DYNAMIC ANALYSIS OF A PROPAGATING ANTIPLANE
INTERFACE CRACK

By Yi-Shyong Ing' and Chien-Ching Ma®

ABSTRACT: In this study, the transient problem of a propagating interface crack between two different media
is analyzed. For time r < 0, the crack is stress free and at rest. At ¢ = 0, a pair of concentrated antiplane dynamic
point loadings are applied at the stationary crack faces. It is assumed that the stationary crack will begin to
propagate along the interface with a subsonic speed as the incident wave generated by the point loading in the
upper crack face or in the lower crack face arrives at the crack tip. A new fundamental solution is proposed in
this study and the transient solution is determined by superposition of the fundamental solution in the Laplace
transform domain. The proposed fundamental problem is the problem of applying an exponentially distributed
traction (in the Laplace transform domain) on the propagating crack faces. The Cagniard-de Hoop method of
Laplace inversion is used to obtain the transient solution in time domain. Theoretical results indicate that the
shear stress along the interface of stationary crack in a bimaterial will jump to the corresponding static value in
a homogeneous medium after the lower shear wave reaches the observation point. Moreover, the dynamic stress
intensity factor of a propagating interface crack has an interesting form of the product of a universal function
and the corresponding static value of a homogeneous crack.

INTRODUCTION

Many structures are composed of different materials formed
in layers for both man-made and natural origin. The layers are
bonded together along interfaces. For the last two decades,
the importance of composite materials has increased very
rapidly in engineering applications because of their high
strength and light weight. However, flaws contained at the in-
terfaces of composite bodies due to improper adhesion may
lead to serious danger, and a better understanding of interface
fracture mechanics is needed. Since the inherent time depen-
dence of a dynamic fracture process results in mathematical
models that are more complex than equivalent quasistatic
models, most of the analyses done regarding cracked compos-
ite bodies are quasistatic. However, because of increasing ap-
plications of multilayered materials in modern engineering
structures, there is still substantial interest in the dynamic in-
terface fracture problem and many efforts should be added in
this field.

The asymptotic elastic fields of a semiinfinite crack lying
along a interface between dissimilar isotropic materials
subjected to static loading was first considered by Williams
(1959) for plane strain condition. A number of solutions for
the stress and the displacement field near the crack tip are
obtained by England (1965), Erdogan (1965) and Rice and Sih
(1965). Extensions to anisotropic elasticity for the near tip
field have been made by Gotoh (1967), Bogy (1972), and Kuo
and Bogy (1974), and recently by Ting (1986, 1990) and Qu
and Bassani (1989). The exact full field solutions of interface
cracks in anisotropic dissimilar media is obtained by Ma and
Luo (1996). In the field of propagating interface cracks, Willis
(1971) investigated the energy release rate of a steadily
extending interface crack by means of the local form of the
Griffith virtual work argument. He also derived an explicit
fracture criterion, which involves a suitable defined *‘stress
concentration vector.”’ In the recent years, Wu (1991) treated
the similar but anisotropic problem and derived the crack-tip
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fields and energy release rate successfully by employing the
Stroh formalism for anisotropic elasticity. Deng (1992)
analyzed the near-tip fields for steadily growing interface
cracks in dissimilar isotropic materials. Yang et al. (1991) have
analyzed the problems of steadily propagating interface cracks
in dissimilar isotropic and orthotropic bimaterials. They solved
the crack-tip fields by the method of Stroh formulation and
discussed the singularities for antiplane and in-plane defor-
mations carefully. The stress singularities and the angular
stress distributions near a propagating interface crack in
different transonic regimes for both antiplane and in-plane
cases are determined by Yu and Yang (1994, 1995). Zhu and
Kuang (1995) have solved the antiplane strain problem of a
straight interface propagating between two elastic half-spaces
under arbitrary variable loading. They obtained the stresses
along the interface and stress intensity factor of a propagating
crack.

