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We consider a particle coated with a membrane immersed in
an arbitrary a:b electrolyte solution. The membrane bears ho-
mogeneously distributed fixed charges and is penetrable to elec-
trolytes. In particular, cylindrical and spherical particles are ex-
amined. The approximate analytical expressions for the ther-
modynamic properties of the system under consideration,
including Helmholtz free energy, entropy, and the amount of
co-ion adsorption, are derived. We show that if the radius of a
particle is large enough, the present semianalytical treatment
yields satisfactory results. Under typical conditions, the deviation
from the exact value is on the order of 5%. If the curvature
approaches zero, the present result reduces to the approximate
solution for a planar geometry, and, if the thickness of the mem-
brane approaches zero, it reduces to the approximate solution
for a rigid charged surface and becomes the exact solution for
the case of symmetric electrolytes. © 1995 Academic Press, Inc.

Key Words: charged membrane; asymmetric electrolytes;
Poisson—Boltzmann equation; thermodynamic properties; cy-
lindrical and spherical particles.

I. INTRODUCTION

The distribution of the electrical potential for a charged
surface immersed in an electrolyte solution is governed by
the Poisson-Boltzmann equation (PBE). Solving this equa-
tion is a prerequisite to the estimation of the essential ther-
modynamic properties of the system under consideration
(1). The difficulty in the resolution of a PBE depends largely
on the shape of the surface, the associated boundary con-
ditions, and the type of electrolyte. More often than not,
drastic assumptions are made so that PBE can either be
solved analytically or an approximate solution can be ob-
tained. These include planar surface, low surface potential,
constant surface potential or constant surface charge density,
and symmetric electrolytes, In the past two decades, attempts
have been made to reflect, more realistically, the situation
in practice through the form of PBE and the associated
boundary conditions. In the case of biological cells and some
artificial membranes, for instance, there exists a surface layer
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near the solid-liquid interface. This layer contains fixed
charges due to factors such as the dissociation of the func-
tional groups it bears, and is penetrable to electrolytes in the
bulk liquid phase (2). As an example, the peripheral zone
of human erythrocyte contains a glycoprotein layer about
15 nm thick. This layer possesses some iOnogenic groups
and forms the outer boundary of the lipid layer (3, 4). Ap-
parently, the classic rigid wall model is inappropriate for the
description of the physical properties of erythrocyte.

In a series of works presented by Ohshima ef al. (5-7),
the electrostatic potential distribution for a membrane im-
mersed in an electrolyte solution is analyzed. The membrane
bears fixed charges and is ion penetrable. This model mimics
closely a biological cell and some artificial membranes, and
therefore its result is of fundamental significance in practice.
The model of Ohshima er al. {6) is extended to the case of
an arbitrary a:b electrolyte in a recent study by Hsu and
Kuo (8). In addition to the electrostatic potential distribu-
tion, approximate analytical expressions for the properties

- of a double layer, including Helmhoitz free energy, entropy,

and surface excess of co-ion, are derived.

Although most of the analytical results for PBE are based
on a planar surface, its solution for a nonplanar surface is
highly desirable in practice. Unfortunately, due to the dif-
ficulty involved in the solution procedure, available results
are extremely limited, especially for asymmetric electrolytes.
In a recent study, we show that this can be circumvented by
conducting a semiempirical analysis (9). The approximate
analytical result obtained is reasonably accurate under typical
conditions. In the present study, this approach is adopted
for the estimation of the essential thermodynamic properties
of a nonplanar particle coated with a charged membrane
immersed in an arbitrary a:b electrolyte solution, In partic-
ular, cylindrical and spherical particles are considered.

