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中文摘要 
    本文係以速度--渦度為主要變數求解
穩態不可壓縮黏性流之Navier-Stokes方
程式。方法以求解包含速度之二階微分方
程式及渦度之 convection-diffusion方
程式，並建立其適當之渦度邊界條件。對
於本文中所精巧設計建立之渦度積分邊界
條件，將詳細說明其數值求解之困難性及
其優越性。 
關鍵詞：有限差分方法、不可壓縮、
Navier-Stokes、速度— 渦度 
 

Abstract 
    We consider in this progress report for 
solving the steady-state Navier-Stokes 
equations for incompressible fluid flows using 
velocities and vorticity as working variables. 

The method involves solving a second-order 
differential equation for the velocity and a 
convection-diffusion equation for the vorticity. 
The key to the success of the numerical 
simulation of this class of flow equations 
depends largely on proper simulation of 
vorticity transport equation subject to proper 
vorticity boundary condition. While the 
derivation of the proposed integral vorticity 
boundary condition is more elaborate and is 
more difficult to solve than conventional local 
approaches, the present approach offers 
significant advantages. 
Keywords : finite difference, incompressible, 
Navier-Stokes, velocity-vorticity 
 

1. Introduction 
The traditional approach to the numerical 
solution for incompressible Navier-Stokes 
equations has been to solve working equations 
in velocity-pressure variables. A serious 
problem which was encountered while 
performing the primitive variable formulation is 
owing to the absence of pressure in the 
continuity equation. In addition, discretization of 
pressure gradients in the incompressible 
equations on curvilinear grids presents 
considerable difficulties owing to the fact that 
the approximation of pressure gradient operator 
should be irrotational [1]. While this difficulty 
can be effectively resolved on staggered grids 
[2], special care is needed when grids are 
non-uniformly and non-orthogonally laid on the 
flow [1]. It is the added grid complexity that 
complicates further the incompressible flow 
analysis. Another popular approach to 
numerical solution of the Navier-Stokes 
equations is the velocity-vorticity approach. 
This formulation is the most appropriate choice 

for solving the vortex dominated flow. The 
reason lies in the fact that the advection of 
vorticity is the most important process 
determining the flow dynamics. Additionally, it 
appears that studying incompressible 
Navier-Stokes equations in terms of vorticity 
and velocity is closer to physical reality [3]. For 
the present spatial discretization on collocated 
grids, we abandon the DC problem and confine 
ourselves to the second-order Poisson 
equations to solve for velocity components. 
Another second-order differential equation for 
the vorticity scalar must be solved subject to 
proper boundary conditions, which are the 
subject of the present study. An accurate 
prediction of the transport of vorticity is another 
consideration. We will address this issue in the 
use of an exponential compact scheme for the 
flux discretization. 
2. Mathematical model 

The traditional approach to the numerical 
solution of incompressible Navier-Stokes 
equations has been the primitive-variable 
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formulation. Using the kinematic definition of the 
vorticity u×∇=ω , the resulting transport 
equation is derived as 
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The vorticity stretching term, u∇⋅ω , represents 
the generation or destruction of vorticity due to 
the stretching or compression of the vortex line. 
As the space dimension decreases by one, the 
vortex stretching term vanishes in 
two-dimensional cases, and the resulting 
vorticity transport equation is reduced to a 
scalar equation for the vorticity component 
which is normal to the planar motion of the 
flow : 
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The working equations for the velocity 
components can also be obtained by taking the 
curl of the definition u×∇=ω  and by using 
the continuity equation. The resulting 
second-order Poisson equations for velocity 
components u and v are derived, respectively, 
as 
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The theoretical equivalence between this 
classical second-order velocity-vorticity 
formulation and the velocity-pressure 
formulation has been given. For the details we 
refer to the paper by Daube et al. [4]. 

3. Vorticity integral condition 

The key element in the vorticity-velocity 
formulation is to obtain the a priori unknown 
boundary values of the vorticity for the 
second-order transport equation (1). The 
theory behind our derivation of the vorticity 
boundary condition is the Green's identity, 
which relates two scalar potentials φ and ψ as 
follows: 
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Provided that the scalar potential ψ is assigned 
as the stream function, the following two 
equations ensure satisfaction of mass 
conservation : 
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Now, let φ be the scalar potential which 
satisfies the Laplace equation. The boundary 
value of φ is enforced to be zero everywhere 
except at one point where the value is one : 
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We can get 
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This completes the derivation of the vorticity 
integral equation for the transport equation (1). 
It is worth noting that the assignment of φ=1 
leads to 

∫ ∫Ω Ω∂= dsudA τω  

4. Numerical results 

4.1 Advection-diffusion scheme for the 
vorticity transport equation 

The test problem is that of the skew 
advection-diffusion problem schematically 
shown in Fig. 1. The velocity vector of 
magnitude 1 remains unchanged in the flow and 
is parallel to the dividing line. In this study, the 
square domain is uniformly discretized, resulting 
in a grid with h=0.05. The fluid remains under 
investigation has a viscosity of ν=10-4. As Fig. 
2 reveals, oscillation-free solutions are 
observed in regions close to as well as away 
from the dividing line. Results computed from 
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the first-order upwind scheme and the compact 
scheme of Dennis and Hudson [5, 6] are also 
plotted for the comparison purposes. 

4.2 Lid-driven cavity flow problem 

We present a two-dimensional simulation for 
the fluid flow in a square cavity defined by 
B:D=1:1. The Reynolds numbers chosen for 
this study was 1000, which were computed 
based on the lid speed, the width of the cavity, 
and the kinematic viscosity of the fluid. In this 
study, the solutions were computed on uniform 
grids of 131x131 for Re=1000. For 
comparison purposes, the velocity profiles of 
Ghia et al. [7] are also plotted in Fig. 3. 

5. Concluding remarks 

The goal for the present study was to simulate 
incompressible viscous flows by means of the 
velocity-vorticity formulation. In order for the 
solutions to be accurately predicted, it is 
important to develop a theoretically rigorous 
framework which can provide us with boundary 
vorticity without using field variables outside of 
the physical domain. The equation governing the 
boundary vorticity is derived in integral form. 
Thus, boundary vorticities are simultaneously 
solved from the matrix equation. The solution 
algorithm involves a scalar transport equation 
for the vorticity variable and two Poisson 
equations for velocity components. Specific to 
our flux discretization scheme is that the 
coefficient matrix of the compact nine-point 
stencil scheme is classified as an irreducibly 
diagonal dominant M-matrix. To better 
understand the compact finite difference scheme 
developed here, we have conducted 
computational exercises. In the Navier-Stokes 
flow analyses, we have considered the 
lid-driven cavity problems. The results 
demonstrate that the integral approach designed 
to provide the boundary vorticity is applicable 
to simulation of fluid flows which are vortical in 
nature. 
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Fig. 1. A schematic of the skew 
advection-diffusion problem. 
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Fig. 2. The plot of φ at different x for showing 
the oscillation-free solution profiles: (a) x=0.2; 
(b) x=0.4; (c) x=0.6; (d) x=0.8. 

 

Fig. 3 Velocity profiles plotted on the 
centerlines for the case Re=1000 (a) u-y plot at 
x=0.5; (b) v-x plot at y=0.5. 