The extension of an interface crack under the influence
of transient horizontally polarized shear wave was analyzed
by Brock and Achenbach (1973). It is assumed that the ad-
hesive behaves as a perfectly plastic material, so that the stress
in the zone of interface yielding is uniform and equal to the
yield stress. Analytic solutions for the time of rupture and for
the interface stress ahead of yield zone are obtained by apply-
ing integral transform methods. Recently, Chung and Robin-
son (1992) solved the transient problem of a mode-III crack
propagating along the interface between two different media.
In their study, the compound body is loaded by a constant
shear traction at infinity such that the problem becomes self-
similar. This self-similar problem can be solved effectively by
the method of self-similar potentials (SSP). In a series of pa-
pers, Freund (1972, 1973, 1974) developed important analyt-
ical methods for evaluation of the transient stress field of a
propagating crack in a homogeneous material under a quite
general dynamic loading situation. These particular cases
analyzed by Freund are also self-similar, but they are solved
by means of integral transform methods rather than by direct
application to similarity arguments. An indirect analytical
approach was proposed by Freund based on superposition over
a fundamental solution. Based on the superposition method
proposed by Freund, a series of problems for nonplanar crack
propagation in an infinite domain was solved by Ma and
Burgers (1986, 1987, 1988) and Ma (1988, 1990). For the
aforementioned problems (except for the SSP method), either
the direct application of the well-known Wiener-Hopf tech-
nique (Noble 1958) is used or the superposition method pro-
posed by Freund is performed to solve the problem. However,
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FIG. 2. Configuration and Coordinate System of a Propagat-
ing Interface Crack in a Bimaterlal Medium

if a crack is subjected to incident nonplanar waves, none of
the known methods can be used directly to obtain the transient
solutions.

In this study, the transient problem of an interface crack
subjected to dynamic loadings and propagating with a sub-
sonic speed along the interface is considered. At time ¢ = 0,
the crack is at rest and a pair of antiplane concentrated dy-
namic loadings are applied at stationary crack faces as shown
in Fig. 1. After some delay time ¢#, the crack begins to run
along the interface with a constant velocity v as shown in Fig.
2. Two propagating cases are considered in this study. The
first one is that the crack starts to propagate immediately after
the faster incident cylindrical wave passes the stationary crack
tip (i.e., #; = b,h). The second one is that the crack begins to
propagate after the incident cylindrical wave with smaller
shear wave speed arrives at crack tip (i.e., t; = bih). A new
fundamental solution is proposed in this study and it is suc-
cessfully applied towards solving the problem. The fundamen-
tal problem is the problem of applying an exponentially dis-
tributed traction on the propagating crack faces in the Laplace
transform domain. This alternative superposition scheme has
been used to solve many transient problems for the interaction
of incident cylindrical waves with cracks in a homogeneous
medium successfully, e.g., Tsai and Ma (1992) for a stationary
crack and Ma and Ing (1995) for a propagating crack. The
transient full-field solutions of the stationary interface crack
and the dynamic stress intensity factor of the propagating in-
terface crack are obtained and are expressed in a closed form.
Numerical results of interfacial stresses and dynamic stress
intensity factors for the problem are evaluated and discussed
in detail.

FUNDAMENTAL PROBLEM

Consider a fundamental problem of antiplane deformation
for an extending interface crack in dissimilar materials. The
interface crack propagates with a constant velocity v, which is
less than the lower shear wave speed of these two materials.
Fig. 1 shows the interface crack geometry and the coordinate
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systems. Materials 1 and 2 occupy the two half-spaces. The
coordinate § defined by £ = x — w is fixed with respect to the
moving crack tip. In analyzing this problem, it is convenient
to express the governing equations of wave motions in the
moving coordinates £ — y as follows:

Fw, w *w 3w
- b}vz)a—gzl +-a7’+ 2bfv5§—a§— b}ﬁ:o; j=1,2
(la,b)

where the subscript j(j = 1, 2) refers to the lower and upper
media, respectively; w; = out-of-plane displacements; and b, =
slownesses of the shear waves given by

