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In this study, we investigate the effect of metallic inclusion modeled as perfect conductor on a dielectric
photonic crystal(silicon/air) with large full band gap. The dielectric crystal consists of a hexagonal array of
circular dielectric columns, each connected to its nearest neighbors by slender rectangular rods. It is found that
inclusion of small metallic components inside the circular dielectrics sharply “turns off“ the full band gap of
the dielectric photonic crystal. By increasing the radius of metallic inclusion above a threshold value, the full
band gap(of the metallodielectric photonic crystal) makes its appearance again and continues to grow in size.
On the other hand, metallic inclusion in the air region shows an opposite trend that the full band gap is not
turned off, and its size diminishes gradually to zero with increasing the radius of inclusion. These peculiar
behaviors can be explained on a unified basis by examining different types of boundary conditions for TM and
TE modes, and employing variational arguments based on Rayleigh’s quotients. Moreover, the free-electron
model for metallic components is also considered for TM modes. At large plasma frequencies, these modes
show very close band structures to those described above for the case of perfect conductors.
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I. INTRODUCTION

Photonic crystals are also known as photonic band-gap
materials. The most attractive/distinguished feature of photo-
nic crystals is their full band-gap structures.1,2 Large full
band gaps allow strong photon localization with the gap,3,4

and a detailed manipulation of photonic defect states.5,6 In-
tensive studies have been mainly concerned with dielectric
materials. They have important applications such as
microcavities,7 optical waveguides,8 defect mode lasers,9 op-
tical fibers10 and feedback mirror in laser diodes.11 Recently,
photonic crystals comprising metal or metallodielectric ma-
terials have become increasingly important.

Photonic crystals with metallic components can possess
much larger band gaps.12–15 They may also act like nearly
perfect reflectors.16,17 New applications include high-
impedance surfaces18 and resonator gyrotron.19 In addition,
new electromagnetic phenomena are explored in metallic
crystals such as a new forbidden band,20 band gaps in the
visible range,21 strong capacitive coupling,22 extraordinary
optical transmission,23 extremely low frequency plasmons,24

surface enhanced Raman scattering25 and a perfect lens.26

Previous studies have shown that by including metallic com-
ponents in the dielectric region the band gap can be signifi-
cantly opened up or enlarged in three dimensions.13,27 How-
ever, there are also disadvantages of using metals as they are
usually quite lossy at optical frequencies.20

In the literature, there are three ways to model the metal
property. The first one is to assume metals to be perfect con-
ductors. The second one is to model metals as dispersive
materials with the simple free-electron form of dielectric
function. The third one is to model metals as dissipative
materials with the Drude type of dielectric function. There-
fore, metallodielectric photonic crystals could be modeled as
combined structures of dielectric materials with one of the
three types of metallic materials. In the present study, metal-

lic components in photonic crystals are modeled as the per-
fect conductors. Moreover, we also consider dispersive me-
tallic components with free-electron model for TM modes(E
polarization). Compared to the dielectric counterpart, com-
putation of photonic band structures for metallic or metall-
odielectric photonic crystals is more difficult. Below the
plasma frequency, metals are able to reflect most of the elec-
tromagnetic radiations, and very little fields could sustain
inside. Therefore, the electromagnetic field is compressed in
the dielectric region, and may vary drastically in the case of
large portion of metallic inclusion. This becomes even more
severe for TE modes(H polarization), which intrinsically
possess more irregular patterns. The computed eigenfunc-
tions are more difficult to converge, especially at very long
wavelengths.28 In order to resolve the more complex struc-
tures of eigenfunctions, higher resolution and more efficient
methods are necessary.

There are several approaches to the band structure com-
putation of metallic and metallodielectric photonic crystals.
The most widely used method for this purpose is plane wave
expansion.16,29–31Other various techniques include the trans-
fer matrix method,32 the finite-difference time-domain
method,13,33–35finite difference method,17,28generalized Ray-
leigh identity method,36 the multiple multipole method37 and
the so-called order-N method.38 In our previous paper, a
highly fast and accurate inverse method with multigrid ac-
celeration is developed to be applicable to photonic crystals
comprising dielectric materials of arbitrary shape.39 The de-
veloped algorithm is capable of resolving multieigenvalue
band structures, and is applicable to photonic crystals with
interfaces of strong contrast. In this study, we extend this
method to be applicable to metallodielectric photonic crys-
tals which contain both dielectric and perfectly conducting
materials. The field inside the perfect conductor may be
taken to be identically zero. Therefore, internal boundary
conditions must be imposed on the conducting surfaces. The
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eigensystem of the band structure remains a standard eigen-
value problem, as is the case of dielectric photonic crystals.
Furthermore, the eigensystem preserves the Hermitian prop-
erty and has real eigenfrequencies.

