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ABSTRACT

An efficient boundary weight function method for the determination of mode I stress intensity factors
in a three-dimensional cracked body with arbitrary shape and subjected to arbitrary loading is presented
in this study. The functional form of the boundary weight functions are successfully demonstrated by

using the least squares fitting procedure.
cracks in rectangular finite bodies.

Explicit boundary weight functions are presented for through
If the stress distribution of a cut out rectangular cracked body from

any arbitrary shape of cracked body subjected to arbitrary loading is determined, the mode I stress
intensity factors for the cracked body can be obtained from the predetermined boundary weight

functions by a simple integration.

Comparison of the calculated results with some solutions by other

workers from the literature confirms the efficiency and accuracy of the proposed boundary weight

function method.
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1. INTRODUCTION

The implementation of damage tolerance analysis for
the design of structures containing cracks requires the
knowledge of stress intensity factors. Stress intensity
factors are now available for a wide range of crack
configurations and loadings and have been summarized
in well-known handbooks of Tada, et al., [1], Rooke
and Cartwright [2] and Sih [3]. It is still found
inadequate with regard to the needs in practical
applications because actual structural details are often
unique so that ready made handbook solutions cannot to
be available. There is a great need for simple methods
to obtain stress intensity factors for engineering
applications with good accuracy.

The weight function concept for two-dimensional
elastic crack analysis was first proposed by Bueckner
[4], is a powerful and efficient method for determining
the stress intensity factor. His weight function satisfy
the equations of displacement fields but have a stronger
singularity at the crack tip than would be admissible for
an actual displacement field. Rick [5] proposed a
convenient procedure for weight function determination
for plane problems. He showed that weight function
could be determined by differentiating known
displacement field with respect to crack length. The
weight functions serve as a universal function for a
given crack geometry and composition; they are
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independent of applied loading. The weight function
concept is, in fact, Green’s function of the stress
intensity factors for a cracked body. The weight
function, once obtained from a single simple load case,
can then be used to calculate additional stress intensity
factors for the same cracked geometry but with different
load conditions. In the original version of the weight
function method, the boundary condition dealt with
does not involve prescribed displacements. Bowie and
Freese [6] have made a reformulation for the weight
function to include the mixed traction and displacement
boundary condition case. In the study by Bortman and
Banks-Sills [7], Rice’s displacement derivative
definition of the weight function for mode I deformation
has been extended to mixed fracture mode.

In recent years, the finite element method applied to
fracture mechanics has been well developed. There
are several studies that have sought to build up the
calculation technique and provide a possible and
efficient way to construct the two-dimensional weight
functions for finite cracked bodies. Sha [8] used the
stiffness derivative technique coupled with singular
crack-tip elements to determine the weight functions,
and he obtained the two-dimensional weight function
for a single edge crack with specified specimen width
and length by means of the finite element method. Sha
and Yang [9] obtained the two-dimensional weight
function for an oblique edge crack by means of the
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finite element method using the virtural crack extension
technique as suggested by Parks [10] and Hellen [11].
They have extended this method to non-symmetric
mixed mode problems and used a special symmetric
mesh in the vicinity of the crack tip such that the stress
intensity factors for modes I and II could be determined
independently. Recently, Tsai and Ma [12] and Ma,
Chang and Tsai [13] construct the explicit form of the
two-dimensional mixed mode crack face weight
function for finite rectangular plates by using the finite
element and curve fitting technique. These explicit
weight functions are expressed in terms of a position
coordinate, crack length, specimen width and length,
which are certainly more useful in practical applications.
However, the above mentioned crack face weight
function method can only be used to determine stress
intensity factors for specific cracked geometry.

Because of the computational efficiency, the virtual
crack extension technique suggested by Park [10] and
Hellen [11] has been widely used in the finite element
evaluation of mode I stress intensity factors. The
virtual crack extension is a devised algorithm for the
efficient calculation of the strain energy release rate of a
cracked body. Recently, the use of analytical
separation of the crack-tip field into mode I and mode II
components with the symmetric mesh in the crack tip
neighborhood was proposed by Ishikawa [14] and Sha
[15] and Sha and Yang [9]. The method described
above is used by Ma, Chang and Tsai [13] for
evaluating oblique edge crack and oblique central crack
weight function on crack faces for two-dimensional
problems. A numerical mode I weight function based
upon finite element calculations and the stiffness
derivative method has been used for three-dimensional
geometries by Banks-Sills and Makevel [16]. By
using the principle of superposition, the stress intensity
factor under crack-face loading is equivalent to the
cracked body with remote loading that produces the
same pressure loading on the prospective crack face in
the absence of the crack. Hence, for a special regular
cracked geometry, only the weight functions on the
crack faces are needed for evaluating the stress intensity
factors. However, for calculating the stress intensity
factors of arbitrary cracked geometries, the usually used
crack-face weight function concept will not be a
suitable method. In this study, we have introduced the
boundary weight function method to calculate the stress
intensity factors for arbitrary cracked geometries
subjected to general boundary condition on the
boundary.