II. ANALYSIS

The system under consideration is shown in Fig. 1. A cy-
lindrical or spherical particle coated with an ion-penetrable
membrane of finite thickness is immersed in an a:b electro-
lyte solution, The membrane contains a certain amount of
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FIG. 1. A schematic representation of the system under consideration:
d is the dimensionless thickness of membrane, and ¥, and . are, respectively,
the dimensionless potential at the membrane-liquid interface and at the
outer boundary of the uncharged core.

fixed charges due to, for example, the dissociation of the
functional groups it bears. Without loss of generality, we
assume that these fixed charges are negative. For simplicity,
the fixed charges are assumed to distribute uniformly in the
membrane,

The electrical potential distribution is described by the
Poisson equation

1 4 AN

X’"dX(X dX)_a+b’ Ko+ d) < X< o0 1
1 df d\_gtN

X’”dX(X dX)—a+-b’ Yo<X<(Xo+d) [2]

where = e¢p/ kT, g = [exp(Bd) — exp(—ay)], X = «r, k°
= e%ala + bYnS ez T, and N = ZNyNn/anS. In these
expressions, ¢ is the electrostatic potential; 4 denotes the
dimensionless thickness of the membrane; N, and Z are,
respectively, the density and the valence of the charged groups
in the membrane ( —ZeN, is the density of the fixed space
charge, e being the elementary charge); N, represents the
Avogadro number; ¢, and ¢ are the relative permittivity of
the solution and the vacuum, respectively; # is the number
concentration of cation in the bulk liquid phase; « and kg
are, respectively, the reciprocal Debye length and the Boltz-
mann constant; T is the absolute temperature; r represents
the distance measured from either the axis of a cylinder or
the center of a sphere; and m denotes the geometry parameter
{m = 0 for a flat plate, m = | for a cylinder, and » = 2 for
a sphere). The boundary conditions associated with Eqs. [1]
and [2] are
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¥v—> 0and (dy/dX)—=>0asX - [2a]
WXo+d)” = (X +d)" = [2b]
(dY/dX)x~ixpear- = (AY/dX ) x o (xgrayt [2¢]
¥ > Yeand (dy/dX)=0as X - X,.  [2d]

In these expressions Xj denotes the dimensionless size of the
uncharged core of a particle, and {4 and ¥ represent, re-
spectively, the dimensionless electrostatic potential at the
membrane-liquid interface and at the outer boundary of the
uncharged core,

2.1. Distribution of the Potential Gradient in a Double
Layer

Suppose that the derivative of { with respect to X can be
expressed by (10, 11)

dyldX = H(y, X) =2 c;($)/ X", [3]
i=0

Then, it can be shown that [1] and [2a] lead to the approx-
imate result {(Appendix A)

a2 NPy L m o
a’X_(a+b) [b(e Dzt 1)]
1 2m 1
Y 3 tanh{ay/4) + 2
mPtanh?(ay /4)
. —dm(m — 1)In[cosh{a}/4)}] (4]
akssinh{ay/2) ’
where
[(k — 2k + 2k:/k, ifk<4
3= . [4a]
[2k, + (k — )i/ k, ifk>4
ki = 2/{00) L2210~ 1]} [4b]
kz = 2/k1/2 [4C]
k=2+2b/a. [4d]

Here, k is 2 measure of the degree of asymmetry of electro-

Iytes (12).
2.2. Distribution of the Potential Gradient in a Membrane

Similar to the treatment of [1], we assume that

dyfdX = H(y, X) = 2 d;($)/ X",

=0

[5]
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Substituting this expression into [2] yields

() (M)  mH _g+N
W/, 6X¢ X a+b

= (),

Xo<X<Xo+d [6]

Callecting terms of the same order in X leads to the set of
equations

dody = (g + N)/(a+ b) [7a]
dgd’[ + dldb + md() =0 [7b]
dody + didy + dadp + (m— 1)d, =0 [7c]

where the differentiation is with respect to ¥. The boundary
conditions associated with these equations are

d=catd=oglorX—=>Xo+d),i=0,1,2,.... [8]
Solving [7a] through [7c] subject to {8] gives the variation
of function H(y, X ) or dy//d X across the membrane. It can
be shown that (Appendix B)

@—d0+fi—‘+ﬁ+

ax 91

where

2
dO_(a+b

YA I
) [—(ew— D+=—(e™-1)
b a
1/2
+ N(Y - %)} = (2/aY)(fi/k)'? [9a]

2 Y Mmoo, ;
d]__a(f}/_Z/Y) [ﬂolﬂ(Yd)‘}‘lzl *Yd)

+2mk3(Yd+Yg‘—2)] (9]
a 2

2 |
d, = a(f”z/y)[uom( )+zﬁ Yi—Yi)

