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Finite element simulation of incompressible fluid flow in
compliant elastic vessels
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semi-discretization

Abstract

We present in this paper finite element
analysis of Navier-Stokes equations in a
domain partly bounded by an elastic medium.
The method of weighted residuas is used
together with the semi-discretization
approach to obtain the discrete equations. In
this approach, where the physical domain is
allowed to vary, care is taken to retain the
Space conservation law property in the
transformation of equations between fixed
and moving grids. The vadidity of this
method has been tested against severa
problems which are amenable to analytic
solutions. Time accurate results show
favorable agreement with anaytic solutions.
Having verified the applicability of the finite
element code to problems involving moving
grids, we consider fluid flow in a vessd,
where part of its boundary moves over time.
Both rigid and elastic vessd walls are
considered, with emphasis placed on the
validation of the formulation developed
within the moving-grid framework.
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I ntroduction

Flows in a domain bounded by time-
varying boundaries can be encountered when
simulating internal combustion engine flows,
surface-ship flows, and blood flows in
compliant arteries. Considering that the
physical boundary is a part of the solution
procedures, it adds complexity to modeling
the flow physics from the working equations.
With the advent of faster computers and
ever-improving numerical methods, it is now
possible to tackle transient fluid flows in a
time-varying elastic vessel. The problem of
this type is hemodynamically important for
understanding more about the unsteady flow
separation and, thus, the early stage of
atherosclerosis formation (Ku, Giddens,
Zarins & Glagov 1985). This motivated us to
perform computationally more complex
flow-structure analyses on moving grids.

In the numerical simulation of
unsteady flows, moving boundary problems
have been considered by relatively few
authors. Demirdizic & Peric (1990) provided
some useful information and discussed ways
to handle problems with moving boundaries.
Solutions for this class of problems are best
anayzed in  non-Eulerian  (moving)
coordinates. In this way, we can derive the
conservation equations for fluid flows in
moving coordinates through transformation
of variables. One can also derive working
equations more straightforwardly in general
moving coordinates based on the concept of
the Lie derivative ( Ogawa Satoru & Ishiguro



Tomiko (1987) and Schouten (1954) ). The
grid fitted to the body moves in time and is
not fixed in space. For analyses conducted in
moving grids, it is important to satisfy the
gpace conservation law (SCL) (Trulio &
Trigger 1961) for purposes of properly
relating the change of the cell area to the
coordinate frame velocity. Failure to satisfy
the space conservation law will cause the
mass to accumulate or diminish. Thomas and
Lombard (1979) were among the first to
address the necessity of applying this
constraint equation simultaneously with other
conservation equations. Demirdzic and Peric
(1983) later provided computational evidence
to justify the rational use of the SCL
constraint condition when simulating
problems on non-stationary grids. In the
present study, we adopted the moving grid
concept in the finite element analysis.

The remainder of this paper is organized
as follows. In the next section, we derived
working equations on moving grids and
briefly — outlined the finite element
discretization method. We then provide
analytical verification of our proposed
scheme formulated in moving grids. We aso
provide equations which govern the motion
of alinearly elastic, incompressible, isotropic
solid vessdl. In the following section, we
present numerical simulation of
incompressible fluid flow in a vessal which
partly undergoes a large-amplitude
oscillation. Finally, we offer some conclusion
remarks.

Mathematical Model

The problem of present interest falls into
the incompressible flow category. The
equation governing a viscous fluid flow in
grids fixed in spaceis asfollows:
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Provided that F = 1 and S= 0, the above
equation denotes the continuity equation. For
equations with F = vor v, S= - Np, they

stand for the x and y~-momentum equations,

respectively. The above equation generalizes
the truly two-dimensional case when a is
assigned to be zero and the angle-
independent  equations in  cylindrical
coordinates when a isassigned to be 1. For
simplicity of presentation we consider the

following equations written in  x-y
coordinates:
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The above primitive-variable formulation
involves a velocity vector v = (u,v) and
pressure p for a fluid with kinematic
viscosity m. The advantage of adopting
equations (2-4) is that this primitive variable
formulation accommodates closure initial
and boundary conditions (Ladyzhenskaya
1969).

For the sake of accuracy, adaptation of
grid lines to the flow is desirable when
simulating a flow whose boundary varies
with time. Under these circumstances,
movement of grid lines warrants careful
consideration when carrying out flux
discretization. To describe the method, it is

instructive to consider the following
prototype equation:
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We can now rewrite equation (5) in
moving grids (x,h) attime t.