Because of the complexities of the three-dimensional
problem in finite crack bodies, no exact solutions of the
stress intensity factor are available. There are many
techniques which can be used to calculate the stress
intensity factor by finite element method, it usually
needs a very fine mesh near the crack tip. However,
this is not necessary when energy based methods such
as virtual crack extension are employed for these
calculations. Raju and Newman [17] used the finite
element method to obtain the stress intensity factor for a

semicircular surface crack in a semi-infinite solid and a
semi-elliptical surface crack in a plate of finite thickness.
Hechmer and Bloom [18] studied the case of two-
symmetric corner cracks emanating from a hole in a
plate.  In this paper, an efficient method which
combines finite element with boundary weight functions
has been established in determining stress intensity
factors in three-dimensional configuration and subjected
to arbitrary loadings for finite cracked body. The
boundary weight function method has also been
investigated by Ma, et al., [19] for two-dimensional
case and we will extend this methodology to three-
dimensional analogy in the study. Three-dimensional
problems are much more difficult than two-dimensional
problems, since a weight function exists for every point
along the crack front. The stress intensity factor for
any specific crack geometry subjected to general
prescribed boundary conditions as shown in Fig. 1 is
equal to that of the cut out rectangular cracked body
(Fig. 2) with the same stress distribution on the cut out
rectangular boundary (dash line) on Fig. 1. The stress
distribution on the cut out rectangular boundary can be
obtained with accuracy with an ordinary finite element
mesh. Which means that we need not to use very fine
mesh near the crack tip in order to get good results of
the stress distribution on the cut out rectangular
boundary. Once we have obtained the value of
boundary weight function for the rectangular cracked
geometry, the stress intensity factor under any load can
be calculated by a simple surface integration. In this
study, these boundary weight functions are expressed in
terms of the nondimensional quantities of position
coordinate on the boundary. The cracked geometry to
be considered in this study is a through straight crack in
a rectangular finite body. These explicit weight
functions are then used to calculate the stress intensity
factors for some specific crack problems and are
compared with known results in the literature.

Fig.1 Configuration for a arbitrary cracked body
subjected to general boundary condition with a
cut rectangular cracked body contains an edge

through crack
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Fig. 2 Geometry of a rectangular cracked body with
an edge through crack as indicated in Fig. 1

2. WEIGHT FUNCTION FORMULATION AND
NUMERICAL TECHNIQUE

The weight function method as presented by
Bueckner [4] and Rice [5] was used to compute mode I
stress intensity factor of symmetric cracked bodies with
symmetric loading. = Bowie and Freese [6] and
Bortman and Banks-Sills [7] extended Rice’s
displacement derivative definition of the weight
function for two-dimensional mode I deformation to
mixed fracture mode and mixed boundary conditions.
The two-dimensional stress intensity factor is expressed
as a product of the applied load and the weight function
as follows,

K,=jst'~h[ds+J‘S u'-h!ds (1)
K, = js t* hy ds+ L u'-h ds )

The decoupled weight function vectors for mode I and
mode II in two-dimensional configuration can be
represented as follows
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in which H = E (Young’s modulus) for generalized
plane stress and H = E / (1 — v*) for plane strain, v being

Poisson’s ratio. The subscript I in h; is used to denote

the mode I weight function. The boundary has been

divided into the part for specified traction S, and that for

specified displacement S,. Configurations “(1)” and

“(2)” are geometrically equivalent to the original
problem. The corresponding stress intensity factors

and displacement vectors will be denoted by K7, , u®

and K{),, u®, respectively.  Once the weight
functions are determined from the solution for any
particular load system, the two-dimensional stress
intensity factor induced by any other load system can be

obtained from Eqgs. (1) and (2).

The weight function method also applies to three-
dimensional problems of cracked bodies.  Three-
dimensional problems are much more difficult than
two-dimensional problems since a weight function
exists for every point along the crack front. Consider a
plane crack in a solid with a front of smooth shape, and
both the body and load systems under consideration
being symmetrical about the plane of the crack. A
three-dimensional weight function may be defined as
[5,20]

H  8U(P)
2K (P) SA(P)) ™

h(P, P') =

where P is a load point, P’ is a point along the crack
front. JA(P’) is a small extension of the crack surface
at P’ and K"(P') is the stress intensity factor at point
P' under special loading. This expression is the
general definition of three-dimensional weight functions.
This is also an unique function of P and P’ for a given
cracked body geometry and composition, and is
completely independent of the way in which the body is
loaded. For an arbitrary symmetric load system #(P)
applied on the cracked body, the stress intensity factor
at P’ can be obtained from integration as follow

K(P)= [ (P) (P, P') dA(P) (®)

However, by employing the linear superposition method
proposed in this study, only the weight functions along
the prospective boundaries of rectangular cracked body
are of primary interest for evaluating the stress intensity
factor.

As indicated in (7), one needs an efficient means for
solving the reference geometry fracture mechanics
problem to obtain the rate of change in boundary dis-
placements and stress intensity factors. Unfortunately,
the exact solution of displacement field is available only
for very few ideal crack problems. An efficient finite
element method for determining both the stress intensity
factors and weight functions for cracked body of
interest has been achieved by combining the singular
crack-tip elements with the virtual crack extension
technique.
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Consider a cracked body with general boundary
condition applied on the boundary as shown in Fig. 1,
which will induce normal and shear stresses along a
regular specified rectangular boundary. The stress
intensity factors of the original problem is equal to that
of the cut out regular rectangular cracked body with
through crack subjected to equal stress distribution on
the rectangular boundary of Fig. 1. Hence the problem
for the case of a rectangular body with an edge through
crack shown in Fig. 2 is of special interest. Once the
weight functions along the rectangular boundary are
determined, the stress intensity factors can be easily
obtained by simple integrations over the distributed
stress and the boundary weight function.