In the present study we are focused on the effect of me-
tallic inclusion on band structures of dielectric photonic crys-
tals. We start by considering a dielectric crystal(with lattice
constanta) as the base structure, as shown in Fig. 1. The
crystal consists of a hexagonal array of circular dielectric
columns of radiusr, each connected to its nearest neighbors
by slender rectangular rods of widthd.39 The reason of
choosing this geometry is as follows: previous studies indi-
cate that band gaps forE polarization are favored in a lattice
of isolated high-« region, and band gaps forH polarization
are favored in a connected lattice.3 A compromise must
therefore be reached between the sizes of the dielectric col-
umns and the connecting rods in order to obtain an optimal
full band gap. In fact, Fig. 2 shows that the optimal(and
maximum) full band gap is attained when the band gaps for
TM and TE modes have the simultaneous band gap, or the
same band edges.40

Next, we consider circular columns of perfectly conduct-
ing material embedded inside the dielectric columns[Fig.

3(a)], or in the air region[Fig. 3(b)], to study the effect of
metallic inclusion. The findings are several. The inclusion of
metallic components in the dielectric region sharply “turns
off” the full band gap of the dielectric photonic crystal, no
matter how small is the size of the inclusion. The small size
of metallic inclusion is advantageous for higher operating
frequencies as the lossy effect will also be small. The band
structure remains in the “off” state until the radius of inclu-
sion reaches a threshold value. By increasing the radius of
the metallic inclusion above the threshold value, the full
band gap(of the metallodielectric photonic crystal) makes its
appearance again. After that, the size of the full band gap
increases monotonically with further increasing the radius of
metallic inclusion. The latter result is consistent with early
observations by other authors.15,28 On the other hand, the
inclusion of perfectly conducting materials in the air region
does not “turn off” the full band gap of the dielectric photo-
nic crystal. In this case the size of the full band gap decreases
monotonically as the radius of inclusion is increased. All
these peculiar behaviors can be explained on a unified basis
by examining different types of boundary conditions im-
posed on TM and TE modes on the metal surfaces and
employing variational arguments based on Rayleigh’s quo-
tients. Finally, interesting comparisons for the TM modes are
made with the free-electron model for the metallic compo-
nents at different plasma frequencies in the mode shapes and
band structures.

II. BASIC EQUATIONS AND NUMERICAL METHODS

For linear isotropic and frequency-independent dielectric
materials with permeability close to one, the time-harmonic
modes in two dimensions forE polarization (TM) can be
written as
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whereE=Ez and H=Hz are the electric and magnetic field
intensities, respectively, and«=«sr d is the dielectric func-
tion. To discretize Eqs.(1) and (2), a second order central

FIG. 1. Dielectric photonic crystal(silicon-air) consisting of a
hexagonal array of circular cylinders, each connected to its nearest
neighbors by slender rectangular rods.

FIG. 2. (Color online) Band structure computed with a 256
3256 grid for the dielectric photonic crystal in Fig. 1 withr /a
=0.155 andd/a=0.035 for« /«0=13.

FIG. 3. Metallodielectric photonic crystal with metallic circular
columns embedded(a) inside the dielectric columns(b) in the air
region.
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finite difference scheme is used. Inside the perfect conductor,
the electric field E vanishes, and the magnetic fieldH
may be taken to be zero. The boundary condition on the
perfectly conducting surface forE and H polarizations are,
respectively,

E = 0 and
] H

] n
= 0, s3d

where ] /]n is the normal derivative at a point on
the surface.41 In the present study, we also consider the
dispersive free-electron model for the metallic components,

«svd = 1 −
vp

2

v2 , s4d

wherevp is the plasma frequency. In particular, we compute
the band structures forE polarization. The eigenvalue prob-
lem outside the metallic region is described by Eq.(1) while
inside the metallic region it can be recast to the following
form:

F− S ]2

] x2 +
]2

] y2D + Svp

c
D2GE = Sv

c
D2

E. s5d

For periodic structures, the domain of computation can be
chosen as one unit cell along with suitable boundary condi-
tions. For convenience of finite difference formulation, the
domain of computation is chosen as a rectangle with the
same area of the primitive cell of the hexagonal lattice as

shown in Fig. 4. Bloch’s theorem is applied at the domain
boundary:

Eksr + aid = eik·aiEksr d, s6d

Hksr + aid = eik·aiHksr d, s7d

whereEk andHk are the Bloch functions for the electric and
magnetic fields, respectively, associated with the wave vector
k in the first Brillouin zone, andai si =1,2d is the lattice
translation vector. For the hexagonal lattice,a1=as1,0d and
a2=as1/2,Î3/2d. Since a2 makes 60 degrees with thex-
axis, the application of Bloch’s condition in they-direction
should be additionally accompanied by one half cell in the
x-direction.

From the practical point of view, the first few branches
of eigenvalues are of primary interest. As a first step,
it is natural for us to propose the method of inverse
iteration42,43 to compute the eigenvalues as well as eigenvec-
tors from the smallest one. LetA be the discretization
matrix of the differential operators in Eq.(1) or (2) or (5).
The method of inverse iteration is based on the following
equations:

sA − mI dx = v. s8d

The basic idea is to choosem close to the smallest eigenvalue
one wishes to compute and do the following steps.

