
Proceedinos of the 33rd 

WA-13 10140 Conferens on Decision and Control 
Lake Buena Vista, FL - December 1994 

Relative Equilibria and Stabilities of Spring-Connected 
Bodies in a Central Gravitational Field 

Shyh-Feng Cheng and Li-Sheng Wang 

Institute of Applied Mechanics 
National Taiwan University 

Taipei, Taiwan, R.O.C. 
wangli6tao.iam.ntu.edu.tw 

Abs t rac t  

This paper’ discusses relative equilibria (or steady motions) 
and their stabilities for the motions of two spring-connected 
bodies in a central gravitational field. This two-body system 
can be regarded as a simplified model for the Tethered Satel- 
lite System (TSS). In the studies of TSS, typical assumptions 
include: (1) the center of mass and the center of gravity are 
both located a t  the massive one of the two end masses; (2) 
the center of mass moves on a great-circle orbit. In this pa- 
per, these assumptions are lifted to  derive more exact models 
for analyses. In particular, for the simple system treated in 
this paper, it  is proved that the nongreat-circle relative equi- 
libria do exist, and hence the above assumption (2) is not 
always valid. Some fundamental concepts of the dynamic- 
s of an arbitrary assembly moving in a central gravitational 
field are discussed. The notion of radial relative equilibria, 
which is the familiar station-keeping mode for TSS, is intro- 
duced. Their stabilities are analyzed by adopting the reduced 
energy-momentum method. It is shown that with physically 
practical configuration, the system at radial relative equilibria 
is stable if certain conditions are satisfied. 

relative equilibria do exist; namely, the center of field and the 
circular orbit traced by the center of mass form a cone. Ac- 
cordingly, the dynamical behavior of the more exact model 
without the classic assumptions becomes very interesting. 

The assumptions made in this paper are as follows: (1) 
the attraction center is at rest in the inertial frame; (2) the 
spring is massless and undergoes extensive or compressive 
deformation along only one direction; (3) the gravitational 
attraction between the two end bodies is neglected. After 
constructing the kinetic energy and potential energy, it is 
observed that the system possess an S O ( 3 )  symmetry. In 
geometric mechanics, cf. [l], such symmetry induces certain 
reduction of the dynamics and the notion of relative equilibria 
can be defined, which in fact corresponds t o  the notion of 
steady motions in the literature. The configuration of TSS at 
the station-keeping mode is essentially the configuration at 
relative equilibrium. With these observations, the techniques 
in dealing with symmetry, reduction, and stability analysis 
can be used. Here the Principle of Symmetric Criticality (131 
is used t o  derive equations for relative equilibrium. Similar 
techniques can be applied to  more complicated models, such 
as the one treated in [19]. 

1 Introduction 

The system under consideration is composed of two end-point 
masses connected by an elastic spring, cf. Fig. 1, which will 
be termed as the 5pn‘ng system. It can be regarded as a sim- 
plified model for the Tethered Satellite System (TSS), which 
contains a satellite (or shuttle orbiter) connected to  a sub- 
satellite with along tether. There have been many interesting 
discussions on this subject, especially after this idea of TSS 
was put forth by Colombo and Mario Rossi (1974) [7]. Ac- 
cording to [4], the earliest report on such idea was described 
by Tsiolkovskii in 1895, where an “anchored tower” from the 
surface of the Earth to  the altitude of geostationary orbit was 
conceived. The problems regarding dynamics and control of 
these large systems in orbit have been investigated by many 
researchers, cf. [E, 2, 3, 5 ,  6, 10, 11, 9, 14, 151, and the refer- 
ences therein. Many interesting discussions can be found in 
the survey paper of Misra and Modi[l2]. In these literatures, 
either distributed model or lumped system were considered. 
While the analysis of the distributed system was observed to  
be quite difficult to deal with, many of previous discussions 
treated the tether as a massless rigid bar connecting two point 
masses. Furthermore, it is typically assumed that the center 
of mass of the system is located at the massive one of the two 
end-masses, and moves on a great-circle orbit, i.e. a circular 
orbit centering at the center of the field. However, even at 
steady motions, these assumptions may not be valid, when 
the masses of two end points are close to  each other or the 
length of the tether is very large. In fact, for the simple sys- 
tem treated in this paper, it  is proved that the nongreat-circle 
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Figure 1: Two Spring-connected Bodies in a Central Gravi- 
tational Field 

First of all, i t  is proved that with the model treated in this 
paper, nongreat-circle relative equilibria do exist. It is the 
center of gravity (instead of the center of mass) that traces 
a great-circle orbit at relative equilibria. These fundamental 
concepts of the dynamics of an arbitrary assembly moving in 
a central gravitational field are discussed in Section 2. The 
detailed analyses in Section 3 show that if the two end masses 
are not equal, there must exist a nongreat-circle relative equi- 
librium. Note that when the spring becomes more and more 
rigid, the spring system approaches a rigid bar system, which 
consists of two point masses connected by a massless rigid 
bar. The analyses show that there are also nongreat-circle 
relative equilibria for the rigid bar system. 

