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Abstract. The inverse distance method, one of the commonly used methods for analyzing spatial
variation of rainfall, is flexible if the order of distances in the method is adjustable. By applying
the genetic algorithm (GA), the optimal order of distances can be found to minimize the difference
between estimated and measured precipitation data. A case study of the Feitsui reservoir watershed in
Taiwan is described in the present paper. The results show that the variability of the order of distances
is small when the topography of rainfall stations is uniform. Moreover, when rainfall characteristic
is uniform, the horizontal distance between rainfall stations and interpolated locations is the major
factor influencing the order of distances. The results also verify that the variable-order inverse distance
method is more suitable than the arithmetic average method and the Thiessen Polygons method in
describing the spatial variation of rainfall. The efficiency and reliability of hydrologic modeling and
hence of general water resource management can be significantly improved by more accurate rainfall
data interpolated by the variable-order inverse distance method.
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1. Introduction

Accuracy of input data and parameters in modeling decides if the modeling results
are reliable. The input data and parameters needed in watershed modeling are
always with spatial variation. Incomplete understanding of spatial variability and
the lack of adequate data to characterize spatially varying inputs and state variables
would hamper the development of distributed modeling technology. Particularly, the
scarcity of spatial variation of rainfall information would cause much uncertainty
in discharge and erosion predictions (Vicente, 1996). Even at small-scale spatial
variability of precipitation can translate into large variations in simulated runoff
(Faures et al., 1995). A large uncertainty in the estimated parameters resulted from
spatial variability of rainfall. The uncertainty in the estimated parameters using the
rainfall observed by a single gauge could exceed the rainfall measurement error
(Chaubey et al., 1999).

The grid input system is usually designed in models to convenient the expression
of spatial variability. By the grid input, we can describe the data with spatial variation
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in a watershed. However, although the modeling with grid input design is a profitable
way to represent spatial variation in a watershed, spatial information is not enough
everywhere. The monitor stations such as rainfall stations and flow stations are not
all over each grid. Therefore, using the limited monitoring data to interpolate the
unknown information is important to adequately describe the spatial variability of
parameters.

There is not any interpolation method suitable for every circumstance (Nalder
and Wein, 1998). The results of spatially distributed models would be highly in-
fluenced by the interpolation errors (Donald and Danny, 1996). Several methods,
including the optimal interpolation method, the Kriging method and the weighted
mean method, etc., have been applied to analyze spatial variation of rainfall for
many years. The optimal interpolation method (Tabios, 1985) is complicated, and
completely monitored data are required. The complication of required information
would increase the difficulty of analyses, particularly when the data are not enough.
In the Kriging method, statistical hypotheses are made in evaluating and identify-
ing the multidimensional spatial structure of the hydrological process of interest
(Todini and Ferraresi, 1996; Dirks et al., 1998a, b). If rainfall stations are not
sufficient, the statistical data will be limited, and the Kriging method will not be
suitable for estimating precipitation. Moreover, the weighted mean method (Trout-
man, 1983)is a popular interpolation method. The unknown precipitation or average
precipitation can be calculated after deciding the weighting factors for each sur-
rounding rainfall station. The arithmetic average method, the Thiessen Polygons
method, the K-nearest method and the inverse distance method all belong to the
weighted mean method. The only difference between these methods is how to allot
weighting factors for the neighboring rainfall gauges.

The order of distances is used in the inverse distance method to vary the allotment
of weighting factors for the vicinal rainfall stations. In other words, the relative
influences of each surrounding rainfall station on precipitation estimation will be
different when changing the order of distances. Due to the flexibility of the order of
distances, the estimation error for precipitation could be highly reduced by adjusting
the order of distances to reach the optimal value. The optimal value of the order of
distance can make the allotment of weighting factors for each neighboring rainfall
gauge suitable for calculating unknown precipitation. The objective of this research
was to find the most proper variable order of distances in different circumstances
with varied rainfall characteristics and to minimize the difference between estimated
and measured precipitation.

