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The method involves solving a second-order
differentid equation for the velocty and a

Nav iSetro k e s convection-diffusion equation for the vorticity.

The key to the success of the numerica

conveedtiifofnus i odmuaion of this cass of flow equaions

NaviSstrokes —

Abstract
We congder in this progress report for
solving the deady-state  Navier-Stokes

equations for incompressible fluid flows using
velocities and vorticity as working variables,
1. Introduction

The traditiona approach to the numericd
solution for incompressble Navier-Stokes
equations has been to solve working equations
in velocity-pressure  variables. A serious
problem which was encountered while
performing the primitive varigble formuletion is
owing to the absence of pressure in the
continuity equation. In addition, discretization of
pressure  gradients in  the incompressble
equations on cunvilinear grids  presents
condderable difficulties owing to the fact that
the gpproximation of pressure gradient operator
should be irrotationd [1]. While this difficulty
can be effectively resolved on staggered grids
[2], specid care is needed when grids are
non-uniformly and nortorthogondly laid on the
flow [1]. It is the added grid complexity that
complicates further the incompressble flow
andyss. Another popular approach to
numericd  solution of the Navier-Stokes
equations is the veocity-vorticity approach.
This formulation is the most gppropriate choice

depends largdly on proper smulaion of
vorticity transport equation subject to proper
vorticity boundary condition.  While the
derivation of the proposed integrd vorticity
boundary condition is more eaborate and is
more difficult to solve than conventiona local
approaches, the present approach offers
ggnificant advantages.

K eywor ds: finite difference, incompressible,
Navier- Stokes, velocity-vorticity

for solving the vortex dominated flow. The
reason lies in the fact that the advection of
vorticity is the most important process
determining the flow dynamics. Additiondly, it
gopears that  dudying  incompressible
Navier-Stokes equations in terms of vorticity
and velocity is closer to physical redlity [3]. For
the present spatial discretization on collocated
grids, we abandon the DC problem and confine
oursslves to the second-order Poisson
equations to solve for veocity components.
Another second-order differential equetion for
the vorticity scalar must be solved subject to
proper boundary conditions, which are the
subject of the present study. An accurate
prediction of the transport of vorticity is another
condderation. We will address this issue in the
use of an exponentia compact scheme for the
flux discretization.

2. Mathematical model

The traditiond approach to the numerica
solution  of incompressble Navier-Stokes
equations has been the primitive-vaiable



formulation. Using the kinemdatic definition of the
vorticity w=N" u, the resulting transport
equation is derived as

uxRiw - w iU = - Ri2w (1)
YW - WAL= e W

The vorticity stretching termw xNu , represents
the generation or destruction of vorticity due to
the stretching or compression of the vortex line,
As the space dimension decreases by one, the
vortex  dretching  term  vanishes  in
two-dimensond cases, and the resulting
vorticity trangport equation is reduced to a
scda equation for the vorticity component
which is normd to the planar motion of the
flow :

N*w )

The working equations for the vedocity
components can aso be obtained by taking the
curl of the definition w =N u and by usng
the continuity equation The resulting
second-order Poisson equations for velocity
components u and v are derived, respectively,
as

N*u=-w,
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The theoreticd equivaence between this
classca second-order  velocity-vorticity
foomulation and the  veocity-pressure
formulation has been given. For the details we
refer to the paper by Daube et d. [4].

3. Vorticity integral condition

The key demett in the vorticity-veocity
formulation is to obtain the a priori unknown
boundary vdues of the vorticity for the
second-order transport equation (1). The
theory behind our derivation of the vorticity
boundary condition is the Green's identity,
which relates two scdar potentids f and y as
follows
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Provided that the scalar potentid y is assgned
as the stream function, the following two
equations ensure  sdidaction  of  mass
conservation :

L=
iy
v
T
Now, let f be the scda potentid which
satisfies the Laplace equation. The boundary
vadueof f is enforced to be zero everywhere
except a one point where the valueisone :

N% =0
f, =d,
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We can get
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where u, =- ?”in low

This completes the derivation of the vorticity
integra equation for the transport equation (1).
It is worth noting that the assgnment of f =1
leadsto

QW dA= QU ds

4. Numerical results

4.1 Advection-diffuson scheme for the
vorticity transport equation

The test problem is tha of the skew
advection-diffuson  problem  schematicaly
shown in FHg. 1. The veocity vector of
meagnitude 1 remains unchanged in the flow and
is pardld to the dividing line. In this sudy, the
sguare domain is uniformly discretized, resulting
in a grid with h=0.05. The fluid remains under
investigation has a viscosity of n=10*. As Fig.
2 reveds oxillationfree solutions are
observed in regions close to as well as away
from the dividing line. Results computed from



the firg-order upwind scheme and the compact
scheme of Dennis and Hudson [5, 6] are also
plotted for the comparison purposes.

4.2 Lid-driven cavity flow problem

We present a two-dimendgond amulation for
the fluid flow in a square cavity defined by
B:D=1:1. The Reynolds numbers chosen for
this sudy was 1000, which were computed
based on the lid speed, the width of the cavity,
and the kinemdtic viscosty of the fluid. In this
study, the solutions were computed on uniform
grids of 131x131 for Re=1000. For
comparison purposes, the veocity profiles of
Ghiaet d. [7] are dso plotted in Fg. 3.

5. Concluding remarks

The god for the present study was to Smulate
incompressible viscous flows by means of the
velocity-vorticity formulation. In order for the
solutions to be accurately predicted, it is
important to develop a theoreticaly rigorous
framework which can provide us with boundary
vorticity without using field variables outsde of
the physica domain. The equation governing the
boundary vorticity is derived in integrd form.
Thus, boundary vorticities are Imultaneoudy
solved from the matrix equation. The ®lution
agorithm involves a scdar trangport equation
for the vorticity variable and two Poisson
eguations for velocity components. Specific to
our flux discretization scheme is that the
coeffident matrix of the compact nine-point
dencil scheme is cdassfied as an irreducibly
diagond dominant M-matrix. To better
understand the compect finite difference scheme
developed here, we have conducted
computational exercises. In the Navier-Stokes
flow andyses, we have consdered the
lid-driven  cavity problems. The reaults
demongtrate that the integra gpproach designed
to provide the boundary vorticity is applicable
to amulaion of fluid flows which are vorticd in
nature.
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Fg. 1. A <thematic of the
advection-diffuson problem.
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Fg. 3 Vdocity profiles plotted on the
centerlines for the case Re=1000 (8) wy plot at
x=0.5; (b) v-x plot a y=0.5.

Fig. 2 Theplot of f a different x for showing
the oscillation-free solution profiles: (8) x=0.2;
(b) x=0.4; (c) x=0.6; (d) x=0.8.