3. BOUNDARY WEIGHT FUCNTIONS FOR
FINITE CRACKED BODIES

In order to determine the boundary weight functions,
reference stress intensity factor together with the
displacement field on boundaries must be known.
Exact solutions of the displacement field are available
for only a very few crack problems. For most cases of
practical interest, exact solutions hardly exist. Hence,
good approximations to the displacement field for such
cases are very useful for constructing the explicit form
of weight function. The evaluation of the weight
function requires the calculation of both the stress
intensity factor and the displacement derivatives. For
specimens with finite dimension, the calculations are
usually done by finite element method. Because of the
invariant characteristics with respect to the loading
conditions for a given geometry and constraint
conditions, the simplest uniformly distributed loading is
used for the finite element evaluation of the explicit
weight functions for boundaries of interest. The finite
element evaluation of the weight functions using the
virtual crack extension technique coupled with singular
elements is used in this study.

The conventional determination of the two-
dimensional weight function by several authors [8,12,13]
has usually been restricted to crack face only, since the
stress intensity factor under crack face loading is
equivalent to load the cracked body with remote loading
that produces the same pressure loading on the
prospective crack face in the absence of the crack.
However, the crack face weight function will behave
singularity near the crack tip which should be carefully
analyzed to get accurate result. Therefore the
nonsingular boundary weight function is used in this
study.

In this study, the weight functions for cracked
rectangular body are investigated for calculating the
stress intensity factor of arbitrary cracked bodies
subjected to general boundary conditions. The
standard three-dimensional twenty-nodal serendipity
element of quadratic form are used. The elements in
the vicinity of the crack front are modeled with the
degenerated quarter-point quadratic element as shown

in Fig. 3. The dash line shown in Fig. 4 represents the
virtual crack extension near the crack front.

Fig.3 The quarter-point quadratic
element at the crack front

isoparametric

riginal crack front

Fig. 4 The' virtual crack extension near the crack front

The rectangular cracked body has five boundaries
and the boundary weight function expressed as a
function of the X-Y plane is taken to have the following
polynomial form

«/c?h(X/l,Y/l)zZs: > €, (XIWY (YILY" (9)

6
n=1 m=1

The corresponding boundary weight functions for
boundaries on Y-Z and X-Z planes have the similar form
as (9). The corresponding configuration for a through
crack in a rectangular body is represented in Fig. 5.
The numerical results of the boundary weight functions
are calculated by using the finite element method.
Since the weight function 1is universal and is
independent of the loading system, the most simple
loading system of uniformly distributed tensile loading
applied on the top surface is chosen for the numerical
calculation. The stress intensity factor for uniformly
distributed tensile loading is obtained by using the
nodal-force method proposed by Raju and Newman [17].
The nodal forces normal to the crack plane and ahead of
the crack front are used to calculate the stress intensity
factor. The advantage of this method is that it requires
no prior assumption of either plane stress or plane strain
condition. For a through crack in a finite body, the
state of stress varies from plane strain in the interior to
plane stress at the free surface. The numerical results
form the basic data for curve fitting. By using least
squares procedure, the discretized values of the
boundary weight functions are approximated with (9).
The tabulation of the coefficients C,,, for different crack
geometries are given in Tables 1 and 2.  Because of the
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Table 1 The interpolation coefficients C,,, of the boundary weight function for a point at the crack tip Z=T/2 of a
rectangular body with a through crack (W:L:T=1:1:0.5,a/W=1/2) subjected to symmetric loading

Cim 1 2 3 4 5 6

1 22734564D+02 —14347874D+00 36890891D+01 ~13600398D+02 13600014D+02 51216241D-03

) 2 —30950416D+02 134973741D+01 ~70187776D+02 25277484D+03 —.25278467D+03 .14076406D-01

top in normal 3 16472267D+02 —.71435182D+02 94851055D+03 -.32225936D+04 32227067D+04 -.15987253D+00
Y-direction 4 —-.90545090D+02 31422403D+03 ~.27647948D+04 185454885D+04 — 85458356D+04 148932491D+00
5 14805923D+03 —.43899964D+03 129749729D+04 —.83880151D+04 183884260D+04 -.57892304D+00

6 ~.69231495D+02 .19250157D+03 ~.10884618D+04 28138838D+04 —.28140508D+04 123516517D+00

1 "11282438D+02 17600093D+00 23327184D+01 ~10738819D+02 10738532D+02 40182169D-03

. 2 —.22772753D+01 —.44683478D+01 44439805D+02 —.14201849D+03 114203919D+03 ~.29344547D-01

top in shear 3 21726350D+02 99670173D+02 —.10348657D+04 33421686D+04 —33423432D+04 .24721583D+00
X-direction 4 - 62936005D+02 - 33833506D+03 34242042D+04 —.10990282D+05 110990778D+05 ~.70120255D+00
5 |54432067D+02 139394263D+03 ~.39014412D+04 .12454390D+05 —.12454957D+05 .80061163D+00

6 —.13410515D+02 ~.15209656D+03 14743790D+04 — 46808098D~+04 —.46810347D+04 —31781056D+00

1 87180916D+00 "16080710D+00 ~ 46816645D+01 35391875D+02 —.87448966D+02 769959176D+02

. 2 -.14224614D+00 24456757D+01 .38839834D+02 —.38578590D+03 .10019986D+04 ~.80159913D+03

top in shear 3 —.31521835D+00 ~.40679489D+02 -.35508511D+03 45182963D+04 —.12134551D+05 97076423D+04
Z-dircction 4 —.14858033D+02 .17602195D+03 .10486126D+04 —-.13052497D+05 .34963045D+05 —.27970441D+05
5 31863603D+02 —.24115375D+03 —.11997885D+04 .14146285D+05 —.37639706D+05 30111770D+05

