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Abstract

In this project, a new viscous vortex method
in use of the so-called diffusing velocity was
developed and proposed for a simulation of
two-dimensional viscous flows. The truth that the
circulation must be conserved on any diffusing
material surfaces was taken care of in the new
method. Relevant properties associated with this
method were explored theoretically and the
convection as well as the diffusion error was
predicted also. Two axisymmetric flows were

selected for a test of the accuracy and efficiency

of the new method. Traditional Leonard’s
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method and several versions of the diffusion
vortex methods were also implemented for
comparisons. The simulation results show that
the present circulation-conserved scheme is more
accurate than all the other methods except
Leonard’s, and it works better than Leonard’s in
the sense that the core sizes of the vortex
particles grow slower. The latter will be very
helpful in controlling the convection errors when
non-axisymmetric flows are simulated. The
stability of the proposed scheme however is poor,
unless the material surface, on which the
circulation is forced to be conserved, is taken to
be small enough. The improvement of the
stability and the the
computations will be the future work.

simplification of
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2. INTRODUCTION

The discrete vortex method has been
develéped as a numerical simulator for
two-dimension incompressible inviscid flows. In
this method, the convection of packets of
vorticity is tracked. The method can be thus
implemented grid-free. The compact of vorticity
field compared to those of primitive variables
also makes the vortex method advantageous, in
addition to its exact satisfaction of boundary
conditions at infinity for external flows.

Viscous effects however are important but

difficult to be added in such a Lagrangian



approach because of poor evaluation of the

Laplacian  operator due to  scattered,

unpredictable distributions of the vortex particles.

The most straightforward viscous treatment
simply uses grid-based finite difference methods
by mapping data between the Eulerian and
Lagrangian grids, such as Chang et al (1991) [4].
Interpolations are therefore needed in order to
evaluate the Laplacian and perform the mapping,
which possibly results in excessive numerical
diffusion. Several purely Lagrangian schemes
have also been proposed. The core expansion
technique was introduced by Leonard (1980) [3]
and extended by Rossi (1996,1997) [5,6]. The
core size of vortex particles is allowed to expand
in time to simulate diffusion in such a way that
the heat diffusion equation is solved exactly. A
localized re-gridding is required nonetheless for
a correct convergence to the Navier-Stokes
equations [7]. The random walk approach
proposed by Chorin {8] added a pseudo-random
velocity to the particle velocity. The scheme was
shown to converge slowly and provide
low-resolution, although being stable. The
particle strength exchange scheme (Degond et al
[9]) redistributes the strength (circulation) among
vortex particles to account for diffusion by
formulating a kernel which can evolve with the
vorticity field. Difficulties are encountered when
the flow becomes strained however.

The interest of the present work, however,
does not lie in those methods mentioned above
but a newly proposed scheme by Ogami and
Akamatsu called the diffusion vortex method in
1991 [1}, in which a diffusion velocity is defined
and employed to model the diffusion process. In
spite of the inefficiency and the possible
difficulty in evaluating the diffusion velocity,

this scheme has a stronger physical basis and the
circulation on any arbitrary “diffusion material
surface” (a surface which is convected at both
the fluid velocity and the diffusion velocity)
turns out to be conserved. Unfortunately, the
scheme was not correctly introduced at the first
time due to the neglect of the nonzero-divergence
of the diffusion velocity. The modified versions
(Shintani and Akamatsu [2]) basically accepted
the belief that the core size expands at a rate as if
it were a material diffusion surface, which
however is wrong again. In fact, the expanding
rate of vortex core size must be determined
according to the constraint of circulation
conservation; while the divergence of the
diffusion velocity gives the area change rate per
unit area of a material diffusion surface. These
two rates are different physically and should not
be confused. And this forms the motivation of
the present work, namely, to derive a truly

physically correct diffusion vortex method.

