extruded

at a volumetric flow rate of 0.5 cm3/min by a gear pump into

the inner layer of the concentric die, and that in tank 2 is

pumped synchronously at a volumetric flow rate of 1.5 cm3/

min into the outer layer of the die. Diffusion of MMA and

BzMA occurs when the polymer solutions pass through the

enclosed (diffusion) zone. After passing this zone, the

polymer solutions are hardened by 220 V UV light to fix the

refractive index distribution. A take-up roller then collects

the finished product. The change in the bulk density of the

filament is assumed to be negligible. Referring to Fig. 2, Ri

and Ro are, respectively, the radii of the inner and the outer

layer of the diffusion zone, r and z are, respectively, the

radial distance and the distance from the top of the diffusion

zone, and L is the total length of the diffusion zone in the z-

direction. Under steady state operation, the mass transfer of

monomer is described by

7·ðriuiÞ ¼ 7·½riðui 2 uÞ þ riu� ¼ 27·ðDl7riÞ þ 7·ðriuÞ ¼ 0

ð3Þ

where subscript i ¼ 1 and 2 represent, respectively,

monomers MMA and BzMA, ri and wi are, respectively,

the mass concentration and the mass fraction of monomer i;

and ui and Di are, respectively, the velocity and the diffusion

coefficient of monomer i; and u is the velocity of bulk

solution. The system under consideration is azimuthally

symmetric, and the only non-zero component of u is its z-

component, uz; the constant exclusion speed. We assume

that both the diffusion of polymer and that of monomers in

the z-direction are negligible, and the variation of the

density of polymer solution is insignificant. Therefore, Eq.

(3) can be rewritten in cylindrical coordinates as

Fig. 1. Schematic representation of the experimental apparatus of the closed

extrusion process considered. 1 and 2, material supply tanks, 3 and 4, gear

pumps, 5, concentric die, 6, enclosed (diffusion) zone, 7, core-shell

separator, 8, hardening zone, 9, take-up roll [14,15].
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›r
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The boundary conditions associated with this equation are

assumed as

›wi

›r
¼ 0; r ¼ 0 and r ¼ Ro; i ¼ 1; 2 ð4aÞ

w1 ¼ w1i; 0 , r , Ri; z ¼ 0 ð4bÞ

w1 ¼ w1o; Ri , r , Ro; z ¼ 0 ð4cÞ

w2 ¼ w2i; 0 , r , Ri; z ¼ 0 ð4dÞ

w2 ¼ 0 Ri , r , Ro; z ¼ 0 ð4eÞ

In these expressions, w1i and w2i are, respectively, the mass

fractions of MMA and BzMA in the inner layer at the top of

the diffusion zone, and w1o is the mass fraction of MMA in

the outer layer at the top of the diffusion zone. Eq. (4a)

implies that the diffusion of each component is azimuthally

symmetric and the wall of the diffusion zone is impenetrable

to both MMA and BzMA.