1
yelo o
o My

in which ¢, = shear wave speeds, p, and p, = shear moduli
and the mass densities of two materials, respectively. Without
loss of generality, we assume b, > b,; that is, the shear wave
speed in the lower material is less than in the upper material.
The nonvanishing shear stresses are

aw ow,
Ty = My ‘a;l; Taj = My ?; (2a,b)

The solution for an exponentially distributed loading ap-
plied at the crack faces in the Laplace transform domain will
be referred to as the fundamental solution. Then the boundary
conditions on the crack surfaces expressed in the Laplace
transform domain can be described as follows:

?yzl(go 0, s) = ?yzz(ga 0,5 = e-ﬂlE; —® L E <0 (3a,b)

where s = Laplace transform parameter; and m = constant.
The overbar symbol is used for denoting the transform on time
t. The one-sided Laplace transform with respect to time and
the two-sided Laplace transform with respect to £ are defined
by

W&, y, 8) = f w(k, y, e dt

0

o0

wEQ\, Y, 5) = J' W(E, y, s)e™™ dE

The displacements and shear stresses must be continuous on
the interface, which gives the following conditions on the in-
terface:

.?yzl(gs 0’ S) = -yﬁ(g' 0’ S); 0 < § <™ (4a¢b)
Wi(§ 0, 5) =wy(§, 0,5); O0<E<o (5a,b)

The solution of the proposed fundmental problem can be
obtained in the usual way by making use of integral transform
methods. Apply a one-sided Laplace transform with respect
to t and a two-sided Laplace transform with respect to £ on
(1). General solutions in the transform domain, which are
bounded as y —» —o (and +0o, respectively), can be expressed
as

WEQ, ¥, 5) = A(s, \)ei™” (6)
WER, 3, 5) = Ag(s, N)e™™ > Q)
where
af) = Ve + M1 ~ bp) Vb = N1 + byv)
= oMoty j=12 (®)

and A,, A, = unknown functions. We define b;, = b,/(1 + bjv)
and b;; = b;/(1 — b;v). The branch cuts of o} are introduced
to ensure Re(a*) = 0O in the entire cut complex A-plane, where
Re = real part.



Application of the Laplace transforms to the boundary con-
ditions (3)—(5) and aid with (6) and (7), the transformed dis-
placements and shear stresses along the crack line y = 0 are
obtained as

w0, 8)=A, = A, + A )
WwEN, 0, 5) = A, = A, + A, (10)

pasa F)A; = —posaF(MA, = +7%. A

_1
s(m —\)
where 7%, A;_, A,_, and A, = unknown functions. Eliminat-
ing A, through (9)-(11), we have

_ et + o) [ L ?;*,+] (12)

T s tQ)af) sty — N)

where A_ = A;_ — A,_ = transformed crack-opening displace-
ment. At this point it is convenient to introduce a new function
O*(\) by defining

piaFA) + peaf(r)
* -
* ) Mapaka F(N)

where k = (WV1 -5 + mVI1— b2,
V1 — b3v*). From the general product factorization method,
O*(\) can be written as the product of two regular functions

Q*(\) and Q*(\), where

b,
N =1 (" paler2)]| _dz
Q*(\) =exp {_w J;u tan [ it (—2) ] 7+ )\} (14)

and

a3

b
e d 2L [ [ ele @l _dz
Q*(\) =exp { - L] tan [ T ] - )\} (15)

In view of the previous discussion (12) may be rewritten as

satNA- _ _ kQ¥m) & [Qm) B Qi(n)]
Q*(\) s(n— Nafm) st — AN lakh)  ax(n)
KN
aX () 7 (16)

The left-hand side of this equation is regular for Re(\) < b,
while the right-hand side is regular for Re(A) > —b,,. The
usual reasoning now leads to the solution

QG
s (n — Naf(mat ()
Making use of (9)-(11) and eliminating 7%., we can obtain
the transformed displacement A.. Then substituting A, from

(17) into the expression of A., the amplitude of w¥ in the
transform domain can be found as

e Qrmat.)
' Smatmm ~ NatM@in)