6 ~.16614361D+02 10336717D+03 46473715D+03 —.51942874D+04 113723916D+05 ~.10979135D+05

1 —13025619D—03 11796798D+01 ~23247510D+01 22901475D+01 —11450864D+01 "10039673D—-04

right side in 2 -.20336424D-01 - 15335516D+00 10843278D+01 ~.17836156D+01 .75625998D+00 196378450D-01
3 58146957D+01 ~37003193D+01 78424856D+01 —89375184D+01 155991596D+01 —~.80379320D+00

normal 4 —.67060197D+00 ~.21371981D+00 —.46480218D+00 .31864336D+01 ~.47592182D+01 122512839D+01
X-direction 5 —.39504896D+01 .57333884D+01 —.13710022D+02 113862255D+02 —.33123127D+01 —.25732915D+01
6 .19323944D+01 ~.29733380D+01 .80690386D+01 —.93549285D+01 132298091D+01 .10294137D+01

1 17950118D-03 —52693352D-04 ~19643738D—02 40342043D-02 —20172183D—02 81131145D-07

right side in 2 -.26293333D+01 —.52293773D+00 135075962D+01 —.73594419D+01 .60857074D+0] ~.17109239D+01
3 —.34679355D+00 —.28921856D+01 -13104503D+02 —.88403311D+01 —.15629588D+02 14257602D+02

shear 4 .44876673D+01 .88956009D+01 —.42805908D+02 135384674D+02 |38446771D+02 —39921139D+02
Y-direction 5 —.35512320D+01 —.75560796D+01 135475041D+02 —.18768357D+02 ~ 54774657D+02 .45624055D+02
6 .82480651D+00 .19440779D+01 —86924630D+01 —.13310327D+01 126329010D+02 ~.18249593D+02

1 ~59254278D—04 "80071948D+00 23480398D+00 —25874160D+01 136463205D+01 Z14585287D+01

right side in 2 .51452405D-01 ~.52670374D+00 21266505D+01 —.42686136D+01 142762685D+01 ~.17105053D+01
3 135837411D+00 143070021D+00 —.10814695D+02 131784313D+02 —.36861788D+02 _14744721D+02

shear 4 .12345513D+01 —.66323896D+01 .17124627D+02 —.26865690D+02 23173964D+02 —.92696172D+01
Z-direction 5 ~.24293755D+01 .10675518D+02 —.12623947D+02 —.76718189D+01 .24131604D+02 —.96525989D+01
6 .10750171D+01 - 47888784D+01 137560435D+01 11364245D+02 —.20802381D+02 183209344D+01]

1 —12187572D+01 ~34574087D—01 33043527D-01 30639992D-02 —15370488D-02 31464407D-05

left side in 2 .51845109D+01 —.13948986D-01 ~.11976732D+01 .36523723D+01 —39535350D+01 15127836D+01
3 —.23834128D—01 15733767D+01 —72435884D+01 .10974615D+01 17179501D+02 ~.12606746D+02

normal 4 —.38803871D+00 —.31213493D+01 27446427D+02 —.19969570D+02 -.39654712D+02 35299196D+02
X-direction 5 _81085249D+00 .21834855D+01 —28068144D+02 .20791268D+02 .46335592D+02 —.40342196D+02
6 - 38598905D+00 —.50193852D+00 .99011849D+01 —.56871982D+01 —.19849009D+02 .16136960D+02

1 "80050280D+01 11551779D+00 21086552D+00 —65277898D+00 132640763D+00 —12129590D-04

left side in 2 .17668361D-01 144289323D+00 —.22599789D+01 .18436285D+01 21771730D+01 —.22037139D+01
3 —.95246545D-01 —41947644D+01 21905256D+02 ~.20500160D+02 ~.15574197D+02 |18363854D+02

shear 4 .54552595D+00 .84069241D+01 —.50159546D+02 41727928D+02 .51442453D+02 —51417732D+02
Y-direction 5 ~73139529D+00 —68175266D+01 44826912D+02 —.28274080D+02 ~.68497589D+02 158762258D+02
6 129561804D+00 120312120D+01 —.14274605D+02 153891515D+01 .30358895D+02 —23504645D+02

1 330814505D+00 ~22725943D—01 120934857D+00 —B6863916D+00 10936117D+01 —43744542D+00

left side in 2 —.12062778D+00 —~.52077802D-01 —.36810157D-01 130895981D+01 —45976052D+01 .18390502D+01
3 — 18704587D+00 .86493160D-01 —.20284086D+01 .10989573D+02 —. 14455928 D+02 .57823642D+01

shear 4 .11653618D+01 71284224D+00 —32717258D+01 ~.17348781D+02 129294970D+02 ~.11718032D+02
Z-direction 5 ~.13925609D+01 —.15326814D+01 .13450336D+02 ~.10623195D+02 .24842999D+01 ~.99363689D+00
6 .51455849D+00 .81047949D+00 — 85106669D+01 .15646637D+02 —.14959211D+02 .59836445D+01

1 “10066096D+01 —.11675704D+01 —57831988D+01 56462180D+02 —12990936D+03 94633799D+02

ahead side in 2 —13334011D+00 —.58323280D+02 .14542189D+04 —.84052052D+04 .18420655D+05 —.13924415D+05
3 —32618982D+02 .67982589D+03 —.13082759D+05 73712485D+05 —. 1606576 7D+06 112130994D+06

normal 4 123776044D+03 —.28259463D+04 .36136505D+05 —.19035702D+06 40840159D+06 —30740584D+06
Z-direction 5 —41165796D+03 44283321D+04 —.43040992D+05 20835841D+06 ~.43506669D+06 .32444541D+06
6 20772882D+03 —.22781575D+04 119059359D+05 —.85465132D+05 .17291442D+06 —.12720338D+06 .