[m(Yq~— 1)/(¥Yg+ 1)]
—4m(m - DIn[(YY? — ¥37%),2]
k(Y4 — Y q')

Y = exp(ay/2),

+ [9¢]

[9d]
where [, Yy, u;, and v; are defined in Appendix B.
2.3. Estimation of Yo, and ¥4 = Ya(¥ion)

If d » 1, ¢ remains constant at Yp,,, the dimensionless
Donnan potential, for X < X,. Two of the boundary con-
ditions associated with [2] are
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Ye = Yoon anda,—X(X"’ ji) =0as X - X,. [10a]
Since the core of a particle (X < Xj) is free of fixed charge,
and 1s impenetrable to electrolyte, the right-hand side of [2]
vanishes, and [2] and [10a] lead to

Y%on + N¥pon — 1 = 0, [10b]
where Ypon = 6xp(@¥pon/ 2). Solving this equation directly
is almost impossible. However, a quick estimation for its
solution can be obtained through an iterative procedure
(Appendix C). By [9] and [10a] we have

d0(¢Don) + dl(\l’Don)_l_dZ(‘lbDon) + ..

. =0
Xo X3

[11]

This equation describes the relation between ¥4 and Y¥p,,. It
can be shown that an approximate solution to Eq. [11] is
(Appendix C)

‘l!/d — wd 3 \[/Don

1
+ %V [é (exp(Bpon) — 1) + — (eXP(—8¥pa) = 1)

2
._a_;b[dl(\;l;on)z_l_dZ(i'D%on-)Zjl ], [12]

where d, (¥pon )z and d>{¥'pan )2 are defined in Appendix C.

2.4. Double-Layer Properiies

Since the charges are distributed within the membrane,
the surface charge density defined in the conventional anal-
ysis for a rigid surface i1s inappropriate for the present case.
Here we assume that the total or apparent charge density o,
(= —ZeNydx™'; see Appendix D) comprises two parts: an
equivalent charge density due to the fixed charges distributed
in the membrane, oy, and the charge density at the mem-
brane-liquid interface, o4. The former is the charge density
obtained by distributing uniformly all the fixed charges in
the membrane over a surface located somewhere in the range
[Xo, Xo + d]. We have

0y = dg + Ty

[13]
Define the dimensionless interface charge density py as
Pa = _a€0d|/2k360€rkBTK. [14]

It can be shown that, regardless of the geometry of a particle

(9},
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[14a]

Equations [4], [14], and [14a] yield

a(ﬁ':,ﬁ

Pa = 57 )
2k \dX X=Xg+d

= —sinh(aq/2) —

1
X, +dk tanh(ag{/d/él)
niftanh?(agy/4)
L — 4m(m — 1)In[cosh(apy/4)]
(Xo + d)? 2Ucdsinh(ayq/2)

[14b]

2.4.1. Helmholtz free energy.  The Helmholtz free energy
comprises the free energy due to the double layer, F.q, and
that due to membrane, F., (8);1.e.,

Fe]:Feld+Fe]ss [15]

where

Fua = fo (ot dely [15a]

Fos = f $pon{ol)dor. [15b]
agl

In these expressions, ¢y and ¢p,, are, respectively, the po-
tential at X = X + 4 and that at X = X,. Employing [12],
[14b], and [10b], we obtain

2k T\
Fy= ( a]:? ) eoerxk3[[pd|]n(Pd| + ga) — ga + 1]

+1 1
i ln(qdl )+

k(X + d) 2 (Xo+d)>
X[Ln_(qdn—l)(qdﬁZ) m(m—l)f InZ , “
2k ga(ga+ 1) Z, —1
2ke T
_Gdl( aB )ln Ybon + dx ' ngkpT [2111 Ybon
2 2 k=2
+YDon+k 2Y YDon k ZYDun]: [15(:]
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where

2ka T2
Fgq = ( al:? ) Eoerk3[[Pd11ﬂ(Pdl + g} — ga + 1]