Based on the one-to-one transformation
between coordinates (x,h) and the fixed
ones x = xX(x,h, ©) , ¥y = UAx,h, I the
materia derivative of f can, by definition,

be expressed as
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Define the grid velocity vector vy = (ty, W),
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Substitution of equation (7) into equation (5)

yields
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Thanks to the above theoretical basis, we can
transform flow equations (2-4) in fixed grids
into their moving coordinate counterparts:

f,)=0 @
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The formulation of flow-structure interaction
problem is followed by deriving a differential
equation for a compliant material which is
subjected to afinite deformation. To simplify
the analysis, we consider a medium whose
glastic properties are identica in al
directions. The equations of equilibrium for a
homogeneous isotropic elastic solid can be
derived by invoking the D'Alembert principle

and adding the body force F (v F;, i=1,2)
to theinertiaforce, yielding
t, *F=r, d (12)
d’d _
In the above, d, denote d—tzl where d =

(dh, &) and r,, ae known as the

displacement vector and the density of the
vessel wall, respectively. To close the
differential system for modeling wall motion,
a stress-strain equation for the elastic
medium is needed. For an elastic material, its
stressis, in general, nonlinearly dependent on
the strain. We consider here the following
linearly elastic material prior to simulating

the physicaly more redlistic and
computationally more difficult nonlinear
elasticity equation. Under these

circumstances, the stress tensor is linearly
related to the strain tensor as follows:
ty=1d;d,+ G(d/,j + dj,i) 13)
The above constitutive equation
involves the Lame's constants (or elastic
constants), G and /. These materia
constants are, as usual, written in terms of the

Y oung's modulus £ and Poisson ratio 1 :
E
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_ n E .
") )

Substituting equation (13) into (12), one
obtains the well-known Navier equations for
alinearly elastic medium given below:
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Neglecting centrlfugal force or gravitational
force, F, and F, shown in equations (16-17)
are with a value of zero. To close the above
differential system, boundary conditions need
to be specified on the entire boundary. At two
ends of the elastic material, we specify

gd 0, where/ =1, 2. On the vessal wall,
X

we specify force-type boundary conditions.
On physical grounds, it is required that
stresses be continuous across the boundary
separating the incompressible fluid flow and
elastic medium. This dictates that the elastlc
sress, t,(=/d,;d,+Gld,+d,)),

equal to the flow str%s governed by Stokes
constitutive relation for stressin a Newtonian
fluid, +my,+u,,).
Continuity of stresses between a fluid and an
elastic material demands that
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By definitiont,, [, and ¢, ae as
follows:
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On the boundary separating ambient,
which is naturaly inviscid, and the elastic
vessel, we assume that p=0. Asaresult, itis
rational to prescribe ¢t,, = t, = t,= 0.
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The advantage of applying the finite element
method to simulate the flow/structure
interaction problem is apparent since the
boundary force can be directly incorporated
into the formulation through integration by
parts.

The Navier-Stokes equations, subject to
continuity equations, for modeling the flow
motion are solved iteratively by using Navier
equations to obtain the vessel displacement.
In a specified domain, the flow equations are
solved. This is followed by integrating the
pressure and the shear stresses aong the
vessel wall to obtain the boundary force. The
displacement can then be obtained by solving
the Navier egquations for the incompressible
elastic medium. The vessel configuration is,
therefore, updated, thus enabling us to solve
the flow equations. This iterative procedure
is repeated until the vessel shows negligible
change in configuration.

Finite Element Analysis In Moving
Grids

The finite element method has been accepted
as an effective tool for tackling complex
geometries and implementing Neumann-type
boundary conditions. These attributes

motivated us to use this method to simulate
flow in acompliant vessel. For describing the
proposed finite element model, we will first
consider the transport equation (8) and
discretize it using a semi-discretization finite
element model. Following the standard
procedures, we can derive the corresponding
ordinary differential equation on bi-quadratic
elements asfollows:
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We then approximate the remaining temporal

derivative

using the second-order

accurate forward time-stepping scheme
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resulting algebraic system reads as
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The above Galerkin approximation provides
solutions which are formally second-order
accurate in space as well asin time for cases
with uniform grid size.

The solution to equations (9-11) can be
obtained using the mixed finite element
matrix equation, which contains as many
diagona zeros as does the continuity
equation. The pressure appearing only in the
momentum equations makes it difficult to
caculate field variables from the matrix
eguations. We denote the constrained space

12(W) for the pressure. In the present mixed
finite element formulation, we introduce the
Sobolev space  H:(W) for the velocity vector.

Solutions are then sought for w1 HX(W) and

pi [2(W) from the wesk statement for

equations (9-11). In this Gaerkin finite
element anadysis, the test functions
wi Hy(W)" H;(W) and gl L5(W) are used
for the wvector and scalar quantities,
respectively. To get rid of the undesired
pressure mode, we employ biquadratic
polynomials, N;, to approximate v and the



bilinear polynomials, M;, to approximate p
since this variable setting accommodates the
inf-sup (or div-stability) condition (Brezzi &
Douglas (1988), Babuska (1973) and Brezzi
(1974)). The resulting ordinary equation can,
as before, be discretized using the above-
mentioned  second-order  time-stepping
scheme.

