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Abstract

The electrical interaction between two spherical particles, each comprises a rigid uncharged core and an ion-penetrable
(porous) charged membrane, in an electrolyte solution is examined. The Poisson equation governing the spatial variation of
electrical potential is solved by the Green’s function approach, and the interaction energy of the system under consideration
evaluated. Several approximate analytical expressions for the interaction energy are derived. We show that if the membrane
is thick, and /or the electrical double layer is either very thin or very thick, a particle can be treated as a porous one, and the

linear superposition approach often adopted in the literature becomes appropriate. © 1998 Elsevier Science B.V. All rights
reserved.

1. Introduction

The electrical potential distribution governed by the Poisson—Boltzmann equation plays a significant role in
the description of the properties of a colloidal dispersion [1,2]. In the last two decades, the electrostatic
interactions between two colloidal particles has been analyzed extensively. The relevant studies, however, are
mainly focused on rigid particles, and relatively little attention is paid to ion-penetrable or porous particles,
which simulate a wide class of colloidal particles in practice. Typical example includes biological cells, e.g.,
blood cells and protein aggregates [3—7], and entities covered by an artificial membrane, e.g., particles with an
adsorbed polymer layer [8]. These particles are characterized by having an ion-penetrable surface, which usually
bears fixed charge due to the dissociation of the functional groups it carries. For instance, the peripheral zone of
human erythrocyte comprises a glycoprotein layer of ~ 15 nm thick which possesses some ionogenic groups,
and forms the outer boundary of the lipid layer [9]. Ohshima et al. [10,11] analyzed the electrostatic interaction
between two planar, ion-penetrable charged membranes. The analysis was also extended to spherical particles
[12,13]; analytical expressions for the electrical potential and interaction energy between two particles were
derived under the condition of low electrical potential. The problem of the interaction between two planar,
charged membranes was also examined by Hsu et al. [14], taking the effect of the difference between the
dielectric constant of the membrane phase and that of the liquid phase into account. Symmetric electrolytes and
nonuniform fixed charge distribution were assumed in their study, and the governing equations were solved
numerically. A numerical scheme was proposed by Hsu and Kuo [15] for the evaluation of the electrical
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potential between two planar, parallel membranes for the case of arbitrary electrolytes and nonuniform fixed
charge distribution. The stability ratio and the critical coagulation concentration for spherical particles covered
by an ion-penetrable membrane under low electrical potential were derived by Hsu and Kuo [16].

The reported results mentioned in the previous discussions are mainly based on the linear superposition, i.e.,
the result of two interacting entities is approximated by the sum of the results of two isolated entities through
defining an appropriate global coordinate. While this approach simplifies the relevant analysis, it may lead to an
appreciable deviation under the conditions of practical significance. Carnie et al. [17], for example, concluded
that the deviation in the electrical interaction force between two identical, rigid spheres arises from the linear
superposition is above 10% under the conditions that the ratios (closest distance between particles)/(Debye
length) < 2 and (radius of particle) /(Debye length) = 2, and the scaled surface potential = 1. In the present
study, an attempt is made to derive an exact expression for the electrical interaction energy between two
spherical particles covered by a membrane layer. An approximate analytical expression for the interaction
energy is also derived which is highly desirable in the discussion of the basic properties, such as the stability
ratio and the critical coagulation concentration, of a colloidal dispersion.

2. Analysis

By referring to Fig. 1, we consider a system containing two spherical particles, each comprises a rigid,
uncharged core and an ion-penetrable charged membrane, in an electrolyte solution. The particles may have
different sizes. Let R be the distance between the centers of particles 1 and 2, a; the radius of the rigid core of
particle i (i =1,2) and b, the radius of particle i, r;; the distance between the surface of particle i and the
center of particle j. The membrane layer of a particle contains fixed charges, which may due to, for example,
the dissociation of functional groups. Suppose that the electrical potential of the system under consideration is
sufficiently low such that it can be described approximately by the linearized Poisson—Boltzmann equation

Ag=k%, insolution, (D

Ay=«k%—p,/e, inside membrane phase of particle i, (2)
with

k?=2F*1/eRT. (2a)