_ m In gqa T 1
k3(Xy + d) 2

+ 1 [ﬂ_(qdl = 1){ga +2)
(Xo+dY |2k qalga+ 1)
_m(m—1) ' InZ
T . Z =1 dz, [15d]
2kgT
Fe]s= _Ud|( aB )]n YD0n+dK nDkBT{2ln YDon
2 _ 2 e
+YDon k_:EYl_)gn_ bozn—ml’éﬁf] [lSe]
f)‘d1=(P§1+ 1)”2 [15f]
v=2/(ga+1) [15g]
1 In Z &€ U 1!'2
7 _11 ;;_2—F+ In(v)In{l —v). {[15h]

In [15¢] and [15¢], ¥ Do is the value of ¥ calculated at the
Donnan potential in which the total surface charge density
is regarded as gy, not &, 1.e., ¥ pon = Ypon{oal).

2.4.2. Amount of co-ion adsorption. From the thermo-
dynamic point of view, the electrical Helmholtz free energy
can be evaluated by

dFy = —-T,du, — T_du_, [16]

where T'; and I"_ are the amount of adsorbed counterion
and co-ion, respectively, and g, and x_ are the corresponding
chemical potentials, For an ideal solution, we have

du, = dp. = 2kgTNad In . [171
The electroneutrality requires that

ally — bT_ + g/ Nse = 0. [18]
Equations [16], [17], and [18] lead to

'=T_

aFcl) [19]

__ 2 (o, &
kNA ae ZkBT Ox
Substituting [15¢] into [19], we have

T = =2k~ 'nONzlks Dy —

61'—"(’,13) [20]

2 Ga K
kN A 2kBT Ok
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where
! M qa — i 1
Dy=pa+1-
o = Fa (Xo + d) ks dal (Xo +d)*
m 2 2 m(m—1)
) ) — 2 )
[4-’(% [ Galga + 1) } 2k3

) -
X[-Z_}n(qdl+l)+ lnél

da 2 v £y —

OF g, - an’
dx ks

1 dzl}} [20a]

[2 In YDDn -+ YDon

2

2
+ Yon —
kf2 Don

k-2 Ygt’_“z]

2
Y Daon

1
+ d:‘kBTn‘;[(5 Yoo = 2Y gon + 2Y5?m)

ayDon + (ZY rk 3) Don]
0K
2o4ksT Y bo
— ST X Yo 22 [20b]
ae dx
andjak = 2nY/« [20c]
aYD(m _ _Y%)on aN
Ok kY 5l + 2NYDon Ok [20d]
Y hon — Y5 aN’
= _— 20
I kYl + 2N'Y pon Ok [20e]
ON/dx = —2N/x [20f)
ON'[ok = —2N'/x [20g]
N’ NO - ﬂ _ 2k3606rk]3TK Sinh(adzd/:Z) [2011]

N N & —Ze*Noad [
The reference state for the Helmholtz frec energy is chosen
as the state of an uncharged surface. Here, N} is the fixed
space charge density defined by Nyo,,/ ., and N' is the value
of N based on Nj,.
2.4.3. Entropy.
be calculated by

The entropy of a double-layer S, can

Sa = (0Fa/0T )}, {21j

It can be shown that

=3 Fau

Sa =5

k
- (aB) 2 Tfofrﬂksl paln(ga — pa)

+ {4 x da — 1 - 1
k3 (Xo + d) Ga (Xo + d)2
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« [ﬁz (_2_ _ L) Lmim—1)
Ki\dalga+ 1) gk k3
+ 1)/2
X Mﬁ'—)’l” — 2ag(ks/ae)ln ¥,
da
-1.,0 -2 2 k=2
+dK nakBX 2111 YDOI’I+ YD0n+kT2_YDOn
- YA+ k 5 ¥ ba 2]. [22]

III. DISCUSSION

For a charged surface immersed in an electrolyte solution,
the Helmholtz free energy is calculated by

Fo- fﬂ dol7b)dot, [23]

where ¢, and ¢, are, respectively, the surface charge density
and the surface potential. Since ¢, does not exist in the pres-
ent case, the exact value of the Hemholtz free energy, and
hence the exact value of entropy, are not defined. The exact
value of the amount of jon adsorption I'; can be calculated
by

r= [ (= nydrran, [24]

where #; and nY are the number concentration of species
and of species § in the bulk liquid phase, respectively; r de-
notes the position vector; ¥ is the volume of the system; and
A represents the surface area of the membrane. Figure 2
shows the variation in the amount of ion adsorption as a
function of parameter k, defined in [4d]. Both the approx-
imate value based on the present analysis and the exact value
are presented in this figure. The average deviation in the
amount of ion adsorption is surnmarized in Table 1. Figure
2 and Table 1 suggest that the deviation of the result esti-
mated by the present method from the corresponding exact
value is within a reasonable range.