Secondly, the classic notion of station-keeping mode for TSS 
is in fact the same as the radial relative equilibrium defined in 
Section 3. Even for the simple spring system, nonlinear stabil- 
ity of radial relative equilibrium is difficult to be established. 
Here, the reduced energy-momentum method, cf. [16, 171, is 
adopted to  obtain the stability conditions for the radial rel- 
ative equilibria of the spring system. It is proved that for 
physically realistic configuration, the systems at radial rela- 
tive equilibria are stable (strictly speaking, relatively stable). 
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2 Dynamics of an Arbitrary assembly 
in a Central Gravitational Field 

Some fundamental concepts, regarding the dynamics of an 
assembly moving in a central gravitational field are discussed 
in this section. The assembly may be a rigid body, a coupled- 
body system, or a collection of point masses. Let Mtohr be the 
total mass of the assembly, i.e., M t 0 a  = Ja,rcmMydm, where 
dm represents the mass measure (discrete or continuous) on 
the assembly. Let 0 be both the center of the field, and the 
origin of the inertial frame. Denote the center of mass and the 
center of gravity of the assembly by C and G ,  respectively. 
The position vector (in the inertial frame) of G is defined by 
the vector rl satisfying 

- r g 3  = 1 j 
Irll Mtotar assembly lr13 L d m ,  

where r is the vector (in the inertial frame) of a mass point 
in the assembly. 

Next the notion of relative equilibrium is introduced. Intu- 
itively, at relative equilibrium (sometimes called steady mo- 
tion), the assembly is stationary in a uniformly rotating frame 
located at the origin 0. Accordingly, the assembly rotates 
with a constant angular velocity w ( a  vector in the inertial 
frame) a t  these relative equilibria. In fact, w is also the or- 
bital angular velocity of the assembly. The mathematical 
definition of relative equilibrium (in geometric setting) can 
be found in [l], among others. If C moves on a great-circle 
orbit, i.e., r e  ' w  = 0, the relative equilibrium is called a great- 
circle relative equilibrium. On the other hand, if r c  . w # 0, 
then the relative equilibrium is nongreat-circle. Let the op- 
erator " " denote an isomorphism between the space IR3 
and ~ o ( 3 )  (the space of 3 x 3 skew-symmetric matrices), and 
the isomorphism is defined by 

With this notation, a uniformly rotatingframe with constant 
angular velocity w can be represented by exp(Gt) E S O ( 3 ) ,  
where SO(3) is the special orthogonal group. 

The relative equilibria can be characterized by finding al- 
l r,'s (constant vectors in the inertial frame) such that 
r = exp(Gt)r, for all r's in the assembly, where w is the 
constant angular velocity vector of the assembly. Analogous- 
ly, there exist rCO and rgo (independent of time in the inertial 
frame) such that rc = e,q(Gt)reo, and rg = exp(Gt)rlo. 
From Newtonian mechanics, the following equation can be 
derived, 

At relative equilibrium, the above differential equation can 
be reduced to the following algebraic equation: 

Taking inner product on (2)  with w ,  we find rgo . w = 0. 
Consequently, it is shown that at relative equilibria, the center 
of gravity of an assembly moving in a central gravitational 
field traces a great circle. 

On the other hand, taking inner product on (2) with rlo, 
we have p = lw12 lrgoI rgo . rCO. Note that lrgol = lrgl and 

rg0 'reo = r g .  re. Thus the following modified Kepler's third 
law (applied t o  a circular orbit), 

P = 14 l rgl  t g .  r e ,  (3) 

holds at relative equilibria. When the assembly is reduced to 
a point mass, the above formula is reduced to the classical 
Kepler's third law applied to a circular orbit. 