Verification Of The Finite Element
Models

As a first step towards verifying the
finite element mode developed for
simulation of fluid flows on moving grids,
we have successfully solved the variable
transport equation, which is amenable to
analytical solution. For completeness,
theoretical verification of the Navier-Stokes
code is aso provided. The reader is referred
to (Sheu & Chen 1999) for additional details.

In the following, we will justify the
finite element model developed to solve the
linear elastic equations for obtaining the
time-varying displacement vector. Given the
forcevector £= €' () -6y -8xy-2X),
OC Y - 6X -8xy-2Y)), equations (16-17)
were solved subject to analytical boundary
conditions. To start the calculation at t = 0O,
we uniformly discretized the domain in
O£ x, y£1, resulting in agrid system with a
resolution of 11 X 11. Calculation terminated
at t= 2 with auniform time increment Dt =
10°. We will consider the case with r = G

= [ = 1. Under these circumstances, the
exact displacement vector has the same
solution as the specified velocity vector u= e
¢ y# (-1, -1). The prediction errors are cast
in their L,-norm for displacements. As Table
1 shows, the present finite element code can
be applied with confidence to analyze linear
elastic equations.

We aso vdidated the finite element
code developed to simulate elastic equations
in cylindrica coordinates. The material
properties remained the same as those
considered in the Cartesian coordinates.
Subject to the boundary conditions, the exact
displacements were derived as d, = &b = €' X
y* on the condition that the force vector

shown in equations (16-17) was specified as
(FL F) = (6" (¥ Y -6y -12xy-4X), €'
(€ VP -9 X -8xy-2))). The unit square
domain OFf x,r £1was uniformly
discretized to a 11 X 11 mesh. The computed
L,- eror norms, tabulated in Table 2,
demonstrated the validity of the employed
temporally and gpatiadly  second-order
accurate finite element formulation for
solving the elastic equations. This was
followed by verification of the finite el ement
code used to solve elastic equations in
cylindrical coordinates. The problem studied
previously by Xu and Collins (Xu & Collins
1995) is that of a tube with a wall thickness
of 1 mm, an inner diameter of 10 mmand an
outer diameter of 12 mm. In the following
calculation, we considered that the tube had a
Y oung's modulus of 5 X 10° Pa, a density of
10 kg/n? and a Poisson ratio of 0.49.

To simplify the analysis so that the
elastic equations in cylindrical coordinates
were amenable to exact solutions, we
assumed that the tube was long enough to
rationally avoid specifying axial boundary
conditions. Under these circumstances, the
thick-walled tube displacement in the radial
direction could be analytically determined

under a uniform pressure p = 2688 Pa
according to the following equation (Love
1952):

_ L p —\ 2 —\ 2

d m[(1+n)ro +(1 n)r] (26)

In the above, r; and r, denote the inner and
outer diameter of the tube. As for the
material properties n and E, they are,
respectively, known as the Y oung's modulus
and Poisson ratio.

Based on the specified values of r;, ro, E,

n, and p, we performed finite element

calculations in a domain discretized by 11 X
201 mesh points. To justify the prediction,
we plot the radial displacement g, against rin
Fig. 1 it is seen that finite element solutions
agree perfectly with the exact solution
(symbol) of equation (27). According to the
computed and analytic solutions tabulated in
Table 3, the computed L, - error norm is
0.2736216 10°.



Computed Results

Having obtained the  excellent
agreement between the model predictions
and all of the analytic solutions, we will now
explore more complex flow phenomenain a
channel with a moving indentation. This
problem, schematically shown in Fig. 2, has
been experimentally studied by Pedley and
Stephanoff ~ (1985), and  numericaly
simulated by Ralph and Pedley (1988),
Demirdzic and Peric (1990), and Rosenfield
et a. (1991). The channel wall is rigid
everywhere except at the indentation, which
is placed downstream of the channel inlet.
The indentation, made of a thick and stiff
rubber membrane, changes its shape owing to
a piston moving upwards and downwards,
with a maximum indentation movement of
0.38 measured from the upper wall of the
channel.

The configuration of the indented wall is

algebraically represented by

: 0.19 ha?L cosae%90

! €T on
(x) = |0085hai cosaéZp 0—(1 tanh( (x xz))) X% £ XE X,
| e
|
In the above, h and T denote the channel
height and the oscillation period. Free
parameters intended for use to define the
time-varying indented wall are chosen as a =
4.14,x1=4 h x, =525 h,and x3=6.5 h.