The effect of the relative thickness of the uncharged core
of a particle, X, on the performance of the present approx-
imate result is illustrated in Fig. 3. This figure reveals that,
although the deviation increases with the decrease in X, it
is less than 5% if X, is greater than 2. Since this is usually
satisfied in practice, the performance of the present approach
1s satisfactory.

3.1. Limiting Cases

In certain circumstances the present approximate formulas
approach some of our previous resulis (8, 9, 12).
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FIG. 2. Varation in the amount of ion adsorption as a function of
parameter k. Ionic strength = 1073 M, T=298.15 K, = R, Xy =2,d =
1, Z=1,and Ny = 107 M Solid line, exact value for m = 1 (cylinder);
dashed line, exact value for m = 2 (sphere); *, present approximate result.
Curves | and 4, a = I;curves 2 and 5, g = 2; curves 3and 6, g = 3.

3.1.1 Rigid surface. 1f d — 0, the charged membrane
reduces to a charged rigid surface, In this case, the governing
equation becomes

1 d dy g
- m_T' | = . X X 5 25
X"’dX(X dX) atp oA < [25]
with boundary conditions
Y=y, atX =X, [25a]
y—=>0 and dY/dX—0 asX— . [25b]

The solution to [25] subject to [23b]is [4], with X < X <«
co. Equations [14] and [14b] lead to

m= _aeﬂ't/zkg,fgfrkBTK

—sinh(agy/2) — Xlok% tanh(ayo/4)

m?tanh?(ayy/4)
I —4m(m = 1)In[cosh(ady/4)]
Xz akisinh(ayo/2) - 126]

where p, is the dimensionless surface charge density and v,
denotes the dimensionless potential at the solid-liquid in-
terface. Equations [15c], [20], and [22] become, respec-
tively,
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TABLE 1
Average Deviation (%) in the Amount of lon Adsorption
for the Case Shown in Fig. 2

m=1 m=72
a=1 2.00 3.02
a=2 2.67 1.68
a=3 2.72 1.92

2k T2
Fo = ( a]:? ) foerk:'»{[_Plln(Pl +q)—q +1]

m 1n(41+l)+i[ﬂ(m_l)(41+2)

kX 2 X263 a(g+ 1)
m(m — 1) [ In Z,
— d7 27
2k} e Zi—1 [271
T'=-2%""n"NiUsD, [28]
where
Depil-girma—l
F G Xk d
X% 4k% (g +1) a
m(m—1)[2 g+ 1 'In Z,
- — =] + dzZ
2k§ [QI n( 2 ) vZ1—l i
[28a]
160
::\3100—:
d ]
o ]
= ]
.m ]
E ]
Q50:
0 LI B S S I N B e Lt
0 1 2 3 4

Xo

FIG. 3. The effect of ihe relative thickness of the uncharged core of a
particle on the performance of the present approximate result. Values are
the same as in Fig. 2, except that Xo/d = 2 and m = 1. Curve 1, @b = 1:2;
curve 2, a:h = 2:1.
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g3
k3 Xo

S, =—>2¢_(IB
42T ae

Xil__l_L[_""_z(_z____L)
¢ XolE\g(qn + 1) 4qi
mim—1) In({g +1)/2)
et

-3 F, ke \?
-3k ( ) 2Teoeka3{p.1n(ql o+

where g7 = (p7 + 1). If m = 0 (or X, = ), the terms
involving 1/X ', j= 1, in the perturbation expansion of H(y,
X)) vanish, and [26] through [ 29] reduce to the expressions
for a rigid planar surface (12). Furthermore, if @ = b, these
expressions become the exact results (12).