1 —.35470409D+01 '33238535D+02 —28277070D+02 74404138D+02 —77517030D+02 26353606D+02

ahead side in 2 72920744D+01 —.41921031D+03 136543406D+04 ~.13393144D+05 22838105D+05 -.14937447D+05
3 ~.63791426D+02 138517780D+04 —34652954D+05 ~13008081D+06 —22576895D+06 .14955062D+06

shear 4 .16769916D+03 —.10429543D+05 .97379260D+05 —.37464767D+06 .65932546D+06 —.43961807D+06
X-direction 5 ~.15347637D+03 10790825D+05 —.10550098D+06 41598648D+06 —.74131441D+06 49671201D+06
6 45352147D+02 ~.38140209D+04 .39095795D+05 —.15763557D+06 |28391953D+06 —.19092835D+06

1 22531951D+02 ~.96020053D+00 17136944D+02 ~.60515447D+02 '80290133D+02 T 33781897D+02

ahead side in 2 —.35187019D+02 133735217D+03 —.41667947D+04 -19040087D+05 -.37230276D+05 126377222D+05
3 |15404083D+03 —36646275D+04 39550939D+05 - 17688249D+06 .34507897D+06 ~.24484789D+06

shear 4 —.81710176D+03 |12646083D+05 —.11997820D+06 .52219710D+06 —10131191D+07 71831957D+06
Y-direction 5 .12936322D+04 ~.17159955D+05 115021549D+06 ~.63822970D+06 112288759D+07 ~ 86881678D+06
6 ~.62325063D+03 79692232D+04 6696407 1D+0S 127949273D+06 —.53408284D+06 137619825D+06

1 70869445D+00 35257340D+01 ~16050520D+02 31735629D+02 —31548996D+02 15107927D+02

behind side in 2 61220128D+01 —.10962219D+03 _10528988D+03 120541872D+04 —.66808902D+04 .58669138D+04
3 —.24247006D+02 91181939D+03 —.17031835D+04 —.13427222D+05 .49067166D+05 ~.44615404D+05

normal 4 —.52277448D+02 ~.23605453D+04 .12053881D+05 —.62369433D+04 ~.44249764D+05 156959201D+05
Z-direction 5 116723655D+03 124011529D+04 ~.20423515D+05 .50654450D+05 ~.44945768D+05 58516387D+04
6 —.95985173D+02 —~.84205790D+03 199389628D+04 - .32026257D+05 46589943D+05 —.23904975D+05

1 —35657963D+01 33772148D+02 ~33221576D+02 94391244D+02 —11412764D+03 51249987D+02

behind side in 2 86459591 D+01 —.45721834D+03 _40075926D+04 —.14832827D+05 125501014D+05 —.16766080D+05
3 ~.76647081D+02 42119188D+04 —-.38001084D+05 114374039D+06 —.25106665D+06 |16694498D+06

shear 4 120963054D+03 - 11602906D+05 |10828849D+06 -.41917561D+06 .74184094D+06 —.49638913D+06
X-direction s ~.20873111D+03 .12335702D+05 —.11986482D+06 [47463473D+06 —.85004396D+06 .57155207D+06
6 70613091D+02 —.45197666D+04 45657811D+05 —.18443659D+06 133362597D+06 —22515567D+06

1 70869445D+00 35257340D+01 ~.16050520D+02 31735629D+02 —31548996D+02 15107927D+02

behind sidein 2 161220128D+01 —~.10962219D+03 .10528988D+03 120541872D+04 —~.66808902D-+04 |58669138D+04
3 ~.24247006D+02 .91181939D+03 ~.17031835D+04 —.13427222D+05 49067166D+05 —.44615404D+05

shear 4 ~.52277448D+02 ~.23605453D+04 _12053881D+05 —.62369433D+04 -.44249764D+05 56959201D+05
Y-direction 5 116723655D+03 24011529D+04 -.20423515D+05 .50654450D+05 ~.44945768D+05 58516387D+04
6 -.95985173D+02 ~.84205790D+03 99389628D+04 —.32926257D+05 46589943D+05 ~.23904975D+05
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Table 2 The interpolation coefficients C,,, of the boundary weight function for a point at the crack tip Z=7/4 of a
rectangular body with a through crack (W:L:T=1:1:0.5,a/ W =1/2) subjected to symmetric loading

Com 1 2 3 4 5 6

1 128293755D+02 —25931974D+02 12413690D+02 —73494698D+02 16815320D+03 ~13075637D+03

. 2 ~.33198318D+02 23333966D+02 —.14118152D+03 174399925D+03 ~.16241260D+04 112182918D+04

top in normal 3 55582493D+02 —.22556275D+03 193935368D+03 —.45414896D+04 .94806208D+04 - 66689977D+04
Y-direction 4 ~21662556D+03 77273341D+03 —.25086920D+04 .10997153D+05 ~.21979274D+05 |14526274D+05
5 27383972D+03 —.87362564D+03 26508414D+04 —.10681954D+05 20481193D+05 —.12648933D+05

6 —~.10952140D+03 31973067D+03 —.94507733D+03 35834455D+04 ~.66449916D+04 38058663D+04

1 11217605D+02 —14174551D+01 73955229D+01 ~.46267044D+02 98059515D+02 ~68736487D+02

. 2 —.25879689D+01 133923229D+01 —.63684846D+02 45783067D+03 —.11905328D+04 110262303D+04

top in shear 3 21286978D+02 12116509D+02 31420779D+03 ~.32225836D+04 94436009D+04 —.87111178D+04
X-direction 4 ~.40664554D+02 98919910D+02 —28418121D+04 115994828D+05 —39023176D+05 34116653D+05
5 _14415961D+02 ~25278915D+03 . .50699352D+04 -.24501282D+05 /55023140D+05 - 46459877D+05