As in many simulations of inflow-
outflow problems, the outlet is truncated far
downstream of the indentation. he length is
chosen to be 40 to save disk storage and, us,
computing time. At the inlet, velocity
profile of the fully-developed type is
specified while the outlet low is assumed to
be fully-developed again with vanishing
T4 At t= 0, the initia
1x
flow condition is obtained under the fully-
developed condition without considering the
indentation movement. The flow under
investigation has a Reynolds number Re =

100 and a Strouhal number & = % =0.03,

0E XE X

TX> X,

values of v and

where f denotes the oscillating frequency of
the moving piston. The Reynolds number
considered in this case is defined by choosing
the channel height h as the referenced length

and the averaged entrance velocity U as the
characteristic velocity. The computational
grid used for the present analysis has 21 X
551 points, which are non-uniformly
distributed in the channel. To resolve time-
evolving flow details, grids are clustered near
the channel wall and in regions downstream
of the indentation. At each time, the
boundary grids are generated according to the
specified moving indentation while the
interior grids are re-distributed according to
the computed grid velocities.

To give a global picture of the flow
development in the channel with a moving
indentation, we plot first the instantaneous
streamlines at ten chosen dimensionless
times, starting from #=0.2 to #=1.1 with a
time increment Dt = 0.1 . As Fig. 3 shows,
immediately downstream of the indentation
the flow field is configured with a single
eddy, in the early flow development stage. As
time goes by, a second separated eddy forms

?8n the opposite side of the channel. Later on,
another smaller and weaker eddy forms on
the channel floor. Such a vortex-shedding-
like flow feature, considered as a
manifestation of the entire flow development,
is reproduced as that obtained experimentally
by Pedley and Stephanoff (1985), and
numerically by of Ralph and Pedley (1988)
and Rosenfield et al. (1991). The time-
evolving vortex shedding phenomenon can
be seen also in the pressure contours shown
inFig. 4.

In order to demonstrate the applicability
of the present flow/structure finite element
model, we have performed numerical
simulation of a problem previously analyzed
by Xu and Collins (1995). The coupled
fluid/solid problem involves an
incompressible fluid flow in an elastic tube
of finite length. The tube with a length of 5
cmand a thickness of 1 mm has inner and
outer diameters of 10 mm and 12 mm,
respectively. In this simulation, two ends of
the cylindrical elastic tube were fixed. We
divided the linearly elastic tube into 7 fluid



elements and 2 solid elements in each radial
direction. The two media in the axia
direction were discretized by 20 elements. At
the vessel inlet, we specified that the pressure
be harmonically changed according to

%=- Ad™, where A is an arbitrary
constant. This problem had been studied by
Xu and Collins (1995) and was chosen here
to study the coupled fluid/solid motion
mainly because this problem is amenable to
an analytical solution (Womersley 1957).
Given the initia conditions, we had
iteratively analyzed the coupled fluid/solid
problem since the wall position a the
updated time level was unknown. Within
each time step, we estimated the position of
the vessal based on the currently available
grid velocities. This is followed by carrying
out the incompressible flow calculations to
obtain pressures that are applied on the
mostly updated domain boundary. We then
solved for the linearly elastic equations to
obtain the new vessel configuration. Having
obtained the updated physical domain, we
proceeded to solve the flow equations. The
above iterative procedure was repeated until
the gpecified tolerances on the vessel
displacements were obtained. Following the
above coupled fluid/solid solution procedure,
we could obtain finite element solutions for
the axia velocity. As Fig. 5 shows, which
plots the axia veocity UJ(r) a four
arbitrarily chosen times, good agreement
between the prediction and the analytical data
given below was obtained (Womersley
1957) :

i 72 )i
u,= AL i14n D8I Nin (28)
ring Jo\a 1”2 %

Condluding Remarks

In this paper, a Galerkin finite element
model has been presented forthe prediction of
flow in a domain bounded partly by an elastic
moving boundary. To facilitate the analysis,
working equations have been derived in
moving coordinates so as to adapt to the flow.
It is noteworthy that satisfaction of the
geometric conservation law property is

essential for analyses conducted on moving
grids. In the spatial discretization, we applied
the Galerkin finite element method to obtain
a second-order spatially accurate solution.
The remaining ordinary differential equation,
which involves time derivatives, was
discretized using the second-order accurate
time-stepping method. The proposed model
for fluid flow equations in moving grids has
been theoretically verified. In addition, the
finite element model developed to solve
Navier equations for elastic media has been
anaytically verified. Results have also been
presented for the flow in a vessel, where part
of its rigid/eastic surface bounding the
physical flow region movesin time.
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Figure 1. The computed radial displacements
d. The exact solutions are represented by
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Figure 2. Schematic of the indented wall.

Table 1. The computed Lj-error norms for
displacements governed by elastic equations
(16-17).
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Figure 5. Anaytica and predicted axial
velocity profiles for transient flow in a
compliant tube.
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Figure 3. The computed time-varying
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Figure 4. The computed time-varying
pressure contours.

10



	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10