3.1.2. Planar surface. 1fm = 0(or Xy = o), the terms
involving 1/X }, i = 1, in [3] and [5] vanish, In this case,
[14b], [15¢], [20], and [22] reduce to the expressions for a
planar surface, and ¥4 is described by [C2] (8). Furthermore,
if d = 0, the terms relating to the membrane, i.e., oy,
Y bons and Yp,, vanish, and [14b], [15¢], [20], and [22]
reduce to the expressions for a rigid planar surface (12).

3.2. Another Approach

In an attempt to resolve the PBE for both rigid cylindrical
and spherical surfaces immersed in a 1:1 electrolyte solution,
Mitchell and Ninham { 13) proposed a perturbation method.
Although this approach appears to be different from that of
Stokes (11), the rationale behind these two methods is es-
sentially the same. Let us extend the method of Mitchell and
Ninham to the present nonrigid surface and arbitrary a:b
electrolyte solution. Equations [1] and [2] are recast as

&Y _g+iN_ mdy

dx?T a+p  xax’

[30]

where [ denotes the region index; { = 0 for the double layer,
and i = 1 for the membrane. Integrating [30] with appro-
priate boundary conditions ([2a] for/ = 0 and [2c] and [2d ]
for i = 1) yields

+z‘(j—j{”):_%—¢g_f:d27mj—/‘idw, (31]
where
) e
+ NGy - %)] n i(g—;);%. [31a]
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Substituting [31a] into the second term on the right-hand
side of [31] and integrating the resultant expression yields
the next order approximate solution. This procedure can be
continued until a satisfactory degree of accuracy is reached.
[t can be shown that the result is the same as [4] and [9] up
to the second order of 1/X.

APPENDIX A

In the case where the perturbation method suggested by
Stokes (11) is applied, the potential gradient H(y, X) is
defined by [3], and [1] can be written as

oH oH\ mH g
H| = ALl LS =
(%), (&), 5 a5

[Al]

with the boundary conditions

H= —eJdlff{]Erk;TK
H—=0

at X =Xo+d [Ala)

as X = . [A1b]
where oy is the charge density at the membrane-liquid in-
terface. Substituting [3] into [A1] and collecting terms of
the same order of X leads to a set of equations in ¢;. The
first three of these equations are

cocy = gl{a+ b) [A2a]
CoCy + e+ gy =0 [AZb]
coch ocl t ey +(m—1)e =0, [A2¢]
The boundary condition [A1b] is replaced by
>0 asX— o foralli. [A3]
Solving [ A2a] through [A2¢] subject to [A3] gives
@y 2k { 2m |
ay - p smh(aMQ)fX p tanh{a)/4) +X2
m*tanh?(ay/4)
— 4m(m — Nn[cosh{ay/4)]
X p . [A4
[ akisinh(ap/2) [A4]
APPENDIX B

Solving {7a] subject to [8] with / = 0, we obtain

do=(25) 3 - et =n N - v
* \a+b] |b a ‘

_2 12
=R, (B1]
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where Y is defined in [9d] and

Y+ 2NY2In(Y/Y;). [B2]

k-2

Expanding the term —mdy of [B1] into its Taylor series
around Y,, = (¥Y; + Y.)/2, ¥5 and ¥, being, respectively,
the values of ¥ at ,; and at .., we obtain

My
“mdy = 3w Y, (53]
=0
where
Uy = —mldﬂ‘av Yadeav + (Yav/z)dﬂav (Y;v/6)dS:av
[B3a]
= —mldpay — Yooy + (¥ 2/ 2)dG0y [B3b]
i = _m[(l/z)dOav (Yav/z)datav [BSC]
ty = —m(1/6)da [B3d]

In these expressions, dy av, @oav, doav, and di v are, respec-
tively, dg and its first, second, and third derivatives with re-
spect to Y evaluated at ¥,,.

Substituting [B1] into [7b] and solving the resultant
equation subject to [8] with / = 1, we have

2 ; .
d = —“—-'a(f”zly) [ugln( )-l- tzl - Y4
a 2

The approximation below is employed in the derivation of
[B4]:

2N ey ey
() oo+t

~ 2% sinh(ay/2).