3. RESULTS AND DISCUSSIONS
3.1 THEORECTICAL ANALYSIS

Considered are Gaussian vortex particles
constituting the flow. That is, the vorticity field
m(5c',t) is discretized as
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where x Y, and o ; are the location,

strength and core size of the j™ particle. In the
Leonard’s core expansion scheme, the vortex
particles are convected at the fluid velocities and
the expanding rate of the core size is determined,

on the condition of no diffusion errors, that is,
dx ;
j ==
—Zit— = u(x j 1 ) (2)



1 dcj 4v (3)

with v being the fluid viscosity. On the other
hand, the diffusion vortex methods including the
circulation-conserved scheme have the particle
convected at the sum of the fluid velocity and fhe
viscous diffusion velocity (VDM) i, (x t) as

follows:
%—:ﬂ(ij,t)+ﬁd(ij,t) (4)
ﬁd E-::—V(D (5)

Several versions of the diffusion vortex method
are studied herein. The first one labeled as
“VDM1” chooses the expanding rate of the core
size o; equal to the average of the divergence
of the diffusion velocity on the disk centered at
x; ofaradius o, namely

li‘i’—..v ig(%,) (6)
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The second one labeled as “VDM2” replaces the
average value by the central value on the disk for

an approximation:

———1—=V-ﬁd(ij) ™

The last one labeled as “VDM3” further views
the relative motion of two nearby vortex particles
as an indication of the expanding/contraction of a
diffusion material surface. Consequently, the
VDM3 employs:
1 doj 1 ) ®
c} dt rﬁ. dt
where r; is the distance between the "
particle and its nearest neighbor.

None of the above diffusion vortex methods
considers the truth or the constraint that the
circulation must be conserved on the diffusion
material surfaces. The circulation conserved

scheme computes the expanding rates instead by

enforcing the conservation of the circulation on
the diffusion material surface centered at X, of
a radius d j =00, where a diffusion material
surface is defined as a surface moving at the sum
of the fluid velocity and the diffusion velocity.
The parameter a is a free parameter to adjust the
size of the diffusion material surface. When the
mutual contributions between vortex particles are
taken into consideration, the expansion rates of

the vortex cores are determined by
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where elements 4; Dy, and B,-j count for the
effects on o; of a varying o, , an
expanding/contracting surface area (9;), and a
moving-away neighboring particle j, respectively.
Noticed is when the mutual interactions are
ignored, the scheme is then reduced to VDMI1 or
Equation (6), saying that the core size must
expand as fast as the diffusion material surface in
order to maintain a same amount of circulation
contributed from itself. It is thus not surprised to
find that A4; =D; and Bj; =0(no summation).

Detailed expressions of these matrices are given

below:
T 52 52
Gy Oj
I; 52 52
By =-i—'26(yy, 2 (11)
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1 2n
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Yij =Ny / 5; (16)
and /, being the modified Bessel function of
order zero.

Noticed is that none of the above schemes
simulates the convection term correctly (resulting
in convection errors) and no convergence to the
Navier-Stokes equations can be expected unless
the core sizes of vortex particles remain small in
time. The slower the vortex cores expand, the
smaller the convection error is. The convection
error at the location X; can be shown
analytically as follows:

N N
&com. (%) = zl,;l(ﬁk(f,)—ak(if))-Vw REANIY)
j=tk=
where @, (¥;) and @, (%;) are the velocity
and vorticity induced by the ™ vortex particle at
the location X; . When the flow remains
axisymmetric, the convection errors disappear as
long as the vortex particles are distributed in the
space axisymmetrically too. Finally, the diffusion

error can also be shown to be equal to
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which magnitude obviously depends on the way

how the core expanding rates are evaluated.

3.2 SIMULATIONS

In the following section, axisymmetric flows are
chosen as test flow fields, in order to avoid the
convection errors and highlight the diffusion
errors. The diffusion errors through the different
choices of the expanding rates of the vortex cores
are then compared with. Preferred is a scheme
that generates smaller diffusion errors and slower

expanding vortex cores.

Gaussian Vortex

An Gaussain vorticity field with an initial core
radius 0.01 and viscosity v=1 is simulated herein.
The analytical solution is known to be
-2
m(;,z)=mex{-4_t|:|_m} (19)

The flow is initially discretized into 18 vortex
particles having a same initial core size ¢ = 0.1.
The relative errors, averaged over the locations of
these 18 vortex particles of all the vortex methods
mentioned above are shown together in Fig.1. It is
not surprising to see that Leonard’s scheme
performs best although its core size expands
fastest as seen in Fig.2. The results also show that
a use of the viscous diffusion velocity does reduce
the expanding rates of the core size. When
non-axisymmetric flows are simulated, a better
performance may be expected if the diffusion
velocity is employed. As far as the circulation
conserved scheme is concerned, the expanding
rates of the core size in the circulation conserved
schemes are found to be only weakly dependent
on the value of a. Finally, the stability of the
circulation conserved scheme (CCS) is found to
be increasingly poor as o or the number of vortex

particles increases.
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Fig.1 The root-mean-square €ITors €,,,; from the
simulations of a Gaussian vortex discretized into
18 vortex particles.
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Fig.2 The growing vortex core size from the
simulations of a Gaussian vortex discretized into
18 vortex particles.