For the present three-component polymer solution, the

free volume fraction, f ; can be expressed as

f ¼ f1f1 þ f2f2 þ ð1 2 f1 2 f2Þf3

¼ ðf1 2 f3Þf1 þ ðf2 2 f3Þf2 þ f3

¼ af 1f1 þ af 2f2 þ f3 ð5Þ

where fi is the free volume fraction of component i at pure

state, and f3 is that of PMMA. In the equation above, the

volume fraction of component i; fi; can be expressed as

fi ¼
wi=di

w1

d1

þ
w2

d2

þ
1 2 w1 2 w2

d3

ð6Þ

where di is the density of component i: Based on Fujita

et al.’s theory [22] for the thermodynamic diffusivity of

monomer in a polymer solution, a free volume theory for

transporting property, and an extension of Flory–Huggins

equation for three-component polymer solution (Appendix

A), the diffusivities of MMA and BzMA in PMMA, D1 and

D2; can be expressed, respectively, as

D1 ¼ D0;1 exp 2
fc
f
þ

fc

f3

� �
½1 2 ð1 2 1=z2Þf1 2 2x1f2�

ð7aÞ

D2 ¼ D0;2 exp 2
fc

f
þ

fc

f3

� �
½1 2 ð1 2 z2Þf2 2 2x2f2ð1 2 f2Þ�

ð7bÞ

Here, D0;i is the dilute diffusivity of monomer i; fc is the

critical free volume fraction for the co-operative movement

of the polymer segments, zi ¼ ðmi=diÞ=ðm1=d1Þ; mi being the

molecular weight of component i; and xi is the Flory–

Huggins parameter of component i: Because the variation of

the concentration of polymer is limited, fc is assumed to be

constant. Eqs. (5), (7a), and (7b) simulate the effect of the

presence of one monomer on the diffusivity of the other

monomer. If the concentrations of MMA and BzMA are

both low, the retardation effects arising from polymer chains

are about the same for both monomers. In this case, the main

factors that are significant to the transport property ratio of

different monomers are the molecular weights and the

activation energy of monomers (Appendix A). The latter is

equivalent to the interaction energy between a monomer

molecule and its neighboring molecules. The dilute

Fig. 2. Coordinates used in theoretical analysis.
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diffusivity ratio of monomers, then, can be estimated by

D0;2

D0;1

¼
m1

m2

� �1=2

exp 2
Up

23 2 Up
13

kT
½ð1 2 f3Þ

4 2 2ð1 2 f3Þ
2�

� �
ð8Þ

where k and T are, respectively, the Boltzmann constant and

the absolute temperature. In this expression, Up
i3 is the

minimal potential energy of monomer molecule i arising

from the presence of its neighboring polymer when the

mean distance between them is equal to Lennard–Jones’

characteristic distance.

3. Results and discussions

The governing equations are solved numerically subject

to the associated boundary conditions by a finite difference

procedure. In numerical computations, the axial step, dz;

and the radial step, dr; are selected to be first order and

second order, respectively, in precision. According to the

stability criterion suggested by Crank [20], under this

constraint, ðDmax=uzÞðdz=dr2Þ , 0:5; where Dmax is the

maximal diffusivity, both the selected axial step and the

radial step are decreased gradually until the solution

converges. The physical properties of the materials used

are summarized in Table 1. The free volume fractions of

monomers at various temperatures are estimated by

referring to the thermal expansion data of C7H16 and

C13H28 measured by Doolittle [23]. For amorphous PMMA,

the glass transition temperature, Tg; is 378 K. According to

Williams et al. [24], the free volume fraction of PMMA

below its glass transition temperature can be estimated by

f3 ¼ 0:025: The Flory–Huggins parameter for MMA, x1; is

assumed the value 0.45 [25]; also, x2 ¼ z2x1 from Appendix

A. The experimental conditions are summarized in Table 2.

The interactive parameters Up
11=k and Up

22=k are estimated to

be 2450 and 23000 K, respectively, from the experimental

refractive index data.

The applicability of the result derived in this study is

examined by fitting the available experimental data in the

literature. Figs. 3–6 illustrate the radial distribution of

the refractive index under various conditions. Both the

experimental data gathered from the literature and the

results predicted by the present model are presented. For

comparison, the values predicted by other theoretical results

are also shown. Figs. 3 and 4 reveal that the performance of

the present model is satisfactory. In particular, the

performance of the model proposed by Liu et al. [17] can

be improved considerably by applying the present model.

Note that the spatial distribution of the refractive index near

the inner layer–outer layer interface is not as smooth as that

at other position. This behavior may arise from the

difference in the concentrations of polymers in the inner

and the outer layers at the inlet. The critical free volume

fractions and the estimated dilute diffusivities associated

with Figs. 3–6 are summarized in Table 3. This table

reveals that within the range of the operation conditions

considered, the variation of the critical free volume fraction

is more insensitive to the operation conditions than that of

the dilute diffusivity of monomer. This is because the

critical free volume fraction depends largely on the structure

and the concentration of polymer chains. However, we are

still able to see that the critical free volume fraction needed

for the co-operative motion of polymer segments is reduced

to a certain extent for the rotation energy of polymer

segments increases as temperature rises. The dilute

diffusivities of MMA and BzMA are found to increase

Table 1

Physical properties of MMA, BzMA, PMMA, and PbzMA [25,29]