(1) Compute the first eigenpair:(a) Pick up a random
vector as the initialv. (b) Solve Eq.(8) for x and replace
v by the normalized x. (c) Repeat step (b) until
iAv −lvi2,e, wheree is a small number. The eigenvalue is
obtained by the Rayleigh quotientkv ,Avl. The first eigenpair
is denoted bysl1,q1d.

(2) Compute the second eigenpair:(a) Pick up a random
vector as the initialv. (b) Solve Eq.(8) for x and deflate the
components ofx in the direction of the first eigenvectorq1
by

x ← x − kq1,xlq1. s9d

Replacev by the normalizedx. scd Repeat stepsbd until
iAv −lvi2,e, wheree is a small number. The eigenvalue is
obtained by the Rayleigh quotientkv ,Avl. The second eigen-
pair is denoted bysl2,q2d.

(3) Compute thenth eigenpair:(a) Pick up a random vec-
tor as the initialv. (b) Solve Eq.(8) for x and deflate the
components ofx in the directions of the firstn−1 eigenvec-
tors q1. . .qn−1 by

x ← x − o
k=1

n−1

kqk,xlqk. s10d

Replacev by the normalizedx. scd Repeat stepsbd until
iAv−lvi2,e, wheree is a small number. The eigenvalue is
obtained by the Rayleigh quotientkv ,Avl. Thenth eigenpair
is denoted bysln,qnd.

The algorithm of inverse iteration is designed as follows:

FIG. 4. Domain of computation for the metallodielectric photo-
nic crystal with metallic circular columns embedded(a) inside the
dielectric columns(b) in the air region.
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InverseEigen {
for n=1 to S

Initial guessv
do

Solve sA −mI dx=v by LUD or PCG
Deflatex by q1 to qn−1
Setv=x / ixi
Rayleigh Quotientln=kv ,Avl

until isA −lnI dvi2,e
Setqn=v

end }
wherel1øl2ø ¯ ølS is the sequence of smallest eigen-
values, andq1. . .qS are the corresponding eigenvectors. The
inner productk· , ·l is defined as

kx,yl = o
i

wix̄iyi, wi = H«sr id, for E polarization;

1, for H polarization

in view of the different orthogonal properties of theE field
and theH field:

1

Vcell
E Vcell«sr dEm

* sr dEnsr ddr = dmn, s11d

1

Vcell
E VcellHm

* sr dHnsr ddr = dmn, s12d

whereEn and Hn are thenth eigenfunctions of the electric
and magnetic fields, respectively.Vcell denotes the volume of
the primitive cell anddmn is the Kronecker delta.LUD de-
notes the LU decomposition solver for matrix inversion, and
PCG the preconditioned conjugate gradient solver.

In the previous study, we proposed an idea to accelerate
the convergence of matrix inversion in the algorithm. The
idea is to embed inverse iteration in the multigrid accelera-
tion structure. The basic idea of the multigrid method44,45 is
to solve the matrix problem by approximating the solution on
a fine grid, solving the residue on a coarse grid, and then
improving the solution on the fine grid. Successively apply-
ing this idea on multilevel of grids causes a relaxation of
errors on different resolution, and hence accelerates the con-
vergence of inverse iteration.

Let there beL levels of grids. On each grid levelm, the
differential operator is discretized to form the matrixA smd.
The inverse method with multigrid acceleration is imple-
mented by the following steps.

(1) Given random vectors as the initial guesses, compute
the first n eigenpairssl1

s1d ,q1
s1dd . . .sln

s1d ,qn
s1dd on the coarsest

grid level by the inverse algorithm described previously.
(2) Interpolateq1

s1d . . .qn
s1d to the next finer grid level as

the initial guesses. ReplaceLUD in the inverse algorithm by
the multigrid V-cycle solver,44,45 and compute the firstn
eigenpairssl1

s2d ,q1
s2dd . . .sln

s2d ,qn
s2dd on this grid level.

(3) Repeat step(2) until the eigenpairs on the finest grid
level are obtained.

The algorithm of multilevel inverse iteration is designed
as follows:

FMGInverse {
Call InverseEigenat m=1
for m=2 to L

for n=1 to S
Interpolateqn

sm−1d to vsmd

do
Solve sA smd−mI dxsmd=vsmd by MGV
Deflatexsmd by q1

smd to qn−1
smd

Setvsmd=xsmd / ixsmdi
Rayleigh Quotientln

smd=kvsmd ,A smdvsmdl
until isA smd−ln

smdI dvsmdi2,e

Setqn
smd=vsmd

end
end}

Notice that in the above algorithm, the Rayleigh quotient is

TABLE I. Computing times in CPU seconds for the first six
eigenmodes at pointK for the metallodielectric photonic crystal in
Fig. 3(a) with different r i /a.