Similarly substituting A,_ from (17) into the expression of A,
we have

A_= A]_ - Az_ = (17)

18)

A= —Q*(n)
27 Smat,mn — NartM@ER)

In view of (18), (19), (6), and (7) inverting the two-sided La-
place transform, we obtain the solutions of stresses and dis-
placements for the fundamental problem in the Laplace trans-
form domain as follows:

(19)

_ 1 x O
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24)
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The corresponding result of the dynamic stress intensity factor
expressed in the Laplace transform domain is

R(s) = lim V2wET,, (&, 0, 5) = lim V2wET, (£, 0, 5)
£-0 §-0

_=V2(1 — b;9)Q%m)
Visat.(n)

(26)

TRANSIENT FULL FIELD RESPONSE FOR
STATIONARY CRACK

As shown in Fig. 1, a bimaterial medium is composed of
two homogeneous, isotropic, and linearly elastic solids. Ma-
terials 1 and 2 occupy the lower and upper half-planes, re-
spectively. Without loss of generality, we assume b, > b,. A
semiinfinite crack lying along the interface of the bimaterial
is initially stress free and at rest. At time ¢ = 0, a pair of equal
and opposite concentrated antiplane dynamic loadings with
magnitude p are applied at the crack faces with a distance A
from the tip. The time dependence of the concentrated loading
is represented by the Heaviside step function H(). Dynamic
stress intensity factor will be induced as the incident cylindri-
cal waves generated from point loadings arrive at the crack
tip. In this section, it is assumed that the dynamic stress in-
tensity factor is always less than the corresponding fracture
toughness, i.c., the stationary crack will not propagate under
this loading condition.

The incident field of the cylindrical wave generated by the
concentrated loading expressed in the Laplace transform do-
main can be represented as follows:

1
i';z(x, 0, s) = % f _ pe:x(x+h) dn (27)

The applied traction on the crack faces as indicated in
(27) has the functional form ™*. Since the solutions of apply-
ing traction e™ on crack faces have been solved in the
previous section (by setting v = 0), the diffracted field gen-
erated from the stationary semiinfinite crack can be con-
structed by superimposing the incident wave traction that is
equal to (27). When we combine (20), (21), (23), and (24) by
setting v = 0 and (27), the stress fields for lower and upper
planes expressed in the Laplace transform domain can be ob-
tained as follows:

;‘-.;'ill(xy Y, S) =a - - pe""h

{_l_f Q.+(M)oa+(M:)
2mi Jr,, t2+ (M) = M2)Q+(12)

ey +smpx d'flz} dTl 1

= P Mk gsoy (ng) y+smpx
a7 Lm fr“z T(n1, n)e™e dn, dny (28)
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Applying the Cagniard-de Hoop method of Laplace inver-
sion, the solutions of stress field for the stationary crack in
time domain are obtained as follows:

Ty, M) =

—pt sin 8H(t — br)
1Tr(t2 — b2r2)lf2

1—b,R
d g
+ —f Re [T('f], »Ma) T— T“ ndl] dt

T;zl(x’ y9 t) =

3tl at,ﬂ
d
+—f Re [T(m,nn) oni ;"”] HG — 1 = 1)
2
b,
-~ Ht — t, — b,R)H { cos ¢ — b (32)
1

~pt cos OH(t — byr)
'“,r(t2 _ bfrZ)l/Z

1—b,R
P Nai 3"11 a"'ldl]
t3 Re T(ni,ma)—— dt

w Ln [011(7]41) i Ma oty Oty h
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+ ’TI'ZJ;,, Re [01('7];) T, ) —— 3t o, ] dan[H(t — ¢, o)