3 Relative Equilibria of Two 
Spring-Connected Bodies 

As depicted in Figure 1, the configuration space of the spring 
system can be modeled as Q = IR3 x EL3. Let the two end 
masses be ma and mb, respectively. Denote the vectors from 
the attraction center 0 to ma and mb by a and b, respectively. 
The potential energy of the system is given as 

where the first two terms on the right-hand-side represent the 
gravitational potential energy, and the last term W represents 
the elastic potential energy. Here W is a real-valued function 
of the length of the spring; in particular, W = bk(la-bl-L,)2 
for a linearly elastic spring, with the spring constant k and 
the reference length Lo (the initial length of the spring without 
experiencing any force). Let ( E IR3 be an arbitrary constant 
vector. The augmented potential is defined to be 

mb V t ( a , b )  = V ( a , b ) - ?  2 < ( X a , ( x a  > -- 2 < ( x b , t x b  > . 

By the Principle of Symmetric Criticality, cf. [13, 161, relative 
equilibria can be characterized by the critical points of V ,  for 
some t .  At such relative equilibria, the system rotates about 
the vector (, with angular velocity magnitude ((1. 

The first derivative of the augmented potential is obtained 
as follows, 

DVt(a ,  b )  . (6a,6b)  

where the prime " ' "denotes the partial differentiation of 
W with respect to its argument. The conditions of relative 
equilibria are then, 

where a, = lael and b, = 1b.l. The terms containing W' 
represent the elastic forces on the spring. When the spring 
become more and more rigid and the length (a, - bel at rela- 
tive equilibrium approaches the reference length L o ,  the spring 
system becomes the rigid bar system. 

It is easily checked that (4)  and (5) are invariant under the 
transformation R ,  = B a . ,  Rb = Bb., and f2 = B ( ,  where 
B E SO(3)  is the transformation matrix from the inertial 
frame t o  the new frame and R , ,  R b ,  0 are vectors in the 
new frame. For simplicity, the notations a e r  be, ( will be still 
used as vectors in the new frame in this paper. With this 
observation, a suitable frame is sought to make the problem 
tractable. The frame adopted here is shown to be more con- 
venient, where the z-axis is parallel to the spring, the z-axis is 
perpendicular to both a ,  and b,, and the y-axis completes the 
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triad, cf. Fig. 2. As for the case that ae and be are parallel, 
we may arbitrarily choose an z-axis without loss of generality. 

z 
A 

0 

Figure 2: The Frame System 

With respect to the chosen frame, the vectors can be 
expressed as R, = (z,, ycr o)*, R b  = ( Z b ,  yc ,  o)*, and 
n = ( R1, &, OB)*.  It is further assumed that I, is greater 
than Zb.  With this setting, (4) and (5) are rewritten as six 
equations, 

where R, = llRall, and R b  = IlRbll .  The solutions of the 
above equations correspond to the relative equilibria of the 
spring system. Let f = 2, - 2 )  > 0. Define R, = (z,, ycr O ) T  
with (ma + mb)zc = m,z, + m b Z b .  It can be easily derived 
that 2, = z, + mbf/(m, + m b ) ,  Z b  = z, - m,f/(m, + m b ) .  
Given p ,  ma, m b ,  f, and R, = llRcll, the process of solving 
the equations (6)-(11) can be divided into the following two 
cases. First, assume that 0 3  # 0. The equations of relative 
equilibria can be simplified as, with 0 1  = 0, Rzyc = 0 ,  0 3  # 
0, 

= 0, (13) 

= 0. (15) 

Subtracting (13) from (15), we get yc(& - *) = 0. The 
discussions may be further separated depending on whether 
y ,  = 0 or not. 

For yc  # 0, Rz must be 0 and R, = R b  = R. The solution 
can be easily obtained from (12-15) as R ,  = (4, Y = , O ) ~ ,  R b  = 
( - $ , y e , 0 ) T , n = ( 0 , 0 , 0 3 ) T , w i t h  

This is a great-circle relative equilibrium with W' = 0, which 
means that there is no force in the spring. At such relative 
equilibria, the two point masses move on the same circular 
orbit. 