Ngrid No metals r i /a=0.01 r i /a=0.02 r i /a=0.05

64364 0.203 0.297 0.297 0.438

1283128 0.937 1.391 1.25 1.422

2563256 3.844 6.922 7.672 6.844

5123512 12.828 42.125 27.359 32.422

102431024 39.641 179.187 108.171 155.125

TABLE II. Convergence test for the full band gap against the
grid size for the metallodielectric photonic crystal in Fig. 3(a) with
r i /a=0.1.

Ngrid 1282 2562 5122 10242

avup/2pc 0.5392 0.547 0.547 0.5457

avlow/2pc 0.3639 0.3627 0.3538 0.3534

avmid/2pc 0.4516 0.4549 0.4504 0.4496

aDv /2pc 0.1753 0.1843 0.1932 0.1923

Dv /vmid 0.3882 0.4062 0.429 0.4278

FIG. 5. (Color online) Computing times in CPU seconds for the
first six eigenmodes at pointK for the metallodielectric photonic
crystal in Fig. 3(a) with different r i /a.
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updated after each multigrid V-cycle solver which may pro-
vide only an approximate solution to the inverse equation. As
a result, the Rayleigh quotient updates more frequently and
converges faster to the eigenvalue. The whole idea of pro-
posing an inverse method with multigrid acceleration for
computing photonic band structures has now become clear.
First of all, the boundary condition(3) is used to take care of
perfectly conducting inclusions. Second, the deflation in the
algorithm of inverse iteration enables singling out the eigen-
values one by one from the smallest even when they may be
degenerate. Third, interlacing the inverse iteration and mul-
tigrid acceleration makes the whole method an amazingly
fast algorithm for computing photonic band structures, as
demonstrated below.

III. RESULTS AND DISCUSSION

In this study, we consider the dielectric crystal in Fig. 1 as
the base structure with fixedr /a=0.155 andd/a=0.035 for
« /«0=13. As an example of the test, we compute the first six

frequency bands at pointK for the metallodielectric photonic
crystal by embedding circular columns of perfect conductors
in the base structure. Table I lists the computing times in
central processing unit(CPU) seconds for different radii of
metallic inclusion. The computations are performed on a
Pentium 4-2.8 GHz PC. Figure 5 shows a plot of these com-
puting times, which demonstrates that the present method is
of good orderN=Ngrid.

The convergence of the computed results against the grid
size is illustrated by computations performed on four differ-
ent grids: 1282, 2562, 5122, and 10242. Table II lists the re-
sults of the band edges(vup, vlow), midgap frequencysvmidd,
band width sDvd and gap-midgap ratiosDv /vmidd for the
metallodielectric photonic crystal in Fig. 3(a) with r i /a=0.1
for the gridNgridù1283128. It can be seen that the numeri-
cal results for different grids fluctuate mildly but are in gen-
erally good agreement with each other. In the present study,
the grid sizeNgrid=2563256 will be used in most computa-
tions.

Let us now start to study the effect of metallic inclusion
shown in Fig. 3(a) by increasing the radius of inclusionr i /a.

FIG. 6. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal in Fig. 3(a)
with r i /a=0.01.

FIG. 7. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal in Fig. 3(a)
with r i /a=0.06.

FIG. 8. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal in Fig. 3(a)
with r i /a=0.1.

FIG. 9. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal in Fig. 3(a)
with r i /a=0.2.
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Figures 6–9 present the band structures computed with a
2563256 grid, respectively, forr i /a=0.01, 0.06, 0.1 and
0.2. At the smallr i /a=0.01, there is no longer a full band
gap, and for which we say that the metallic inclusion sharply
“turns off” the full band gap of the dielectric photonic crys-
tal. In a comparison of Fig. 6 with Fig. 2, we observe that the
first two branches of TM modes suddenly shift upward, tres-
passing into the region of the original full band gap, blocking
it completely. The TE modes are relatively inactive to metal
inclusion, and the band structure almost remains unchanged.
The trend of the upward shift of TM modes continues. As
r i /a is increased to about 0.06(Fig. 7), the full band gap
remains in the “off” state. However, the lower edge of the
first TM branch is about to move away from the upper edge
of the first TE branch. Meanwhile, the band gap of the TE
modes is widening in size. After this threshold valuesr i /a
=0.06d, the full band gap makes its appearance again, soon
becoming widely open as the radiusr i /a is further increased.
At r i /a=0.1, the lower edge of the first TM branch ap-
proaches the upper edge of the widely opened band gap of
the TE modes. At even largerr i /a, the upward-shifted TM
modes have moved completely out of the region of TE band
gap, leaving the full band gap size to be solely determined by
the TE modes. In the meantime, the first few branches of TM
modes are flattening out with the group velocity almost iden-
tically zero (Fig. 9). These phenomena demonstrate that the
metallodielectric photonic crystals behave more like metallic
photonic crystals at larger i /a. This can be reasonably ex-
pected because atr i /a=0.155 the metal inclusions have al-
ready replaced in full the circular dielectric columnssr /a
=0.155d. As the metallic components become large enough,
the eigenfrequencies of TM modes tend to be flattened out.36

Eventually these TM modes become standing waves with no
dispersion. In the limiting case when the conducting materi-
als connect to each other, both TM and TE band structures
are straight lines.30 This is a typical behavior of the resonant
modes of cavity.46 They are standing waves confined and
resonant in the dielectric region with eigenfrequencies inde-
pendent of the wave vectors. The propagation of electromag-
netic waves is shielded and neither electric field nor mag-
netic field could penetrate the conducting materials.