6 58488663D+01 .13684676D+03 —.24699638D+04 .11180954D+05 -.24025350D+05 119857376D+05

1 62035224D+01 —24546848D+00 13973748D+01 —59825687D+01 10527991D+02 Z57719073D+01

. 2 —.78830656D+00 76662702D+01 139007522D+02 —.35466175D+03 84446106D+03 —.66503678D+03

top in shear 3 20517591 D+02 —.92026092D+02 —.39799683D+03 .40740790D+04 -.99542890D+04 78228743D+04
7-direction 4 —85720107D+02 31039556D+03 [13437237D+04 — 13157332D+05 31660201D+05 ~.24425855D+05
5 110215289D+03 —.37092835D+03 —.17808565D+04 .16109839D+05 —.37784803D+05 28514261D+05

6 ~.37984809D+02 114507237D+03 .79160315D+03 —.66251339D+04 .15111224D+05 —.11147778D+05

1 11015292D-03 110839470D+01 ~24951991D+01 140032176D+01 —.36580145D+01 "10658592D+01

right side in 2 ~.42665685D—01 112214542D-01 .17480137D+01 ~75711618D+01 110692377D+02 —.48366168D+01
3 168330334D+01 —.62226489D+01 .67323433D+01 82782418D+01 -.28160101D+02 117409969D+02

normal 4 —.25327030D+01 .67596480D+01 —.94132423D+01 —.14432724D+02 .52159355D+02 -.32039189D+02
X-direction 5 ~.24548843D+01 ~26041092D+01 /10918781D+02 -~.70490193D+01 —.20910121D+02 117441765D+02
6 .15441453D+01 .59604768D+00 —.68996895D+01 112697118D+02 —.48779021D+01 —.99626234D+00

1 19796920D-03 —11472578D—02 24984042D-02 31566047D—03 Z45908181D—-02 28937643D-02

right side in 2 —.14044025D+01 —.52881328D+01 113639740D+02 ~.22716373D+02 .17297294D+02 -.52939871D+01
3 ~.30716898D+00 193029207D+00 —~.89867860D+01 .26450300D+02 ~.31759298D+02 .13401428D+02

shear 4 139502381D+01 167522234D+01 ~.18954752D+02 74830382D+01 120790165D+02 —.15383418D+02
Y-direction 5 — 42755375D+01 —.37338213D+01 117102309D+02 ~.53885100D+01 ~.21006987D+02 114803453D+02
6 .14594608D+01 — 26226539D+00 —.25112239D+01 —.33449592D+01 .10450825D+02 ~.56973054D+01

1 —22109821D-03 42969109D+00 ~48002703D+00 —22468073D+01 33676539D+01 —14013215D+01

right side in 2 120297160D-01 40150155D+00 —.23845675D+01 126747094D+01 .77200487D+00 ~.15150569D+01
3 27531905D+01 —.46993752D+01 |16638381D+02 —.38088949D+01 —.33793483D+02 24427919D+02

shear 4 43946376D+00 .64832546D+01 —.44417186D+02 25814720D+02 70268921D+02 —59324464D+02
Z-direction 5 ~.30830462D+01 -.22460526D+01 150154827D+02 —.42225486D+02 —.66576863D+02 64513316D+02
6 14179362D+01 ~.39324839D+00 —.20568091D+02 .21027738D+02 24161651D+02 —25970312D+02

1 —.90461145D+00 —31594150D+00 ~72430833D-01 —72507031D+00 '91025238D+00 ~33686682D+00

left side in 2 46879476D+01 41165969D+00 —.16733561D+01 149560362D+01 —.47758944D+01 114156066D+01
3 —.77554583D+00 —.35580870D+00 78722249D+01 —~.10959739D+02 29282045D+01 115891223D+01

normal 4 123004930D+01 17747706D+01 —.18568253D+02 .12052055D+02 .14208595D+02 —.12555754D+02
X-direction 5 —.17919749D+01 —.35601062D+01 20862444D+02 —.10410972D+02 -.20112667D+02 .15726372D+02
6 43706507D+00 118765026D+01 —.83481128D+01 .39789006D+01 81696129D+01 -.63354221D+01

1 '99333425D+01 —44298977D+01 31816792D+00 —.85765959D+00 '57875435D+00 ~40593352D+00

left side in 2 110223805D-01 —.88072568D+00 48985278D+01 —.10151073D+02 93428196D+01 ~32120490D+01
3 .58400106D-01 42869177D+01 —.20978665D+02 .36188343D+02 —.27876009D+02 82633511D+01

shear 4 130605673D+00 ~.70106841D+01 25767690D+02 —.27468204D+02 38533716D+01 48347571D+01
Y-direction s ~.56537236D+00 .49323306D+01 ~.10078190D+02 —.11172232D+02 37951294D+02 ~.21446031D+02
6 24637157D+00 —.13084699D+01 .13538364D+00 .12817794D+02 ~.23337538D+02 .11600745D+02