2. Methodology
2.1. CASE STUDY

The Feitsui reservoir watershed in northern Taiwan provided the setting for the
case study reported herein. It is located on the southeast of the capital city of Taipei
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Figure 1. Sub-watersheds and the distribution of rainfall stations in the Feitsui reservoir watershed.

and has a drainage area of 303 square kilometers. The topography of this area is
mountainous. The main backbone is the Snow Mountains and its branches. The
elevation is between 50 and 1200 meters. There are six rainfall stations in the
Feitsui reservoir watershed, namely, Pinglin, Shisangu, Feitsui, Jiugionggen, Bihu
and Taiping. Figure 1 shows the sub-watersheds and the distribution of rainfall
stations in the Feitsui reservoir watershed.

In the present study, rainfall data for the six stations from 1995 to 1999 were
used to demonstrate the application of the variable-order inverse distance method.
Assuming the precipitation at one of the rainfall stations is unknown and apply-
ing the rainfall data from the other five rainfall stations to estimate the unknown
precipitation is the major method convenient to compare the difference between
estimated and measured precipitation. Rainfall characteristics and horizontal dis-
tances between interpolated locations and all of the rainfall stations in a watershed
are significant factors for the analyses of spatial variation of rainfall. This study
considered these two factors and apply genetic algorithm (GA) to search the most
suitable order of distances in the variable-order inverse distance method. The ad-
equate weighting factors can be decided after the optimal order of distances is
determined and unknown precipitation can be interpolated close to actual precipi-
tation.

2.2. THE INVERSE DISTANCE METHOD

The inverse distance method is acommonly used method for watershed precipitation
interpolation. The horizontal distances between the location without precipitation
records and its surrounding rainfall stations, as Figure 2, and the order of distances
decide the weights given to each rainfall station (Bartier and Keller, 1996). Hor-
izontal distances between rainfall stations are constant, but the order of distances
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Figure 2. Horizontal distances between the location without precipitation records and its surrounding
rainfall stations.

is adjustable. When the order of distances is adjusted to reach an optimal value,
the allotment of weighting factors for the surrounding rainfall gauges is suitable
to present more actual relative influences of each rainfall station on precipitation
estimation, and the accuracy of precipitation interpolation can be improved as well.
Due to the alterability of the order of distances in the inverse distance method, this
method is renamed as the variable-order inverse distance method. The weight for
precipitation at rainfall station 7 in sub-watershed p, W,,;, is given by

()

Wyi = ——— )

where m is the order of distances; d; is the distance between the center of sub-
watershed p and rainfall station i; n is the total number of rainfall stations. After
the weights are decided, unknown precipitation for each sub-watershed could be
estimated. The precipitation of sub-watershed p, P, is defined as formula (2), in
which P; is the precipitation at rainfall station i.

Py =) (Wy x P) 2)

i=1

The arithmetic average method and the Thiessen Polygons method are special
cases of the variable-order inverse distance method. When the value of “m” is zero,
the variable-order inverse distance method is the same as the arithmetic average
method for precipitation interpolation. The weighting factors for precipitation at
each rainfall station for the sub-watershed are the same. On the other hand, when
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Figure 3. The correlation between the weights for precipitation at each rainfall station and horizontal
distances to the location with no rainfall records. (Note: w is a weighting value. m; = 0; my > mj3 >
m; >my).

the value of “m” is close to infinite, the variable-order inverse distance method is
similar to the Thiessen Polygons method. As shown in Figure 3, “m;” is zero, so
the weights for precipitation at each rainfall station with any horizontal distance
are the same. Moreover, m; < mp < m3 < my, when the value of “m” increases, the
estimated precipitation is more influenced by the closer rainfall stations.