T:zl(x’ y9 t) =

b
-~ Ht — 1, — bR)IH <cos ¢ = f) (33)
1
—pt sin OH(t — b,r)
T:zz(xv » D= 'n'r(t2 — bzrz)m2
1-b,R
31’]1 M a2
+ & T (v, dt 34
J Re[ M, M) —— at, aldz] 1 34
—pt cos OH(t — b,r)
T:a(x, ¥ D= 'n’r(tz — b§r2)m
P 1~byR n a"’l am
d2 1 d2
R T(n,, dt 35
T J- Re [012('7]:2) ) 5, ot a’dz] ! %)
where
ny = % + ie
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—t, isin ¢
= cos ¢ + ——
Mg ="p cos ¢ R

ty — bR j=1,2
cos ¢ + EEIR—‘p(be2 -t
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r=[(x + h? + y]'% 8 = cos™* (x ha h)

r

2)1/2 + ig

ty = b,R|cos o]

R=(@x*+ W2 ¢=cos™ (1%)
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The first terms in (32)—(35) represent the incident cylindri-
cal waves due to the applied loadings in two half-planes. The
second terms in (32)—(35) represent the diffracted cylindrical
waves, which are radiated from the stationary crack tip after
the incident waves arrive at the tip. The last terms shown in
(32) and (33) describe head waves generated by the mismatch
bimaterial. In view of the integrals in (32) and (33), we can
find that there is a singularity in the denominator through the
material-dependent function Q.. The corresponding physical
meaning is that every integral in (32) and (33) includes con-
tribution of two elastic waves. The first one is induced by the
incident wave in the upper plane, and the second one is caused
by the incident wave in the lower plane. The shear stress along
the interface can be obtained by letting y = 0 in (34) and the
result is

ng(xQ 09 t)

_-p j e VI = 1~ b:X)Q.(—t/h)
T Jop Vx(t, — bh)(x + It — th]Q. (—-t—:i)

dt,

(36)

After the slower shear wave passes the observation point,
i.e.,, t > bi(h + x), the integral in (36) can be evaluated ana-
lytically by contour integration in the compiex ¢,-plane. We
choose a branch cut along b,k < t; <t — b,x and take a close
contour of infinitely large radius by using Cauchy’s theorem.
Finally, we can obtain the transient shear stress along the in-
terface for ¢t > b(h + x) as follows:

__p |k
- w(x + h) \/; @7

It is worth noting that the solution in (37) is independent of
material constants. In addition, it indicates that the dynamic
shear stress along the interface for a pair of concentrated forces
applied at crack faces in a bimaterial is the same as the cor-
responding static value in a homogeneous medium after the
slower shear wave passes the material point.

Making use of (27) and (26) (by setting v = 0), we can
obtain the corresponding stress intensity factor expressed in
the Laplace transform domain as follows:

w1 [ L[V Q+()\)}
K = 21'rif pe { Vs (\)
V202N g
Visoz ) (38)

The dynamic stress intensity factor of the stationary interface
crack expressed in time domain will be

T)d'zZ(xv Oy t) = T;zZ

an;
+ )—_
\/Ep Im Q.(my

dr
VI

KU =
b2 o (My) p—



th
2 p Re[Q_(m)]
= . [2 £ d 39
\/;'rrm e Vth — qVn — b, n ©9
After the slower shear wave generated from point loading

arrives at the crack tip, i.e., ¢t > bh, the integral in (39) can
be evaluated by using contour integration and yields

K0 = K°H(@t — b\h) (40)

in which

K'=p\— 41)

is the corresponding static solution in a homogeneous medium.
As one would expect, the dynamic stress intensity factor
in a bimaterial is the same as the corresponding static value
K* in a homogeneous medium after the slower shear
wave passed the crack tip. If b, = b, = b, for the homogeneous
case, (39) can be evaluated as before by letting Q.(n) = 1 and

yields
Ki®) =p+ /—-—2 H(t — bh) 42)
wh

The result expressed in (42) is the well-known solution of
dynamic stress intensity factor for a semiinfinite crack in a
homogeneous medium and subjected to a pair of concentrated
forces on its faces. It is interesting to note that the dynamic
stress intensity factor jumps from zero to the corresponding
static value after the incident cylindrical wave generated from
the loading point arrives at the crack tip.