The behaviors observed may be explained by considering
the different types of boundary conditions in(3) for TM and
TE modes, and employing the variational argument based on
the Rayleigh quotients:

QTM =
bVcell

u¹Eu2dt

bVcell
«uEu2dt

, s13d

QTE =

bVcell

1

«
u¹Hu2dt

bVcell
uHu2dt

, s14d

respectively, for TM and TE modes, where we recall that
Vcell denotes the volume of the primitive cell. The inclusion
of metallic materials significantly modifies the band structure
of TM modes by introducing a zeroth-order band gap,28

which is analogous to the cutoff behavior of conventional

waveguides. However, the origin of the cutoff behavior for
the TM modes of the metallodielectric photonic crystal is
very different from that of the conventional waveguide. In
the conventional waveguide, the cutoff frequency originates
from the sustenance of transverse oscillations,46 while in the
metallodielectric photonic crystals, the electric fields are
identically zero inside and on the surface of the perfect con-
ductors. In particular, consider the TM modes at the symmet-
ric point G. If the zero-frequency solution(without a cutoff
frequency) is allowed in the crystal, the electric field should
be constant everywhere outside the perfect conductors. By
the continuity of the electric field at the metal boundarysE
=0d, this constant must be zero, resulting in a trivial solution.
Therefore, TM modes with zero frequency do not exist, mak-
ing an appearance of the cutoff frequency. On the other hand,
the cutoff behavior is not observed in TE modes for metall-
odielectric crystals. This is because constant solutions with
zero frequency are allowed in the crystal without violating
the boundary conditions]H /]n=0d for TE modes.

The variational analysis based on(13) and (14) argues
that both TM and TE modes favor accommodation of their
eigenfunctions in high-« regions in order to minimize the
Rayleigh’s quotients. However, because of the different
boundary conditions, the inclusion of metallic components
repels the eigenfunctions of TM modes outward from the
inclusion more effectively than those of TE modes. In the
first place, we consider the dielectric photonic crystal in Fig.
1 and plot the first three eigenfunctions in magnitude at point
G for TM modes in Fig. 10 and for TE modes in Fig. 11.
Since there are no internal boundary conditions, both modes
allow zero-frequency eigenfunctions. As expected, all the
eigenfunctions except the zero-frequency ones are concen-
trated on and around the higher-« circular regions, but the
TM eigenfunctions are more spread out. For a strong con-
trast, we next consider the metallodielectric photonic crystal
in Fig. 3(a) with r i /a=0.02 and plot the first three eigenfunc-
tions in magnitude at pointG for TM modes in Fig. 12 and
for TE modes in Fig. 13. For TM modes, the argument based
on the boundary condition has excluded the possibility of
constant eigenfunctions. All the three eigenfunctions rise
sharply from 0 at the metal surface to peak values, causing
large gradients in the eigenfunctions and thus contributing to
the sudden upshift of the eigenvalues. On the other hand, the
boundary condition for TE modes does allow constant eigen-
functions, and only requires at the metal surface a round
shape of the eigenfunctions around the rim of the metal in-
clusion. This requirement does not change effectively the TE
bands and the shapes of the corresponding eigenfunctions.
There is one further comparison with the case of dielectric
photonic crystals that for either TM or TE modes, the eigen-
functions of the metallodielectric photonic crystals tend to be
even more concentrated on and near the annular high-« re-
gions for better minimization of the Rayleigh’s quotients.
This is no longer possible if the radius of metal inclusion
r i /a comes close to that of the dielectric circular columns
r /a=0.155. The eigenfunction of the first TM mode rises
more abruptly from 0, while the first TE mode can adjust
itself to be an even smoother function.

Figure 14 shows the gap map computed with a 128
3128 grid for the metallodielectric photonic crystal in Fig.
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3(a) by varying the radiusr i /a. As the shifted TM bands are
trespassing into the original band gap region of the dielectric
photonic crystals, the band structure remains in the “off”
state. By increasing the size of the metallic inclusion above a
threshold value, the full band gap(of the metallodielectric
photonic crystals) opens again and its size continues to grow
as the upward shifted TM bands are moving away from the
upper band edge of the TE band gap. In this case, the thresh-
old value of the metallic inclusion is aboutr i /a=0.06, and
the corresponding band structure at this inclusion is shown in

Fig. 7. It is noticed that for large size of metallic inclusion,
the full band gap is very large because the zeroth-order band
gap for the TM mode covers the whole band gap for TE
mode. This phenomenon was also identified in Ref. 28.