Next, under the condition of yc = 0, since Z b  5 0 5 2, 

is not physically interesting, it is further assumed that z, > 

z b  > 0. Thus, R, = (Z,, 0, o ) T ,  R b  = ( Z b ,  0, o ) T ,  and 
R, = (z,, 0 ,  O ) T .  This is in fact the case of radial relative 
equilibrium, i.e. the spring lying on a radial axis .  The frame 
can be then selected such that Rz = 0. With these observa- 
tions, the conditions for relative equilibria are further simpli- 
fied as RI = 0, 52, = 0, 0 3  # 0 ,  yc = 0 ,  and 

As a consequence, the configuration of a radial relative equi- 
librium is derived, with R. = (z.,O,O)*, R b  = ( Z b , O , O ) T ,  

n = (O,O, where 

This is a great-circle relative equilibrium with tensile elastic 
forces. 

On the other hand, consider the case of 523 = 0. The equa- 
tions of relative equilibria become: 

For y ,  = 0, the solution leads to the radial relative equilib- 
rium as discussed previously, by interchanging 522 and 0 3 .  

Therefore we restrict our attention to the case y ,  # 0. As- 
sume first that  R, = R b  = R, which implies z, = -%. The 
above equations are rewritten as 

n 1 n 2 Z b -  n:yc+P$ = 0. (25) 

From (23) and (25), it can be proved that p = RfR3, which 
implies further that na = 0. Thus, from (22), we must have 
ma = m b .  Consequently, the solution for relative equilib- 
rium is obtained as R, = (bryc ,O)T,  R b  = ( - $ , Y ~ , O ) ~ ,  
n = (f?l,O,O)T, with ma = m b ,  y, = Re,  f2: = fi, and 
W' = -* < 0. This relative equilibrium is also great- 
circle, at  which the spring with compressive elastic force is 
perpendicular to the orbital plane and ma and mb are equi- 
distant to  the attraction center, cf. Fig. 3. 

Next, for R, # Rb, from (19) and (21), we obtain 

which implies 521 # 0 and 522 # 0. By adding m,x(19) and 
mbx(21), it is found that 

which implies 5222 ,  - Rly, # 0. From (18) and (20), we have 
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Define 

+ = 0.2 

e = 0.3 

I?” (27) and (28), it is observed that f?2/f?l  = - f / fu.  
Since 

96.278697 90.644416 90.064457 

94.170709 90.429596 90.042971 

we know that zc01 + y,f?z # 0, which means there is no 
great-circle relative equilibrium for this case. It can be easily 
verified that the vectors ro and r, defined in Section 2 are 
not parallel to each other. 

Eliminating 01 and f?z from (26) and (27), we obtain 

ma (kg) 

1 

10 

100 

1000 

where 

mb ( k d  e (de4 4 (ded 6 (deg) 

9999 91.073934 1.073934 -0.0000002684 

9990 91.071999 1.072002 -0.0000026767 

9900 91.052659 1.052684 -0.000026048 

9000 90.858264 0.859458 -0.00019335 

Now if m,  = mb = m, then f becomes 

1 
m ( - - - )  - ( R i  + Ri - 

Rt ;i [: 
For natural configurations, R i  + Ra > R: > f2,  and (29) 
implies R, = Rb. Consequently, t i e  following theorem is 
conduded. 

T h e o r e m  1 At the relative equilibrium where the constraint 
force is compressive, R.  = Rb i f  and only if m,  = mb. 

In particular, the case of ma # mb leads toward the 
nongreat-circle relative equilibria, in which R, = (z,, y,, O ) T ,  
Rb = ( ~ b , y ~ , O ) ~ ,  and fl = (f21, f 2 ~ , 0 ) ~ ,  which are all on the 
zy-plane. For such case, equation (29) needs to be satisfied, 
Let 2, = Re cos 8 and y, = R, sin 8 .  Given p ,  R,,  f, m a ,  and 
mb, the formula (29) can be written as an equation of 8. Con- 
sequently, nongreat-circle relative equilibria can be obtained 
by solving f(0) = 0. Since f(0) < 0, f(r) > 0, and that f(8) 
is a continuous function for R,  > f, there exists a solution 
for f(8) = 0. On the other hand, it can be shown that f 
is monotonically increasing for 8 E [O,r]. In fact, the first 
derivative o f f ,  f‘(8), can be found to be 

which is always positive. As a consequence, it is proved that 
the equation f(8) = 0 has one and only one solution in the 
domain 8 E [0, T ]  for m ,  # mb and R, > L .  With the value of 
0, the variables fll and can be computed from fl, = fv,, 
and 0 2  = -fJ, respectively, where 

The elastic force on the spring can be then obtained from 
either (18) or (20). This leads immediately to the following 
theorem. 