MMA BzMA PMMA PBzMA

di (g/cm3) 0.936 1.040 1.200 1.179

mi (g/mol) 100.12 176.22 – –

nDi – – 1.490 1.568

fi 80 C 0.303 0.249 0.025 –

90 C 0.313 0.257 0.025 –

Table 2

Experimental conditions for the data shown in Figs. 3–6

I [14] II [15] III [15] IV [15]

Inner layer PMMA (%) 58 57.5 57.5 58

BzMA (%) 28 17 20 28

MMA (%) 14 25.5 22.5 14

Outer layer PMMA (%) 60 55.5 55.5 60

BzMA (%) 0 0 0 0

MMA (%) 40 44.5 44.5 40

Ri (mm) 0.25 0.417 0.417 0.417

Ro (mm) 0.5 0.833 0.833 0.833

u (cm/s) 4.244 4.244 4.244 4.244

L (cm) 45 45 45 45

Fig. 3. Spatial variations of nD at 80 8C. The experimental conditions are

given in column I of Table 2. Discrete symbols, Ho et al. [14], dashed curve,

Liu et al. [17], solid curve, present model.
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with the increase in the temperature, and decrease with the

increase in the critical free volume fraction. The latter is

very sensitive.

Fig. 7 shows the radial distribution of the concen-

tration of each component at the outlet of the diffusion

zone for the case of Fig. 4. According to Fig. 7, the

diffusion depth of BzMA is only about 20% of the radius

of the optical fiber, which is responsible for the sharp

decrease in the refractive index near the center of the

fiber. The spatial variations of the diffusivities of MMA

and BzMA are illustrated in Fig. 8. This figure indicates

that for both components, the diffusivity in the outer

layer is larger than that in the inner layer. This is mainly

due to the fact that the free volume contribution of

MMA is greater than that of BzMA, and the content of

MMA in the outer layer is more abundant than that in

the inner layer. Because polymer is distributed uniformly

in both inner and outer layers, the spatial variations in

the diffusivities of monomers observed in Fig. 8 indicate

that the effect of the presence of one monomer on the

diffusivity of the other monomer is very important. Fig. 8

and Table 3 suggest that the diffusivity of MMA in

PMMA is about 10 times that of BzMA on the cross

surface of fiber. This can be explained by that the

molecular weight of BzMA is larger than MMA, and the

attraction between BzMA and polymer chains is stronger

than that between MMA and polymer chains.

In summary, a mathematical model is proposed for the

description of the performance of a closed co-extrusion

process for preparing gradient index plastic optical fiber.

Based on a modified free volume theory, the present model

is capable of taking the concentration-dependent diffusivity

of monomer in a polymer solution into account, and we

show that this effect can be significant. For instance, under

typical conditions, the percentage deviation in the refractive

index arising from the assumption of constant diffusivity

can be on the order of 10.3%. It should be pointed out that

the present model does not limited to the parabolic-type

refractive index distribution considered; it is also applicable

to other types of refractive index distribution patterns.

Fig. 4. Spatial variation of nD at 90 8C. The experimental conditions are

given in column IV of Table 2. Discrete symbols, Chen et al. [15], dashed

curve, Liu et al. [17], solid curve, present model.

Fig. 5. Spatial variations of nD at 90 8C for various inlet concentrations.

Discrete symbols, Chen et al. [15], solid curve, present model.

Experimental conditions for A, W, and K, are given in columns II, III,

and IV of Table 2, respectively.

Fig. 6. Spatial variations of nD at different temperatures. Discrete symbols,

Chen et al. [15], solid curves, present model. Experimental conditions for K

and A are given in columns III of Table 2.