In these expressions, ¢ denotes the scaled electrical potential, A is the Laplace operator, ¢ is the dielectric
constant, k and p; are, respectively, the reciprocal Debye length and the density of fixed charge inside the
membrane phase of particle i, T is the absolute temperature, and F and [ are the elementary charge and the
ionic strength, respectively.

membrane

rigid core

Fig. 1. Schematic representation of the system under consideration where R is the distance between the centers of particles 1 and 2, a; the
radius of the rigid core of particle i, b; the radius of particle i, and r;; the distance between the surface of particle i and the center of
particle j.
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It can be shown that a particular solution to Eq. (1) is [18]

4mr’ (3)

where r is the scaled distance from a fixed point charge (singular point), and G is known as the free Green’s
function. Combining Eqgs. (1)-(3) and integrating over the entire domain excluding the rigid cores of the
particles and the singular point, {2, gives

2
[[¢AG—GA¢]dQ=—1— Y [ pGav, (4)
n €i=1 V;

where V, is the volume of the membrane phase of particle i. We assume that the dielectric constant of the rigid
core of a particle is much smaller than that of the liquid phase, as is usually the case in practice. Suppose that
the interface between the membrane layer and the rigid core of a particle is free of charges. This leads to the
boundary condition

a
(EK):“ )

where S, is the surface of the rigid core of particle i, and n, the outward normal vector of S; pointing to the
bulk liquid phase. Applying Green’s formula, the electrical potential can be obtained from Eqs. (4) and (5) as

G(r)=

2 1
= -dS+ — GdV |, 6
v igl [Lf%‘ Xi £ [ V.»pl ©)
with
G P
Xi = a—n—, . ( a)

Similar to the potential theory [19], if the evaluated point is located on the surface of the rigid core of particle j,
S, then
],

1
¥, = ll[[‘/’sX,dS‘*' JpiGav . (7)

The surface potential of the rigid core of particle i is determined by p,. For illustration, we assume that p; is
constant, i.e., the fixed charges are uniformly distributed. It should be pointed out, however, that the present
analysis does not limited to this type of fixed charge distribution.

Suppose that ¢ can be decomposed as

‘10 = l»l’sp + A‘f’s s (8)
where z/;s denotes the unperturbed surface potential of the ngld core of particle i, and Ay, represents a
perturbed surface potential due to the presence of particle j. l/ls can be estimated by

1 B“
¥ =— ; (9)
&
E ™ Yii
where B;; and y,; are calculated at the points on the surface of the rigid core of particle i according to the
expressions
sinh( xa;) | e~ <% 1 e b 1
= [ Gav= ( )[ (a,-+—) - (b,.+—)], (%a)
v, Ka; K K K K

1{ 1 1
'Yii=,[XidS=‘-[_"(1+—)C~ZKH'J- (9b)
s, 2| xa; Ka;
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Substituting Egs. (8) and (9) into Eq. (7), we obtain

1 P
EA(I'S,:[?IA‘I’S, X ds"‘j;z‘/’sz X2 dS+;B22, (10a)

1 Py
EAil’sz_szA'/’sz)(z ds+j;l‘/fs, X1 dS+_€'ﬁn- (10b)

This is an implicit expression for Ay, which has the form of an integral equation with an inseparable kernel.
To obtain Ay from Egs. (102) and (10b), we assume that the surface integral of a smooth function F can be
approximated by
M
[FdS= Y WiF, (11)
i=1
where w; is a weighting factor, and F; the value of F at point i{. The values of w; and M depend on the
integration scheme adopted. On the basis of Eq. (11), Egs. (10a) and (10b) can be approximated by

XAy=B8B, (12)
where
A_*/’=[A‘f':,1oAl/f1,2,---vAl/fl,MoAll‘z.[’---,All’z,M]t, (12a)
X
_ | X X1.2 , (12b)
X1 Ao
ll,kzl:Xf',j,l‘k]’ i,j=1,...,M, lak=1a2a (12C)
—wj,\/k':j-, ih,j=1,...,M, Lk=1,2,
Xijoe=4 1 . o o (12d)
! 3wk, i=jandi=kij=1,... M, Lk=12,
[ T