The nongreat-circle relative equilibria are depicted in Fig. 4, 
where the spring also undergoes compressive forces. 

While the nongreat-circle relative equilibrium for a rigid 
body wae numerically obtained in [20], it is analytically veri- 
fied in this paper. To justify the existence of nongreat-circle 
relative equilibria, some numerical computations were per- 
formed to solve f(@) = 0 for different R , / f  and m, / (m,+mb)  
(it may be assumed that m, < mb without loss of generality). 
The results are presented in Table 1. 1 (deg) 1 R.IL = 2 I REI( = 20 1 R,IL = 200 I 

= 0.01 100.364898 91.052658 90.105280 

”. = 0.1 98.413532 90.859264 90.085943 

Table 1: Solutions of f(0) = 0 

The configurations for some nongreat-circle relative equi- 
libria are next computed, as shown in Table 2. Here it is 
assumed that Rc = 7, OOOkm, f = 350km, and p = 4 x 10”. 

r I1 I I I I 

Table 2: Nongreat-circle Relative Equilibria 

Note that 6 # 0 implies that the corresponding relative 
equilibrium is nongreat-circle. Although this angle is rather 
small, the deflection of the spring system from the verticle is 
significant. For longer tether at LEO, this attitude drift may 
reach several degrees. 

4 Relative Stabilities of Radial Rela- 
tive Equilibria 

The radial relative equilibria discussed in the previous section 
actually correspond to the station-keeping mode for TSS. The 
stability of such mode is important during the operation of 
TSS. However, the classical energy method is not applicable 
for the system under consideration. Accordingly, the reduced 
energy-momentum method, cf. 119, 16,181 is employed in this 
section to prove the stability of radial relative equilibria. 

Let a. = ( ~ , 0 , 0 ) ~ ,  be = (b,O,O)=, a > b > 0, and E = 
( O , O , W ) ~ .  The conditions for radial relative equilibria become 

Theorem 2 For natural configurations (R, > L), the dynam- 
ics of the spring system has exactly one nongreat-circle rela- 
tive equilibrium zf and only af m,  # mb. 
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from which we have 

and 
(U’ + ab t bZ)m.mbW2 
az bz ( m a l a 2  t mb bz ) 

W’ = . ( U  - b) > 0.  ( 3 1 )  

The block diagonalization technique described in [16, 181 
cannot be directly applied to the system considered in this 
paper, since the locked inertia tensor is singular. Instead, the 
reduced energy-momentum method requires being used in its 
more general form. Adopt the notations used in the above- 
mentioned references and denote TQ and T’Q as the tangent 
and cotangent spaces of Q, respectively. The momentum map 
J : T’Q -+ so(3)’ is J ( p , , p b ) .  E =< p a , [  x a > + < 
Pb,  X b > . The locked inertia tensor I lock(a ,  b)  is found by 
the following computations: 

< I l o c k ( a ,  b ) ( 6 ) > i  Bm(3) 

ma < q x a,( x a >R3 +m < q x b , [  x b > ~ 3  = 

= < ‘ I r z ? o e k ( a , b ) ’ E  >R3> 

where q ,  
premomentum map .7 : Q x so(3)  -+ so(3)’ is 

E R3 and I ~ o e k ( a r b )  = -ma;; - mbbb. The 

; ( a , b , E )  = IyOck(a,b)E. 

Then, 

D T ( a , b , E )  . ( 6 a , 6 b t 6 q )  
m.(2lfi - ij8)6a + mb(2Lij - GL)6b = 

-(ma;; + m b G ) 6 q .  
At radial relative equilibrium, a. = a e l ,  b, = bel and 
= we3, where ei’s denote the unit vectors of the coordinate 

axes of the uniformly rotating frame. Thus, 

, with I. = m a u l  + mbb’. 

Accordingly, the locked ineftia tensor is singular at such radial 
relative equilibrium, and J (acr b e , ( )  =_ I , w e ~  = pc.  Next it 
is required to  find the kernel space of D J at the radial relative 
equilibria. Let 6a = (6ai,6azl  6 ~ 3 ) = ,  6b = (6b1 ,6b~,  6b3)= and 
6q = (a-, 6 . ~ j z , 6 7 3 ) ~ .  It can be checked that 0.7 (a,, be, E ) .  
(6a, 6b, 6s) I S  

-w(maa6a3 + mbb6b3) 

I d 7 3  + 2w(maa6a1 + mbb6b1) 

As a result, the kernel of D i  (ae, b e , € )  can be expressed as 

((6~3,156,611) : maa6a3 + mbb6b~ = 0 ,  
2w 

6q2 = 0 ,  673 = --(maa6al t mbb6bl)). ( 3 2 )  1. 