2.3. APPLYING GENETIC ALGORITHM

GA is inspired by Darwin’s theory about evolution. The algorithm is started with
a set of solutions called population. Gene encoding is the first step to apply GA.
The object is a genome. After a population of genomes is created, crossover and
mutation occur persistently. This process is significant to select the individuals in
the population and generate new individuals. The objective function discriminates
how good each individual is. The flow chart of GA is shown in Figure 4.

GA has been verified to have more advantages than the classical optimization
methods (Goldberg, 1989). In recent years, it has been a popular technique for
solving hydrology and water resources problems (Wang, 1991; Cheng et al., 2002).
In this work, GA was applied to adjust the value of the order of distances in the
inverse distance method to suitably describe spatial variation of rainfall. Due to
the evolution of genes, the worse individual can be eliminated, and the optimal
individual fit the objective function can be selected automatically. Hence, using the
GA cansignificantly reduce the difficulty of adjusting the order. Moreover, adjusting
the order of distances in the inverse distance method can lessen the limitation on
analyzing the spatial variation of rainfall.
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Figure 4. The flow chart of genetic algorithm.

The criterion applied herein is accumulated absolute error (AABSE), which is
the sum of the difference between measured and estimated daily precipitation for
the five-year period. The major objective in the process of parameter optimiza-
tion was to minimize the difference between measured precipitation and estimated
precipitation. The objective function is shown as follows:

k
Min AABSE = ) "|(0; — P;)| 3)

j=1

TABLE1
The optimal value of “m” and the sort of the optimal value of “m”

Pinglin  Shisangu Feitsui Jiugionggen Bihu Taiping

The optimal m in 1995 4.0 2.6 4.7 1.6 4.9 9.2

Sort 3 2 4 1 5 6 }
The optimal m in 1996 5.7 23 3.7 1.4 19.3 9.9

Sort 4 2 3 1 6 5

The optimal m in 1997  20.0 1.7 34 0.8 43 6.0

Sort 6 2 3 1 4 5

The optimal m in 1998 2.1 1.6 29 23 197 199

Sort 3 1 4 2 6 5

The optimal m in 1999 3.1 1.8 34 1.6 4.6 9.3

Sort 3 2 4 1 5 6 i

Note. The same sort of the optimal value of “m” is noted by the mark “}”.
Sort— The least value of the optimal “m” is given by one.
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where O; is the jth observed precipitation, and P; is the jth predicted precipitation;
k is the number of rainfall records over the five years. The sizes of population were
set as 20 elements, namely there were 20 genes in a chromosome, and kept best
3 members of population. The order of horizontal distances was defined as a gene
group, and with the real number type between 0-20. The mutation and crossover
mechanics designated by users might influence the mining results, but in this case
the effect is not remarkable. The operation processed about 100 times.

3. Results and Discussion

The optimal values of the order of distances on the locations of each rainfall station
in the Feitsui reservoir watershed from 1995 to 1999 are found by GA and presented
in Table I. The results show that the value of variable “m” is close to 2 for Shisangu
rainfall station, between 3 and 5 for Feitsui rainfall station and between 1 and 2 for

TABLE 11
Rainfall characteristics of six rainfall stations in the Feitsui reservoir watershed

Rainfall stations

Rainfall
Years characteristics Pinglin  Shisangu Feitsui Jiugionggen Bihu  Taiping
1995 Mean daily precipitation 5.74 5.10 5.88 5.94 6.43 10.56
Standard deviation of 11.42 10.12 11.61 11.45 1522 20.43
daily precipitation
1996  Mean daily precipitation 9.28 7.67 7.99 9.05 11.06 16.90
Standard deviation of 30.23 23.22 2422 30.21 3490 39.71
daily precipitation
1997  Mean daily precipitation 7.62 7.43 9.61 9.29 7.74 11.04
Standard deviation of 29.35 17.22 22.85 29.40 26.48 28.07
daily precipitation
1998  Mean daily precipitation 14.38 13.13 14.58  12.96 1524 21.64
Standard deviation of 3724 29.06 3343  28.16 42.99 50.70
daily precipitation
1999  Mean daily precipitation 7.11 6.90 7.01 5.42 777 1197
Standard deviation of 16.94 14.96 1585 11.17 16.14 24.00