DYNAMIC STRESS INTENSITY FACTOR OF A
PROPAGATING CRACK

When the dynamic stress intensity factor of a crack reaches
its fracture toughness, the crack will start to propagate and
release energy. From the previous section, we know that the
dynamic stress intensity factor will reach its corresponding
static value immediately after the incident wave with slower
shear wave speed passed the stationary crack tip. This means
that a stationary interface crack subjected to a pair of concen-
trated forces on its faces can propagate only at time b,h = ¢
=< b,h. In this section, we consider the same interface crack
as discussed in the previous section. At r= 0, a pair of con-
centrated loadings act on the stationary crack faces and we
assume that at time ¢ = ¢, the dynamic stress intensity factor
reaches its critical value and the crack starts to propagate with
a constant subsonic speed v (v < b7' < b3;') along y = 0 as
shown in Fig. 2. For convenience, we consider two special
propagating cases. The first one is that the crack starts to prop-
agate at once when the incident cylindrical wave with higher
speed arrives at the stationary crack tip (i.e., ¢ = b,h). The
second one is that the crack starts to propagate when the
slower incident wave arrives at the crack tip (i.e., ; = b;h).
Since the stress intensity factor is the key parameter in char-
acterizing dynamic crack growth, we will focus our attention
on the determination of the dynamic stress intensity factor.

Case 1: Delay Time t,= b,h

In this case, the crack starts to propagate immediately as
the incident cylindrical wave generated from dynamic point
loading in medium 2 passes the stationary crack tip. The ap-
plied concentrated loading on the interfacial crack faces writ-
ten in the Laplace transform domain for the moving coordinate
system will have the following form:

1 d
'?;,z(gl, 0,s) = 5‘-"-: J‘ )\L—Z PR E N 43)

in which d = 1/v = slowness of the crack velocity; and &, = x
— u(t — byh). The applied traction on the crack faces as ex-
pressed in (43), has the functional form ™%, Since the Laplace
transform solutions of applying traction ¢™ on crack faces
have been solved previously, the dynamic stress intensity fac-
tor can be constructed by superimposing the fundamental so-
lutions (26) and the stress distribution in (43). The result of
dynamic stress intensity factor expressed in the Laplace trans-
form domain will be

puten _ L [ _Pd aaosen [ZV21 = b0)QEN)
o= om X -a° Vsat,(\) N
= __1 paV21 — b)Q*N) s
= p e 2 dN
2w | Vs - dat.) @4

Inverting the Laplace transform of (44), the dynamic stress
intensity factor for a propagating interface crack at an un-
bounded bimaterial medium in time domain can be obtained

as follows:
-7
w1 )]
_ pdV2h(1 — by) h(1 — by) 0
- " ba VI — TVT — bohlt + hd — by)]
45)

K""(t)

If ¢t > ¢, which is the time that the slower incident wave
in material 1 catches up with the propagating crack tip, then
the integration in (45) can be carried out and the final result
is

wl — 2 * 1 —_ b 1/2H —
K*=p \/w[v(t_ o g 2~ b HE — 1)
(46)
where
_ bih(1 = by)
< 1 - blv

The expression for K*'(#) in (46) has the interesting
form of the product of a function Q*(d)(1 — b,v)** and the
corresponding static stress intensity factor K* in (41) for ap-
plying a pair of concentrated loadings at crack faces with a
distance v(t — b,h) + h from the crack tip. The value
Q*(@d)(1 — b,v)'? and the corresponding static stress intensity
factor K* in (41) for applying a pair of concentrated loadings
at crack faces with a distance v(tr — b,h) + h from the crack
tip. The value Q*(d)(1 — b,v)"* is an universal function,
which depends only on crack speed and material properties.
For any combination of material constants, the universal func-
tion always decreases monotonically from one at v = 0 to zero
when the crack speed reaches the smaller shear wave speed.
If b, = b, and p, = p,, we have Q*(d) = 1 and the solution
in (46) for the propagating interface crack in a bimaterial can
be reduced to that obtained by Ma and Ing (1995) in a ho-
mogeneous medium.