Vorticity Disk
Considered now is a vorticity field initially
uniformly distributed within a disk of radius 7,
=1.5. The total circulation I, is one and the
viscosity v= 1. The exact solution is known to be
2,2
ol °10(2L§£)exp[—:—4%~]§d§ @0)
where I, is the modified Bessel function of order
zero.
A total of 665 vortex particles having an initial
o= 0.1 are employed and initially uniformly
distributed within the disk. The root-mean-square
error over the particles’ locations are shown in
Fig.3. The accuracy of CCS is found to be better
than all the other diffusion vortex methods and
close to that of the Leonard’s. Because the
vorticity gradient is small within the disk and
becomes large near the edge of the disk, the
- growth of the core size of particles near the edge
is expected faster in those methods in use of
diffusion velocity. In Fig.4, the growth of the core
size of one of such particles is plotted. As seen,
the expanding rate of the circulation conserved
scheme is between Leonard’s and the other
diffusion vortex methods. In Fig.5 to Fig.9, the

5

exact vorticity distribution and the computed
values together with the particles’ radial locations
are shown together at the last simulation time
(least accurate). Because of the lack of the
diffusion velocity, it is seen (Fig.5) that Leonard’s
particles always stay within the disk. In other
words, the movement of Leonard’s vortex
particles do not respond to the diffusion of
voriticty in the flow field. Regridding is thus
needed for a long time simulation. Even so, a
careful examination still shows that Leonard’s
method has a pretty good prediction of the
vorticity magnitudes outside the disk. This is
because the simulated flow is axisymmetric and
therefore there exists no convection errors.

Particles in all the other methods diffuse outward
gradually on the other hand, reasonably indicating
the outward diffusion of vorticity. No
re-distributing particles is needed therefore. The
VDM1 has the worst result, probably because it
has too many computations in computing the
average of the divergence of the diffusion velocity.
The VDM3 is not too good either, which is not
surprising because it is the least physically
supported one. The CCS performs pretty well, in
spite of its huge amount of computations.
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Fig.3 The root-mean-square errors €,,, from the

simulations of a vorticity disk.
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Fig4 The growing vortex core size from the Fig.7 The vorticity distribution from the VDM1.
simulations of a vorticity disk.
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Fig.5 The vorticity distribution from Leonard’s Fig.8 The vorticity distribution from the VDM2.
scheme. The solid curve is the analytical solution.
Symbols indicate both the locations and the
vorticity magnitudes of the vortex particles.
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3.3 CONCLUSIONS

In use of the diffusion velocity, the growth
rate of the vortex core size is indeed reduced,
compared to that in the Leonard’s core expansion
scheme. A smaller convection error, if exists, can
thus be expected. However, theoretically the
circulation on any diffusion material surfaces
must be conserved. Previous diffusion vortex
methods mishandle this by equalizing the
expanding rate of the vortex core size to that of a
diffusion material surface. The circulation
conserved scheme fixes this problem and improve
the accuracy, in spite of resulting in a larger
growth rate of the core size but still smaller than
that in Leonard’s method.

The numerical stability however is poor due to the
complicated mutual interactions. The matrix 4 even
becomes singular at some critical times. The
amount of computations is also too much because
of the calculation of the divergence of the diffusion
velocity and the additional work of solving the
matrix equation (5). Future investigations will be
focused on the improvement in stability and the
reduction of computational amount via possible
simplifications without much degrading the
accuracy. Simulations of non-axisymmetric flows
will be of importance as well to ensure the
reduction of convection errors through a use of the
diffusion velocity.

w3 ERRER

The planed goals including the accuracy analysis
of all the involved vortex methods, the
investigation of the relevant properties of CCS,
simulations of simple flows, comparisons among
various methods and so on have all been
successfully finished. A related journal paper has
been published on the Transactions of the

Aeronautical and Astronautical Society of the
Republic of China Vol.35 (pp.65-72, 2003)[10],
and a conference paper has also presented at the
10" National Conference of Computational Fluid
Dynamics (Hua-Lien, Aug. 14-16, 2003)[11]. The
latter has also won the honor of the conference
BEST PAPER AWARD.
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