daily precipitation

Unit: mm
Note: The standard deviation of daily precipitation, “S”, is defined by

where k is the number of rainfall records; P; is the ith rainfall record (daily estimates);
P; is the average precipitation of all the rainfall records over a time-period.
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Jiugionggen rainfall station. The locations of Shisangu, Feitsui and Jiugionggen
rainfall stations are near the towns of Xindian and Shiding. As shown in Figure 1,
the variability and roughness of topography in this area is less than those in the area
of Pinglin, Bihu and Taiping rainfall stations. Hence, the values of the variable “m”
are more uniform and not extreme.

The main effects on the order of distances in the inverse distance method, the
variable “m” in formula (1), are rainfall characteristics and horizontal distances
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Figure 5. Accumulated absolute errors (AABSE) of precipitation interpolation for different “m”
values at the rainfall stations in the Feitsui reservoir watershed.
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between rainfall stations and interpolated locations. In the situation with uniform
rainfall characteristic, the value of “m” always varies only following the differ-
ence of horizontal distances between the location with no rainfall records and
all of the rainfall stations in a watershed. Table II shows the rainfall data from
1995 to 1999, including mean daily precipitation and standard deviation of daily
precipitation.

The standard deviations of daily precipitation in 1995 and 1999 are between 10
and 20 mm, much smaller than those in 1996, 1997 and 1998. Therefore, when the
smallest value of the optimal “m” is determined as 1, the sorts of the optimal orders
of distances among these rainfall stations are the same in 1995 and 1999, marked
as “1” in Table I. On the contrary, the standard deviations of daily precipitation in
1996, 1997 and 1998 are bigger than in 1995 and 1999, and some extreme situations
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Figure 6. Comparison of between the method combining the inverse distance methods and other
traditional methods for estimating precipitation.
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occur, like bigger than 50 mm. In these situations, not only horizontal distances
between interpolated locations and rainfall stations, but also other factors would
influence the value of variable “m”. Consequently, there is no regularity on the sort
of the optimal orders of distances among these rainfall stations.

Figure 5 shows the relationships between the AABSE and the value of “m”.
Although the optimal value of “m” is different, theoretically it should be between
zero and infinite. The results from the present analysis show that the optimal value
of “m” is neither zero nor infinite, and that most of the optimal “m” values found
in the present study take on values greater than zero and less than five. Also, the
trends representing the relation between AABSE and the variable “m” are the same.
The value of “m” larger than 20 is considered an extreme situation. It means there
would be some other factors influencing on the variable “m” and the estimation
error for precipitation would be noticeable if we do not consider these effects.
Figure 6 shows that the arithmetic average method on precipitation interpolation
usually causes larger AABSE than any other methods, and the Thiessen Polygons
method is usually not the optimal method to truly describe rainfall spatial variation.
Meanwhile, the results also verify the variable-order inverse distance method is
more suitable than the arithmetic average method and the Thiessen Polygons method
to describe the spatial variation of rainfall.

4. Conclusions

This research selected the Feitsui reservoir watershed for case study. Combin-
ing the variable-order inverse distance method and GA is a way to find the
optimal analysis on spatial variation of rainfall. The results are concluded as
follows:

e The variability of the order of distances is small as the topography of rainfall
stations is uniform.

e When the standard deviation of precipitation is small and rainfall characteristic
is uniform, the horizontal distance between rainfall stations and interpolated
locations is the major factor influencing the order of distances.

e The variable-order inverse distance method is more suitable than the arithmetic
average method and the Thiessen Polygons method for describing the spatial
variation of rainfall.
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