£
0
‘I’sz‘)’lz,l + ‘;.312,1

P2
¢5%y12.M + _;BIZ,M

1%
]

(12e)

19
%9,721,1 + _8"321,1

P
Y5 Yo, _;BZI’M

In these expressions, the superscript t denotes the transpose of a matrix, Xkl:;' is the value of y in which the

Fig. 2. Variation of the scaled electrical interaction energy V5" between two particles as a function of k(R — a, — a,) for the case p, = p,,
a,=a,, b,="b, and b, /a,=1.1. Key: ——: exact numerical result based on Egs. (12) and (18); X: result based on the approximate
expression, Eq. (23); a: result based on linear superposition; O: result based on ion-penetrable (porous) model. Parameter used are: 1:
ka, =002; 2: ka;=0.1; 3: ka; =08; 4 ka, =1, 5: ka, =10; 6: ka, =15.
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distance r is measured from the point j of particle & to the point i of particle /, and the differentiation in Eq.
(6a) is performed on S, v;; , and B;; , denote, respectively, the values of y;; and B;; evaluated at the point k
of particle j. B;; and y;; are calculated by

—Kr; —Kr;

e i e X"
Bi= f G;dV = {[ b; cosh( kb,) — sinh(« b;) /x| — [ a; cosh( ka;) — sinh( ka;) /k]}—— = ¢/} ,
] K71y Ty
(13a)
J X ds= . [1 S P ) —m] s (13b)
=[x -— — e =Y
57 2 Ka; a ri i

In these expressions G; and x;; denote the target points located on §;. Note that, if / =k and i = j, then xk ; 1s
singular. In this case, we suggest using the following approach to evaluate its value. According to Eq. (9b), X
can be evaluated by subtractmg the contribution of all other xk j» 1 # k and i # j, from y,,. We have

1 ,
Xijke= 5 = Vi t Z W xil (14)
1
lia‘-j

Note that, if the fixed charges are distributed nonuniformly in the membrane phase of a particle, p; is not
constant, and the element p; B;; , in Eq. (12¢) needs to be replaced by f, p,G;dV.
2.1. Electrical interaction energy

For the present system, the electrical interaction energy can be estimated by

1 1
Ve=7 J oy =90) v+ 5 [ pa(w-u)av, (15)

where ¢ denotes the unperturbed electrical potential contributed by isolated particle i. Substituting Eqgs. (6),
(8) and (9) into this expression, we obtain

1
Ve = Plfan‘l’s, ds+ —~ Pz(zz[ A‘l’s, ds+ = plgllf '1’32@21 ds+ -~ szzzf ‘/’s,@n ds

—Kr

e
+anll (16)
where
. =/ Xi; 4V = B, [ k cosh( ka;) — 1/a;], (16a)
‘/'.
6 9 [e " 16b
2| ) (160)

Fig. 3. Variation of the scaled electrical interaction energy V' between two particles as a function of k(R — a, — a;,). The conditions are
the same as those of Fig. 2 except that b, /a, = 2.
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Integrating both sides of Eq. (10a) over S,, and Eq. (10b) over S,, we have
1/2 =y, P; e "k

J 4 P . .
f.pS@ ds= T j;impsids—w—;;ﬁ—k—, i, j=1,2, i+j, (17)
where
a;
H,= :sinh( Ka,). (17a)
Applying Eq. (17), Eq. (16) becomes
1 1
VR=5plPIIL|A¢S| dS"’5"1’21')22'[:;}%2 ds, (18)

where

(kb — 1)(xa; + 1)e 720 — (kb + 1)( ka; — 1)<t

. 18a
" 2a,~2K3 ( )

2.2. Approximate expression

The electrical interaction energy between two particles can be estimated based on Egs. (12) and (18). In
general, a numerical scheme is necessary. Since an analytical expression for the electrical interaction energy is
more readily applicable to the subsequent analysis than a numerical expression, attempt is made to derive such
an expression. Here, the approach proposed by McCartney et al. [20] and Bell et al. [21] is adopted. Note that
Xy diverges if I =k and i =j (i.e., at a singular point). This suggests that the Ay and Y on the right-hand
side of Egs. (10a) and (10b) can be moved out from the integral sign, and we have