1 —22359341D+01 22824784D-01 —.25476575D+00 -46368958D+00 —28683711D+00 ~45367209D-01

left side in 2 44274854D+01 —.30601511D+00 .61143398D+00 199366811D-01 ~.97002362D+00 .56874303D+00
3 .33801653D+00 .10586712D+01 .16316106D+01 —.60121626D+01 137434720D+01 —.32819835D+00

shear 4 —.74473222D+00 —23167305D+01 ~.53319831D+01 .12260361D+02 ~.13168879D+01 —.37354952D+01
Z-direction 5 .45390441D+00 .26091023D+01 .36489365D+01 ~.77702820D+01 ~.36502975D+01 .57664645D+01
6 —.50852344D-01 —.10648011D+01 —.35744770D+00 .95707608D+00 .25644855D+01 —.23635382D+01

1 ~62600343D+01 22106171D+02 '55028306D+01 76872555D+02 ~30094398D+03 29570997D+03

ahead side in 2 .12736150D+02 31357811D+03 —31020170D+04 199901228D+04 —13610754D+05 166231380D+04
3 —20386043D+03 ~.14533881D+04 21845227D+05 — 82528923D+05 113136320D+06 ~.76917916D+05

normal 4 .92932140D+03 —.17630695D+04 ~.27931317D+05 .14879330D+06 —28321752D+06 .19040185D+06
Z-direction s —.13490641D+04 82988997D+04 —.10228000D+05 —.46060471D+05 115703176D+06 —.13430474D+06
6 162221733D+03 ~.55574319D+04 20718264D+05 ~.35431466D+05 18148666D+05 74593041D+04

1 —26266064D+01 31587535D+02 —31901143D+02 20108005D+03 —31825496D+03 18501746D+03

ahead side in 2 .61542415D-01 —.38831463D+03 48670201D+04 -.22643413D+05 .45538766D+05 -.33315282D+05
3 .32631578D+02 121442676D+04 —.35186427D+05 .18221265D+06 —.38675014D+06 29150503D+06

shear 4 —18127502D+03 -.20135398D+04 71282483D+05 —.43078035D+06 97021143D+06 —.75094564D+06
X-direction 5 .30957479D+03 —.20186640D+04 —.48769640D+05 .38258871D+06 —.92977274D+06 74231002D+06
6 -.16041239D+03 23036433D+04 74036839D+04 -.10952331D+06 29712820D+06 —24697015D+06

1 28331374D+02 ~90787577D+01 13515181D+03 —68515128D+03 [14292921D+04 —10555079D+04

ahead side in 2 - 74878355D+02 159339367D+03 ~.71959874D+04 37358801D+05 —.80405750D+05 .60798067D+05
3 163325723D+03 —.64170790D+04 62095954D+05 ~.30362961D+06 .64165679D+06 —.48148199D+06

shear 4 -.24325861D+04 123326860D+05 —.18602374D+06 .82801006D+06 —.16813930D+07 112368910D+07
Y-direction 5 132996094D+04 -.32634433D+05 123533692D+06 —.96813256D+06 .18841179D+07 ~.13533747D+07
6 ~.14633969D+04 .15391882D+05 -.10674132D+06 41694111D+06 ~.78382091D+06 .55098247D+06

1 ~.64406292D+01 2664506 1D+02 ~10409276D+02 45138025D+02 —.10407145D+03 '87801488D+02

behind side in 2 84765100D+01 —.57251763D+02 |16438969D+03 —.27847353D+03 .40162146D+03 -.34505976D+03
3 —.55782708D+02 .64887435D+03 ~.27097551D+04 61097725D+04 ~.81458179D+04 |51436735D+04

normal 4 .15653511D+03 —.25072998D+04 14015721D+05 —.40738811D+05 .61977190D+05 —.38777445D+05
Z-direction 5 —.14184482D+03 132564125D+04 —.21461243D+05 .68421726D+05 —.10883092D+06 68572281D+05
6 40769984D+02 —.13667818D+04 .10008327D+05 —.33515731D+05 .54581857D+05 —.34591316D+05
1 ~37429981D+01 30485827D+02 —11990418D+02 34039238D+02 —54022845D+02 37601417D+02-

behind side in 2 /57133685D+01 —.20527427D+03 114527802D+04 —.45456296D+04 69465862D+04 ~.42927855D+04
3 —.57056947D+02 120444383D+04 —.14327802D+05 44378132D+05 —.67253068D+05 .41403169D+05

shear 4 116426507D+03 —.61752110D+04 44338366D+05 —.14073605D+06 21807748D+06 ~.13676872D+06
X-direction 5 ~.16764191D+03 .69936665D+04 -.52241509D+05 .17073327D+06 ~.27038953D+06 .17179694D+06
6 .58442979D+02 ~.26877670D+04 .20841481D+05 ~.69828603D+05 111239953D+06 —71933923D+05

1 15443333D+02 36788853D+01 —35355388D+02 "16442494D+03 ~33861207D+03 25077914D+03

behind sidein 2 —.16285937D+02 —.79730706D+02 .18856453D+03 ~.17971209D+03 |80948382D+02 —.27705887D+02
3 ~.79946981D+02 160155968D+03 —.94078034D+03 -.29226397D+04 110396924D+05 —.88330949D+04

shear 4 .11973492D+03 —.17612711D+04 47891586D+04 .36861357D+04 -.28398718D+05 128011526D+05
Y-direction 5 .26809227D+01 20193211D+04 —.77687409D+04 .24909938D+04 25959276 D+05 —30557741D+05
6 —.41865808D+02 -.80104226D+03 .37256750D+04 -.29538223D+04 —.81843850D+04 .11438708D+05
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Fig. 5 Configurations of a rectangular cracked body
with an edge through crack

symmetry, there are only five boundaries, i.e., top side,
right side, left side, ahead side and behind side should
be analyzed and the corresponding configurations are
shown in Fig. 5. The tabulation of these coefficients