Case 2: Delay Time t,= b,h

For the second case, the fracture toughness of the bimaterial
is assumed to be equal to the corresponding static value in
(41). Hence, the interface crack starts to propagate at time r =
b,k when the slower shear wave arrives at the crack tip. For
b)h < t < bh, the crack is still at rest and the dynamic stress
intensity factor for this stationary crack can be calculated by
using the formulation in (39). For ¢ > b,h, the crack begins to
propagate along the interface with a constant velocity v, which
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is less than the smalier shear wave speed of these two mate-
rials. To obtain the dynamic stress intensity factor after prop-
agation, we also express the applied concentrated loading in
the Laplace transform domain for the moving coordinate sys-
tem as follows:

= _ _I_ rd Sh(1—by DN +sAE;
TE 0, 9 =o— | e d\ @7
in which & = x — v(t — bh).

Using the fundamental solution in (26) and the stress dis-
tribution in (47), the dynamic stress intensity factor for the
propagating interface crack expressed in the Laplace transform
domain can be constructed as follows:

Su2p N _ _1_ pd sh(1—bon J VY 2(1 = bQP*AN)
K = | v =a¢ { Vsat.(\) N
_ —1 | pavaQa — by)QT(N) B RN
2mi Vs\ — d)ad(\) (48)

The dynamic stress intensity factor expressed in time do-
main can be obtained by inverting the Laplace transform of
(48). The result is

pd\/2h(1— b,v)

K¥() = Jc

(=
' Re [Q* (h(l = b:v))]

: d
o Vi = VAL = b0yl — byv) — bahls + hd — b))
49)

The integral in (49) can be evaluated by using contour in-
tegration in the complex 7-plane and the final result is obtained
in an analytical form as follows:

0,2 = 2 * 1 — 12 —_ b h
K*()=p \/'n'[v(t o A 02(@d)(1 — byw) "H(t — bih)
(50

The expression for K**(f) from (50) is similar to K*'(¢) in
(46) and has an interesting form of the product of a function
0*(d)(1 — b,v)'* and the corresponding static stress intensity
factor K* in (41) with a distance v(t — bh) + h from the
crack tip.

Material 2

¢
12

Material 1

FIG. 3. Wave Fronts of Incident and Diffracted Waves of Case
2 Situationfor t> t,
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NUMERICAL RESULTS

In the previous sections, we have derived the transient so-
lution of dynamic stress intensity factors for a propagating
interface crack subjected to a pair of concentrated loadings on
crack faces. The complete wave fronts for the propagating
crack are plotted in Fig. 3. In this figure, 1 and 2 indicate the
waves produced by the applied concentrated forces in the ma-
terial 1 and 2, respectively. The diffracted waves ij (i, j = 1,
2), denote the waves in medium i resulting from the diffraction
of a disturbance induced by the applied loading in medium j.
The stress along the interface of a stationary interface crack is
calculated and plotted in Fig. 4. It is shown in Fig. 4 that the
shear stresses jump to the same static value at ¢ = 2b,h for all
the material combination. Fi§s. 5 and 6 show the dimension-
less stress intensity factors K°/K* of the stationary crack versus
dimensionless time for various values of w,/u, and b,/b,, re-
spectively. In these figures, it can be seen that the dynamic
stress intensity factors are almost constants for ¢ < b4 and will
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FIG. 4. Transient Stress Field along Interface of a Stationary
Crack
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FIG. 5. Stress Intensity Factors of a Stationary Interface
Crack for Different Values of p,/p.,
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FIG. 7. Stress Intensity Factors of a Propagating Interface
Crack in Case 1 for Ditferent Values of p,/p,

jump to the corresponding static values immediately at ¢ = b, A.
It also indicates in Fig. 5 that for ¢ < b;h, the larger p,/p, is,
the closer the dynamic stress intensity factor to the correspond-
ing static value.