1 P2
EA‘ﬁs,:A‘[’s,'Yll+A‘/’s2712+¢502')’12+:322’ (19a)

1 0y
“Z‘Al/’sz = A‘l’sﬂ’zz + A‘l’s,')’n + l/’so,Yzl + :Bll . (19b)

Solving these equations for Aygs; and Ay, yields
0 , p2 , 1 e—KI‘u ] , C-Ker e"KI‘n
(‘f’s{)’zz"‘:fzz) “2"")'22 , (¢ Yu+ fn)')’zz -

12 21 T2

1 1 e K'u g7 KM ’
(‘2‘ - 711)(5 - 722) - /11')’22',_21 o

1 e Krn e "N aT K2
('/‘ ut fn)( YII)r_+(l/’.S927;2+ {2)711 ;

21 21 T2

1 1 , e e
2 i 5 Y22 Y72 o P

Ay, = (20a)

Ay, = (200)

Fig. 4. Variation of the scaled electrical interaction energy between two particles V" as a function of k(R — a; — a,). The conditions are
the same as those of Fig. 2 except that b, /a; = 10.
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If the double layer is thin, we are concerned only with the points that make a small angle between r;; and R. In

this case, Egs. (20a) and (20b) can be approximated by [22]

’ p2 ] 1 ’ P] r e"(al—”l) -Kr
R (4/1502722 + ‘s_fzz)(a - 'Yzz) + (*/fsol')’n + ?fn)?’zz_R‘_:‘e K e rr.
Vs = 1 1 @ ap 'n' (212)
—_— —_— —_ 4 —2kr)y
(2 711)(2 ‘)‘22) 711722(R~al)(R—a2)
, ‘)1 , 1 , pz , e"(“l"‘z) ~
('I’s(:%l + _fn)(" - ')’11) + (l//soz')’zz + _522)')’11‘_‘_‘e e
Ade = £ 2 £ R—aq, e
lﬁsz - 1 1 e“(al‘“z) ray (21b)
P —_ — ! —2kry
(2 7:1)(2 ‘)’22) 711‘)’22(R__al)(R_a2)°
Substituting these expressions into Eq. (18), and noting that
In(1+ab)=bin(l1+a), a,b—0 (22)

we arrive at, after some algebraic manipulations,

Ta,a " 2 L
T (R S UL SR S e
where
1 1
fa=(3_‘)'1|)(5"722)o (23a)
(5+7)z 7
Al T TYull5 T Y2
2 2
- ’ 23b
o= T R=a)(R-a)s, ()
1 -2
_ (5"‘722)(1_3 )
Yu=pPna (xa, + )(R—a;) (23¢c)
! -2
_ ('2‘+711)(1—e )
Yy =p2Ppa (23d)

(ka, + 1)(R-ay)

3. Discussion

The variation of the dimensionless interaction energy, V", scaled by pia; /¢, as a function of k(R — a, — a,)
at various inverse Debye length x and thickness of membrane phase are shown in Figs. 2-5. As can be seen
from Figs. 2—4, for two identical particles, the approximate analytic expression, Eq. (23), is sufficiently close to

Fig. 5. Variation of the scaled electrical interaction energy between two particles V' as a function of x(R — a, — a;). The conditions are
the same as those of Fig. 2 except that a, = a,, b, = b,, b, /a,=1.1, and b, /a, = 10.
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Fig. 6. Variation of (1— ¢, /P,;) as a function of xa; for the case of two identical particles. Parameter used are 1: b /a;=11; 2:
b /a;=2,3:b,/a;=10.

the exact numerical result, which is estimated by substituting Eq. (12) into Eq. (18). As suggested by Fig. 5, the
performance of Eq. (23) becomes less satisfactory for two different particles, especially when the double layer is
thick (small xa,). Figs. 2-5 reveal that the performance of Eq. (23) is satisfactory if the double layer is either
very thin or very thick, it is less satisfactory for an intermediate thickness of double layer.