given in Tables 1 and 2 are found to provide accurate
representations of numerical results. Figures 6a to 6e
represent the boundary weight functions of through
crack for major contribution of the stress intensity factor
in each side. In these figures, the actual nodal weight
functions obtained from finite element analysis are
represented by discrete points, and those calculated
from the fitted nodal weight functions are plotted as
solid lines. The accuracy of the predicted weight
functions are checked directly against the finite element
results. Excellent agreement between the two results
are shown in these figures and this indicates that the
fitted weight functions are good approximations to the
actual finite element numerical results. The error that
results from the process of curve fitting by means of the
least squares method is less than 1% in general. The
boundary weight functions are all smooth curves and no
singular behavior will occur.
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Fig. 6d Boundary weight function for an edge through
crack subjected to shear loading (Y-direction)
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Fig. 6e Boundary weight function for an edge through
crack subjected to shear loading (Y-direction)
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These predetermined explicit weight functions as
expressed in (9) for finite rectangular cracked body
along the boundaries are ready to use to evaluate the
stress intensity factors for arbitrary cracked geometries.
The procedure is rather simple, the first step is to
evaluate the stress distribution inside the arbitrary
cracked geometry along the cut rectangular boundaries.
Since the rectangular boundary is far away from the
crack tip, it will have no difficulty in obtaining good
numerical result for stress distribution along the cut
rectangular boundaries. The next step is to combine
the predetermined weight function (Eq. (9) and Tables 1
and 2) and the obtained stress distribution along the cut
rectangular boundaries, accurate stress intensity factors
can be evaluated by a simple integration according to
(8). In order to demonstrate the accuracy and validity
of the boundary weight functions obtained in this paper
in determining the stress intensity factors, several crack
geometries have been considered and the results will be
compared with the findings of earlier studies. We first
consider the case that a rectangular body contains an
edge through crack and subjected to a uniformly
distributed line loading applied at the edge of the top
faces. The mode I stress intensity factor are shown in
Fig. 7, since there is no previous result available, finite
element computations were made to evaluate the stress

L
W
13-D rectangular solid edge crack
1.17 H for uniform point load
J(L/W =1, a/W =105)
] 0.1 --
= lt/w = g 05 ... by F.EM.
. 4 1.0 —
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=1.01 7
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085 LI B I E S T N A A ER AN A T N N HR DR BN At A IR B B |
0.00 0.32 0.64 0.96

symmetry crack tip position (Z/T)

Fig. 7 Mode I stress intensity factors calculated from
the bondary weight function method and finite
element method for an edge through crack
subjected to uniformly distributed line loadings
applied at the edge of top faces

4. CONCLUSIONS

The methods of calculating stress intensity factors
based on weight function techniques are efficient and

intensity factor and the results compare very well with
the solutions calculated from the weight function
method.  The stress intensity factors from finite
element calculations are obtained by using the nodal-
force method, the details of which are given in [17]. It
is also shown in this figure that the stress intensity
factor near the center of the crack front line (i.e., Z/ T =
0.5) for thick body (i.e., T/ W = 1) is very close to the
result  evaluated by two dimensional plane strain
condition.  The next case is a rectangular body
containing an edge through crack of length a, is
subjected to a uniformly distributed tensile stress at the
top surface. The results of the stress intensity factor
are shown in Fig. 8 and are compared with the finite
element solutions. Figure 8 also shows the stress
intensity factor (thick lines) evaluated by using the
finite element method based on two-dimensional plane
stress formulation. The state of stress varies from
plane strain in the interior to plane stress at the free
surface. We can see that the two-dimensional plane
stress formulation is underestimated the stress intensity
factor for three-dimensional bodies. Comparison of
the stress intensity factors calculated by using the above
proposed boundary weight functions with the results
obtained by others revealed satisfactory accuracy and
validity of the boundary weight function method.
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Fig. 8 Mode I stress intensity factors calculated from
the boundary weight function method and finite
element method for an edge through crack
subjected to uniformly distributed loadings at
top faces :

economical, since once the weight function is
determined for a given crack geometry, the stress
intensity factor for any loading condition can be
obtained by a simple integration. For the conventional
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study on weight function, most investigations are done
for the crack face weight function which is usually
suitable for a given geometry of cracked bodies. The
aim of this manuscript is to present a weight function
formulation which will allow calculation of the stress
intensity factor from an integral on fixed boundaries
within the body. This is in contrast to what many
researches have done in the past in which the weight
function has been calculated on the crack faces in two-
dimensions or crack surfaces in three-dimensions. In
this study, the boundary weight function concept has
proposed to calculate the stress intensity factors for
arbitrary shape of cracked geometries in three
dimensional case and subjected to general boundary
conditions.  Hence the boundary weight function
method is more useful in practical applications. The
simplest loading condition of uniform tension and an
efficient finite element methodology has been achieved
for evaluating the boundary weight functions for
rectangular cracked bodies. In order to facilitate the
utilization of the discretized nodal boundary weight
functions, they are expressed in a general polynomial
form whose parameters are determined by a least square
fitting of the finite element results for rectangular
cracked body. These empirical equations for the
boundary weight functions of rectangular cracked body
have been successful obtained in this study. The stress
intensity factors of cracked bodies subjected to arbitrary
applied loadings can be obtained very efficiently by
combining the stress field on the boundaries of cut
rectangular cracked body with the interpolated
boundary weight functions. Very satisfactory results
of the stress intensity factors are obtained by the
proposed boundary weight function method when
compared to known solutions of other workers.
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