On the other hand, we consider metallic inclusions in the
air region, as shown in Fig. 3(b). The full band gap decreases
monotonically in size and finally diminishes to zero with
increasing the radiusr i /a of metallic inclusion. Figure 15
shows the gap map computed with a 1283128 grid by vary-
ing the radiusr i /a. It is observed that the cutoff behavior for

FIG. 10. (Color online) The first three TM eigenfunctions in
magnitude at pointG for the dielectric photonic crystal in Fig. 1.

FIG. 11. (Color online) The first three TE eigenfunctions in
magnitude at pointG for the dielectric photonic crystal in Fig. 1.
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TM modes also exists, as in the case of metallic inclusion in
the dielectric region. But the shifted TM bands do not tres-
pass into the original band gap region of the dielectric pho-
tonic crystal, and the band structure remains in the “on”
state. In fact, only the first TM band in a portion near pointG
is substantially shifted upward, while all the other higher
bands are changed only slightly. The fields(TM and TE) in
the air region are relatively weaker than in the dielectric
region, and therefore the effect of metallic inclusion is

smaller. Meanwhile, the TE band gap begins to shrink and
finally leads the full band gaps to close. Figure 16 shows the
detailed band structure for the metallodielectric photonic
crystal atr i /a=0.005. In comparison with Fig. 2, the band
structure is almost identical to that for the dielectric crystal
without metallic inclusion except the first TM band near
point G. Figure 17 shows another band structure at the larger
r i /a=0.1. In this case, the band edges of the TE band gap

FIG. 12. (Color online) The first three TM eigenfunctions in
magnitude at pointG for the metallodielectric photonic crystal in
Fig. 3(a) with r i /a=0.02.

FIG. 13. (Color online) The first three TE eigenfunctions in
magnitude at pointG for the metallodielectric photonic crystal in
Fig. 3(a) with r i /a=0.02.
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become close to each other, making the full band gap
smaller.

Next, as an intermediate structure, metallic components
are only included in one of two dielectric circular columns
for each primitive cell. It is expected that the band structure
also behaves in an intermediate manner. This is indeed the
case, as shown by the gap map in Fig. 18. The full band gap
is not turned off upon inclusion of small metallic compo-
nents, but is divided into two branches asr i /a is increased to
about 0.014. The upper branch diminishes to zero asr i /a
reaches 0.03, while the lower branch continues to grow
gradually in size, which is however smaller than the case of
double inclusion(cf. Fig. 14). These behaviors can also be
explained as the result of the upward shift of the first two TM
bands. Asr i /a is increased from 0, the upward shift is not
strong enough to make the first TM band cross the band-gap
region of TE modes, while the second TM band does trespass
into the region. In trespassing, the second TM band, being
narrower in size, does not completely block the band gap of
the TE modes, leading to a division of the full band gap into
two branches. Asr i /a is further increased, the upward shift
of the second TM band eventually makes the upper branch
disappear. At larger i /a, the band structure is the balanced
result of both effects of metallic and dielectric components.

Finally, we consider the free-electron model(4) for the
metallic components and compute the band structures forE
polarization. Figure 19 shows the second eigenfunction in
magnitude at pointG for TM modes for r i /a=0.02 at
vpa/2pc=1. The mode pattern is very similar to Fig. 12(b).
It is noticed that the field inside the metal is not forced to
zero and the boundary condition(3) is not applied on the
metal surface. As a result, the field may somewhat penetrate
into the metallic region and no sharp discontinuity exists in
the interface. In spite of similarity in mode shapes, the band
structures could be very different depending on the plasma
frequency. In order to see a trend toward perfect conductors,
band structures are presented forr i /a=0.01 at different
plasma frequenciesvpa/2pc=1, 4 and 8. At the lower value
vpa/2pc=1, Fig. 20 shows that the band structures are quite
different from those presented for the case of perfect conduc-
tors in two places:(i) the cutoff frequency of the first band is
relatively small, and(ii ) the band gap is wide-open between
the second and third bands. At the medium valuevpa/2pc
=4, Fig. 21 shows that the cutoff frequency becomes larger
while the band gap between the second and the third bands

FIG. 14. A map of band gaps computed with a 1283128 grid
for the metallodielectric photonic crystal in Fig. 3(a) by varying the
radiusr i /a.

FIG. 15. A map of band gaps computed with a 1283128 grid
for the metallodielectric photonic crystal in Fig. 3(b) by varying the
radiusr i /a.

FIG. 16. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal in Fig. 3(b)
with r i /a=0.005.