Figs. 7 and 8 shows the dimensionless stress intensity fac-
tors Kh'%/p for the case 1 situation of the propagating interface
crack versus dimensionless time #/¢. for various values of wu,/
W, and by/b,, respectively. It is of interest to see that for ¢ > ¢,
the dynamic stress intensity factors are almost equal for small
crack velocity v = 0.1¢,, under different material combination.
From (46), we know that the dynamic stress intensity factor
for t > ¢, is equal to the homogeneous static solution times a
universal function Q*(d)(1 — b,v)". Figs. 9 and 10 plot the
values of Q*(d) for different material combination for b,/d =
0.1 and b,/d = 0.2, respectively. It is interesting to point out
that for small crack velocity, the values of Q*(d) are approx-
imately equal to one for all kinds of material combination.
Consequently, for lower crack velocity (b)/d = 0.1), the dy-
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FIG. 8. Stress Intensity Factors of a Propagating Interface
Crack in Case 1 for Different Values of b,/b,
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FIG. 9. Values of Q%(d) for b,/d = 0.1 under Diffferent Material
Combination

namic stress intensity factor in (46) can be approximated as
follows:

ul — 2 —_ 12 —-
K*(®=p \/'n'[v(t o) + K] Q¥d)(1 — by) “H(t — )

_ 2 o m
P \/w[v(t—bzhwh] (4 = b} HG = 1) 1)

The dynamic stress intensity factors for different values of b,/
d under constant b,/b, and p,/p, are shown in Fig. 11. It can
be found that the higher crack velocity, the smaller dynamic
stress intensity factor. Hence, the stationary crack has the larg-
est dynamic stress intensity factor among different running
cases.

Figs. 12—14 show the dynamic stress intensity factors for
the case 2 situation of the propagating interface crack. It also
can be seen in Figs. 12 and 13 that dynamic stress intensity
factors are almost equal for ¢ > b,h. It means that for lower
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FIG. 11. Stress Intensity Factors of a Propagating Interface
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crack velocity, the dynamic stress intensity factor is nearly
independent of material parameters after the slower shear wave
passed the propagating crack tip. So we have

w200 = 2 * — 12 —
K*n=p \/‘"[v(t_ o) + Al Qxd)(1 — byv) “H(t — b\h)

2
~ 1 — byo)H(t — bih
P \/'rr[v(t Z bk + h]( ) HE = b (52)

CONCLUSIONS

The mechanical behavior of many newly developed multi-
phase materials are mainly controlled by the response of the
interface. Many researchers have devoted to investigate the
field of dynamic debonding along a bimaterial interface. The
transient problem of a propagating interface crack in an infinite
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FIG. 13. Stress Intensity Factors of a Propagating Interface
Crack in Case 2 for Different Values of b,/b,

bimaterial is considered in this study. The equivalent steady-
state problem has been studied by many investigators in the
past 20 years, but the transient solution is still very few. In
this paper, the transient response of a propagating interface
crack in an infinite medium subjected to a pair of concentrated
loadings applied on its faces is obtained. These transient so-
lutions are obtained by superposition of a proposed funda-
mental solution in the Laplace transform domain. The pro-
posed fundamental solution is an exponentially distributed
traction applied on the propagating crack faces. This funda-
mental solution is successfully applied towards solving this
transient problem and is demonstrated as an efficient meth-
odology to solve other similar problems.

Some interesting and important results are obtained in this
study. We find that the stress along the interface (or the dy-
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namic stress intensity factor) of a stationary bimaterial crack
is the same as the corresponding static value in a homogeneous
medium after all the transient waves passes the material point
(or the crack tip). Two propagating cases are considered and
the results have many interesting phenomena. It is worth not-
ing that the expression of dynamic stress intensity factor of a
propagating interface crack has the form of the product of a
universal function and the corresponding static stress intensity
factor after the slower incident shear wave arrives at the prop-
agating crack tip. Moreover, the dynamic stress intensity factor
of a propagating interface crack is approximately equal to that
in a homogeneous medium for low crack propagating velocity
(v = 0.1¢,y).
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