Now we need to  find T(a,b,q)(G, . (a, b, q ) ) ,  the tangent 
space on the group orbit, where G ,  = {B E S O ( 3 )  : B p  = 
p }  is the isotropy subgroup. With p ,  = I,we3, we have 
G,, = {exp(G) I q / / e 3 } .  From the above observation, the 
tangent space is Immediately obtained, 

Obviously, T(a,b,q)(G,e . ( a , b , q ) )  is a subspace of ker 

( D j ( a e , b e , ( ) ) .  In light of the symmetry, the augment- 
ed Hamiltonian is invariant on the orbit generated by the 
isotropy subgroup. Therefore it is only required to  check the 
second variation of the augmented Hamiltonian on a subspace 
S which satisfies 

ker(D.7 (ae, be, E ) )  = S 63 T(ue,be,c)(Gpa . (aC, be, E ) ) .  

From ( 3 2 )  and ( 3 3 ) ,  the space S can be written as 

2w 
I, 

6az = 6bz = 6% = 0 ,  maa6a3 + m b 6 b 3  = 0 }.(34) 

S = { (6a ,6b ,  6 1 )  : 673 = - - (m,a6~1 + mbb6bl), 

The augmented Hamiltonian function is composed of the 
Hamiltonian function and the momentum map as 

H t ( a , b , p a i P b )  = H ( a , b , P a , p b )  + J ( P a , P b ) ‘ c .  - 
Denote the induced energy-momentum map on S by H t .  The 
second variation of zt on S can be derived as 

( 3 5 )  

+ W”.  ( 6 ~ 1  - 6b1)’ + W‘ . ( 6 ~ 3  - 6b3)’ / (~  - b). 

Since W’ > 0 and a > b > 0, it is easily checked that 
the terms containing 6 ~ 3  and 6b3 in the above expression are 
always positive. Hence for determining the positiveness of 
D’Zt,  we only need to  consider the following terms: 

- (2 a3 + w z ) m ,  + W”] 6af 

- (F + w z ) q  + W’‘l 6b: ( 3 6 )  2’ 

Define 

2 p  1. U = - - - -  a3wz 1,  v =  - - - - 4m,ua 2 p  4mt.b’ 
I. I, b3wZ 

Equation (36)  is simplified to  be 

F = (maw% + Wrl)6al + (mbwzv + W”)6b: 

+ 2(4w2mambab/Ic - W1’)6a16b1 

F l i 6 ~ :  + Fz26b: + 2F126a16b1, 

which is in fact a quadratic form. The necessary and sufficient 
condition for F being positive definite is that 

= 

4 1  = m,w2u + W” > 0, ( 3 7 )  

and 

F11Fzz - F:z = (m,u + mbv + 8m,m~ab/ I . )wZWN ( 3 8 )  
+ (uv - 16m,mbu2b2/~~)m,mbw‘ > o 

The results are summarized in the following Theorem. 
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Theorem S For a spring system whose spring characteris- 
tics are governed by the elastic potential energy junction W 
(possibly nonlinear), the radial relative equilibrium is stable if 
(37) and (38) are satisfied. 

5 Conclusions 

In this paper, we discussed the dynamical behavior of the sys- 
tem of two spring-connected point masses moving in a cen- 
tral gravitational field. In particular, the center of mass and 
the center of gravity of an arbitrary assembly were defined. 
The notion of relative equilibrium was introduced, and it was 
shown that it is the center of gravity (instead of the center 
of mass) that must trace a great circle at relative equilibria. 
This leads to the notion of nongreat-circle relative equilibri- 
a, in which the center of mass traces a nongreat circle. It 
w a  proved that for the natural spring system under consid- 
eration, there exist such nongreat-circle relative equilibria if 
and only if the two end masses are unequal. To analyze the 
stability of the radial relative equilibria, the reduced energy- 
momentum method leading successfully to  conditions for sta- 
bility was used. It was shown that for general (linear or non- 
linear) springs, the stability conditions are in terms of the 
second derivatives of the elastic potential energy functions. 
The derived conditions may be helpful in the design of future 
large tether systems. 
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Figure 3: Relative Equilibrium with Compressive Elastic 
Force and ma = mb. 
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