FIG. 17. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal in Fig. 3(b)
with r i /a=0.1.
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becomes smaller. At the large valuevpa/2pc=8, Fig. 22
shows that the cutoff frequency is even larger and has the
value 0.188 which is pretty close to 0.211 in Fig. 6 for per-
fect conductors, while the band gap between the second and
the third bands is now very small. A close comparison be-
tween Fig. 22(free-electron model) and Fig. 6(perfect con-
ductors) shows that the whole band structures for TM modes
are in close agreement with each other. These trends are
expected because as the plasma frequency becomes larger,
the dielectric function becomes more negative. Equivalently,
the index of refraction is purely imaginary and large in mag-
nitude. The fields inside the metallic region are therefore
evanescent modes. In the limit of perfect conductors, the
evanescent field is completely expelled from the metal and
vanishes there.

IV. CONCLUDING REMARKS

In this study, we have extended an inverse method with
multigrid acceleration39 to compute the band structures of
two-dimensional metallodielectric photonic crystals. The
present article is focused on the effect of metallic inclusion

in a dielectric photonic crystal. The metallic components are
first modeled as perfectly conducting materials. In particular,
we consider two cases of inclusion: metals(i) inside dielec-
tric circular columns, or(ii ) in the air region of a hexagonal
lattice made of silicon and airs« /«0=13d. The two types of
inclusion have completely different effects on the band struc-
tures and gaps. In the case(i), the full band gap is suddenly
“turned off” upon metallic inclusion, remaining in the “off”
state until the radius of inclusion reaches a threshold value,
making its appearance again with further increasing the ra-
dius, and eventually behaving like metallic photonic crystals.
For the case(ii ), the full band gap only changes slightly in
size upon metallic inclusion, but gradually diminishes to zero
with increasing the radius of inclusion. These different trends
of behavior have been successfully explained on a unified
basis by examining the different types of boundary condi-
tions for TM and TE modes at metal surfaces, and employing
a variational analysis based on Rayleigh’s quotients for the
TM and TE modes. Moreover, intermediate dielectric photo-
nic crystals are shown to exhibit intermediate behaviors in
the band structures.

FIG. 18. A map of band gaps computed with a 1283128 grid
for the intermediate metallodielectric photonic crystal by varying
the radiusr i /a.

FIG. 19. (Color online) The second eigenfunction in magnitude
at point G for the metallodielectric photonic crystal(free-electron
model) in Fig. 3(a) with r i /a=0.02 andvpa/2pc=1.

FIG. 20. (Color online) A band structure computed with a 256
3256 grid for the metallodielectric photonic crystal(free-electron
model) in Fig. 3(a) with r i /a=0.01 andvpa/2pc=1.

FIG. 21. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal(free-electron
model) in Fig. 3(a) with r i /a=0.01 andvpa/2pc=4.
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The perfectly conducting materials as metallic inclusion
present an ideal case for studying the metallic shielding ef-
fects on photonic structures. More real and complicated phe-
nomena may resort to the study of dispersive, and even dis-
sipative effects of metallic materials. In this study, we also
consider the dispersive free-electron model and compute the
band structures for the modes ofE polarization. The numeri-
cal results are presented at different plasma frequencies
vpa/2pc. It is shown that asvpa/2pc becomes large, these
modes show close similarity to those computed for the me-
tallic components modeled as perfect conductors. However,
the present method cannot be applied straightforwardly to
compute band structures ofH polarization. On one hand,
computation of the band structures ofH polarization cannot
be obviously recast to a standard eigenvalue problem: the
eigenfunctions no longer constitute an orthogonal family in

the ordinary sense. On the other hand, computation of the
modes ofH polarization is further complicated by the exis-
tence of resonant modes near the surface plasmon frequency.
This special feature associated only with theH polarization
has been studied using finite-difference time-domain
method34 and multiple multipole method.37 The latter refer-
ence might suggest that in the present formulation the eigen-
value problem of theH polarization could be attacked by the
technique of detection used in nonlinear eigenvalue prob-
lems. For dissipative metallic materials, both the dielectric
function and eigenfrequencies become complex. In addition
to the plasma frequency, the relaxation time of the free elec-
tron may also play important roles on the dispersion relations
of metallic photonic crystals(cf. Refs. 34 and 37). These
more challenging topics are currently being under investiga-
tion, and the results will be reported elsewhere.

Finally, some comments are available for possible fabri-
cation of the proposed metallodielectric photonic crystals.
The following procedures of microelectronics fabrication
technology14,47may serve this purpose. In the first phase, the
silicon is deposited, patterned, and etched to the desired
depth for the region of metallic components. In the second
phase, the metal is deposited with high pressure, and pro-
cessed by chemical mechanical polishing.48 In the third
phase, the silicon and metal is patterned and etched for the
air region. Then, the surface is processed by chemical me-
chanical polishing to improve the surface quality.

ACKNOWLEDGMENTS

This work was supported in part by Industrial Technology
Research Institute under Contract No. 92S-23-N0, National
Science Council of the Republic of China under Contract
No. NSC 91-2212-E-002-072, and the Ministry of Economic
Affairs of the Republic of China under Contract No. MOEA
92-EC-17-A-08-S1-0006.