Note that if the double layer is very thin, Eq. (23) may lead to an appreciable deviation due to the limitation
of the precision of a computing facility. This can be alleviated by applying the approximate relation
In(1 + x) = x to Eq. (23), and we obtain

P P2 ata; P, Py e (Rmama)
e (ka +1)(kay,+1) R

Ve=4m ERALS (24)
This expression can also be obtained by neglecting the second term on the right-hand side of both Eqs. (19a)
and (19b), and substituting the resultant expressions into Eq. (18).

3.1. Linear superposition

Linear superposition is one of the idealized procedures often adopted in the literature for a system which
involves more than one charged entities. In this approach, the desired property of each isolated entities is
evaluated, and then summed over all the entities by choosing an adequately defined global coordinate. The
result thus obtained is used to approximate the property of the whole system. Adopting this approach, Eq. (15)
becomes

V=lfp(//°dV+lfp¢0dV. (25)
k=5 ), ¥ 2J, P2
Substituting Eqs. (6) and (9) into this expression yields
2 ,Kka 2 .ka —xR
PP, aze™ aje™ e
Vo= 20—\ ¢}, PYy———— + £}, Py ———— 26
R ™ £ Py Ka, + 1 {n 11,“11_’_1 R (26)

The scaled electrical interaction energy between two particles based on this expression is also shown in Figs.
2-5 for comparison. These figures reveal that linear superposition will underestimate the interaction energy, in
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general. However, its performance can be satisfactory if the double layer is either very thin or very thick, or the
membrane phase is thick. This can be explained as below. Let us consider the case of an isolated particle the
core of which is ion-penetrable and contains fixed charges such that Eq. (5) is satisfied. Then the electrical
potential distribution outside the core of this particle is the same as that of a particle with a rigid core. For two
particles both have an ion-penetrable core, if the double layer is very thick (« very small), the induced net
charges in the rigid core of a particle due to the application of linear superposition is limited. In this case,
although Eq. (5) is no longer satisfied exactly, the deviation can be adjusted by adding some positive and
negative charges to the ion-penetrable core of a particle. This has but an insignificant influence on the
interaction energy between two particles. On the other hand, if the double layer is very thin (x very large), its
influence on the charged condition of the rigid core of a particle is negligible, and the linear superposition
becomes appropriate. The effect of the thickness of membrane phase on the performance of linear superposition
will be elaborated latter.
Eg. (26) can be rewritten as

Vg = VPP (I_KII/Pll)';'(l_(zz/Pzz) . @

This expression reveals that the closer the (1 —¢;;/P;;) to unity, the closer the performance of the linear
superposition to the approximate solution, Eq. (24). As can be seen from Fig. 6, this is the case when the
membrane phase is thick, or the double layer is either very thin or very thick. In other words, the linear
superposition is appropriate for these cases.

3.2. Entirely ion-penetrable particles

The problem of two entirely ion-penetrable (porous) particles is one of the special cases of the present

analysis. In this case, the electrical interaction energy based on Eq. (25) becomes exact, and it can be shown that
~kR
PP, , €
Ve = 4""_8'511(“1 =0){5(a, =0) R (28)

This is consistent with the result of Ohshima et al. {12].

For comparison, the results for the case of entirely ion-penetrable particles are also illustrated in Figs. 2-5.
As can be seen from these figures, for the same p;, entirely ion-penetrable particles have a higher electrical
interaction energy than particles comprises a rigid core and a membrane layer, as expected. However, if the
membrane layer is thick and/or the double layer is thin, the two cases lead to about the same electrical
interaction energy. This is because that if the membrane layer is thick and/or the double layer is thin, the
Donnan potential is reached [23] at some point P inside the membrane layer. This implies that there are no net
charges in the region between the center of a particle and P, and the region behaves like a rigid core. It is also
possible to simulate a particle with a thin membrane layer by a particle that has the same thickness of membrane
but with an uncharged, ion-penetrable core, that is, an ion-penetrable membrane shell. This is because that in
this case the {/(a; = 0) in Eq. (28) should be replaced by {;;, and we have

VR=V1:pp(1“§11/Pu)(1—fzz/Pzz)- (29)

According to the conclusion drawn from Fig. 6, the performance of this expression can be satisfactory under the
condition that the linear superposition is appropriate.
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