Table 3

Critical free volume fractions and estimated dilute diffusivities of MMA

and BzMA under various conditions

Experimental conditions fc D0;1 (cm2/s) D0;2 (cm2/s)

I (80 8C) 0.28 1.50 £ 1029 1.52 £ 10210

II (90 8C) 0.12 9.50 £ 1027 1.01 £ 1027

III (80 8C) 0.25 4.99 £ 1029 5.03 £ 10210

III (90 8C) 0.125 7.77 £ 1027 8.29 £ 1028

IV (90 8C) 0.19 5.77 £ 1028 6.16 £ 1029
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Appendix A

According to Fujita et al. [22], if the volume fraction of

polymer is fixed, the diffusivity of monomer in a polymer

solution can be estimated by

Di ¼ D0;i exp 2
fc

f3

þ
fc
f

� �
›lnai

›lnfi

� �
T ;P;f3

ðA1Þ

The last term on the right-hand side of this equation

represents the non-ideality of monomer i; which can be

evaluated by the procedure below. The total change of

entropy for the formation of a (monomer 1 þ monomer

2 þ polymer 3) polymer solution, DS; can be expressed as

[26]

DS

k
¼

X3

i¼1

Ni ln

X3

j¼1

ðNjvjfjÞ

Nivifi

2
666664

3
777775

8>>>><
>>>>:

9>>>>=
>>>>;

¼
X3

i¼1

Ni ln

X3

j¼1

ðNjzjfjÞ

Nizifi

2
666664

3
777775

8>>>><
>>>>:

9>>>>=
>>>>;

ðA2Þ

where Ni is the number of molecules of component i; and vi

is the average volume occupied by each molecule of

component i: The volume fraction of component i can be

expressed approximately by fi ¼ Nizi=
P3

j¼1 Njzj: Based on

van Laar expression, the total change of enthalpy, DH; can

be expressed as [27]

DH ¼ ZDv23N3z3f2 þ ZDv12N1f2

¼ ZDv12N2z2f3 þ ZDv12N2z2f1

¼ ZDv12N2z2ð1 2 f2Þ ¼ kTx2N2ð1 2 f2Þ ðA3Þ

where Dv12 ¼ v12 2 ðv11 þ v22Þ=2 ¼ Dv23; Dv13 ¼ 0; and

xi ¼ ZDv12zi=kT with i ¼ 1; 2: In these expressions, vij is

the interactive energy for ði– jÞ molecule (monomer or

polymer unit) pair, and Z denotes the coordinate number.

The total change of free energy DF is DH 2 TDS; and the

activity of component i; ai; can be expressed by kT ln �

ai ¼ ð›DF=›NiÞT ;P;Nj–i
: For a fixed volume fraction of

polymer, we have

›lna1

›lnf1

� �
T ;P;f3

¼ 1 2 ð1 2 1=z2Þf1 2 2x1f2 ðA4Þ

›lna2

›lnf2

� �
T ;P;f3

¼ 1 2 ð1 2 z2Þf2 2 2x2f2ð1 2 f2Þ ðA5Þ

Substituting these expressions into Eq. (A1) yields Eqs. (7a)

and (7b) in the text.

If both the concentrations of MMA and BzMA are low,

the main factors that are significant to the diffusivity of

monomer i are the root-mean-square velocity, vrms;i; and the

activation energy, DEa;i; of monomer i; the former is

inversely proportional to the square root of the molecular

weight of monomer i: The activation energy of monomer i is

equivalent to the interaction energy between the molecule of

monomer i and its neighboring polymer. The latter can be

estimated from the free volume fraction of polymer

solution, f3: Employing Lennard–Jones 6–12 potential

model [28], we have

DEa;i ¼ Up
i3½ð1 2 f3Þ

4 2 2ð1 2 f3Þ
2� ðA6Þ

Fig. 7. Spatial variations of the mass fractions of MMA, BzMA, and

PMMA at the outlet of diffusion zone. The experimental conditions are the

same as that in Fig. 4.

Fig. 8. Spatial variations of the diffusivities of MMA and BzMA at the

outlet of diffusion zone. The experimental conditions are the same as that in

Fig. 4.
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Therefore,

D0;i / vrms;i exp 2
DEa;i

kT

� �

¼ m21=2
i exp 2

Up
i3½ð1 2 f3Þ

4 2 2ð1 2 f3Þ
2�

kT

( )
ðA7Þ

Eq. (8) can be recovered from this expression.
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