[B5]

Rewrite Eq. [7c] as
(dodz)' = —did\ — (m — 1)d,. [B6]

Expand the right-hand side of [B6] into its Taylor series
around Y,,;i.e.,

ny .
Z v; Yt:

i=0

—dldrl - (m - l)dl = [B?]
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where

vo = ~[diadia +(m— D 0]+ dand]

[diavd
+3d 1 wdlaH(m— 1)1 1Y 5

= —[dawdl o+ (dh o) +(m— 1)d' 5]
+2[d @V + 3d ad o + (m—1)d{ 1Y, [BTD]

_—[dl,avd,{:av+3dlav 1av+(m7 l)dlav] [B7C]

+ (d’]av) + (m -1 )d’!,av] Yav -
[B7a]

In these expressions, dy .., d) 4. da,. and dy,. are, respec-
tively, 4, and its first, second, and third derivatives with re-
spect to Y evaluated at Y,,. Substituting [B7] into [ B6] and
solving the resultant equation subject to [8] with i = 2, we
obtain

2 U ;
dz—_—"—”a(f}’Q/Y)[voln(Yd)+ Z Yd)

[m(Ys— 1)/{Yq + 1)]
—dm(m — DIn[(YY? — ¥ 7'%)/2]

. B8
i ka(Ya— T30 B8]

APPENDIX C

As an initial guess for the value of ¥pg, and Y L, we
choose
Yi.)on = { %[(Nz + 4)”2 -

N]}V2, [Cla]

or equivalently,

¥Don = (1/a)sinh™' (=N/2). [CIb]
Replace the Y., 1n the first term on the left-hand side of
[10] by [Cla], and solve the resultant expression for Yp,,.
This step can be continued until a reasonably accurate Ypo,
is obtained. Note that if k = 4 (symmetric electrolytes), [Cla]
yields the exact value of Yp,,.

As a first approximation, [11] is solved by neglecting 4,
>, . . .. The first-order approximate solution thus obtained,
Va.(, 18

|
Ya1 = ¥pon N E(CXD(WDM) -1

1
+;(exp(*a¢mn)— . [C2]

This is the exact solution for the case m = 0 (flat plate).
Substituting [ C2] into the second term on the left-hand side
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of {11], neglecting d,, ds, ..., and solving the resultant
equation, we obtain the second-order approximate solution
Va2 as

1 {1
‘Pd,z = ’ibDun + }G E (exp(bIPDon) - 1)

1 — 4a+b di (¥ponht :
4 (ep(apoun) = 1) - S (SEMY ey

where d (Yo )1 18 the value of d, (Yp,, ) With 4 replaced by
Y41 Substituting [C3] into 4, and 4, in [11], neglecting d;,
ds, . . . . and solving the resultant equation, we have the third-
order approximate solution ¥, ; as

Yo ™~ Ya3 = ¥pon

{1 !
it {5 (XD (bien) = 1)+ (eXD(~afon) — 1)

_a+b dl(‘t”Don)Z dZ(‘PDon)Z 2
2[ X X3 H 4]

where d) (¥pon )2 and dy(Y¥pey ) are, respectively, the values
of di(Ypon) and dr{¥pen) With g replaced by ¥y,-

APPENDIX D

Let us consider a differential volume 6} in a membrane,
Since the fixed charges are distributed homogeneously, the
amount of fixed charges in &V, M, is

2nLZeNk X 5X  for a cylinder
oM = D]
4nZeNgk XX  for a sphere,

where L/« denotes the length of the cylinder. Corresponding
to 6¥, the differential area of the membrane can be expressed
by

339

84 =

Ak " X + (6X/2)]?

2xLle [ Xy + (8X/2)] for a cylinder
for & sphere.

The average density of fixed charges in a membrane, oy, is
calculated by

M ZeNg ™' [ AmX
CA X+ X))

T

~ ZeNodx™', m=1lor2, [D3]

where m = | for a cylinder and m = 2 for a sphere. In the
derivation of this expression we assume that (d/X,) < 1.
Thus, the average density of fixed charges for cylindrical and
spherical particles is the same as that for a flat particle (8).
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