1E. Yablonovitch, Phys. Rev. Lett.58, 2059(1987).
2S. John, Phys. Rev. Lett.58, 2486(1987).
3J. D. Joannoupoulos, R. D. Meade, and J. N. Winn,Photonic

Crystals(Princeton University Press, Princeton, 1995).
4K. Sakoda,Optical Properties of Photonic Crystals(Springer-

Verlag, Berlin, 2001).
5S. Lin and G. Arjavalingam, J. Opt. Soc. Am. B11, 2124(1994).
6T. F. Krauss, R. M. De La Rue, and S. Brand, Nature(London)

383, 699 (1996).
7J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Stein-

meyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith,
and E. P. Ippen, Nature(London) 390, 143 (1997).

8A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J.
D. Joannopoulos, Phys. Rev. Lett.77, 3787(1996).

9O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.
Dapkus, and I. Kim, Science284, 1819(1999).

10J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science
20, 1476(1998).

11D. L. Bullock, C. Shih, and R. S. Margulies, J. Opt. Soc. Am. B

10, 399 (1993).
12E. R. Brown and O. B. McMahon, Appl. Phys. Lett.67, 2138

(1995).
13S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B

54, 11 245(1996).
14J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho,

Nature(London) 417, 52 (2002).
15X. Zhang, Z. Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, and

B. Cheng, Phys. Rev. B61, 1892(2000).
16A. R. McGurn and A. A. Maradudin, Phys. Rev. B48, 17 576

(1993).
17D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C.

M. Soukoulis, Appl. Phys. Lett.65, 645 (1997).
18D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and

E. Yablonovitch, IEEE Trans. Microwave Theory Tech.47,
2059 (1999).

19J. R. Sirigiri, K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A.
Shapiro, and R. J. Temkin, Phys. Rev. Lett.86, 5628(2001).

20D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, Phys.

FIG. 22. (Color online) Band structure computed with a 256
3256 grid for the metallodielectric photonic crystal(free-electron
model) in Fig. 3(a) with r i /a=0.01 andvpa/2pc=8.

EFFECT OF THE INCLUSION OF SMALL METALLIC… PHYSICAL REVIEW B 70, 075108(2004)

075108-11



Rev. Lett. 76, 2480(1996).
21A. Moroz, Phys. Rev. Lett.83, 5274(1999).
22D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R.

Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett.80, 2829
(1998).

23T. W. Ebbesen, H J. Lezec, H. F. Ghaemi, T. Thio, and P. A.
Wolff, Nature (London) 391, 667 (1998).

24J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys.
Rev. Lett. 76, 4773(1996).

25F. J. Garcia-Vidal and J. B. Pendry, Phys. Rev. Lett.77, 1163
(1996).

26J. B. Pendry, Phys. Rev. Lett.85, 3966(2000).
27A. Moroz, Phys. Rev. B66, 115109(2002).
28E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J.

Temkin, J. Appl. Phys.91, 960 (2002).
29V. Kuzmiak, A. A. Maradudin, and F. Pincemin, Phys. Rev. B50,

16 835(1994).
30T. Suzuki and P. K. L. Yu, Phys. Rev. B57, 2229(1998).
31W. C. Sailor, F. M. Mueller, and P. R. Villeneuve, Phys. Rev. B

57, 8819(1998).
32J. B. Pendry and A. MacKinnon, Phys. Rev. Lett.69, 2772

(1992).
33K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu,

and K. Hirao, Phys. Rev. B64, 045116(2001).
34T. Ito and K. Sakoda, Phys. Rev. B64, 045117(2001).
35M. Qiu and S. He, J. Appl. Phys.87, 8268(2002).
36N. A. Nicorovici, R. C. McPhedran, and L. C. Botten, Phys. Rev.

E 52, 1135(1995).
37E. Moreno, D. Erni, and C. Hafner, Phys. Rev. B65, 155120

(2002).
38J. Arriaga, A. J. Ward, and J. B. Pendry, Phys. Rev. B59, 1874

(1999).
39R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, Phys.

Rev. E 68, 026704(2003).
40R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, Jpn. J.

Appl. Phys. 43, 3484(2004).
41J. D. Jackson,Classical Electrodynamics, 3rd ed.(Wiley, New

York, 1999).
42B. N. Parlett,The Symmetric Eigenvalue Problem(SIAM, Phila-

delphia, 1998).
43G. H. Golub and C. F. Van Loan,Matrix Computations, 3rd ed.

(Johns Hopkins University Press, London, 1996).
44J. W. Demmel,Applied Numerical Linear Algebra(SIAM, Phila-

delphia, 1997).
45U. Trottenberg, C. Oosterlee, and A. Schüller,Multigrid (Aca-

demic, London, 2001).
46C. A. Balanis,Advanced Enginerring Electromechanics(Wiley,

New York, 1989).
47S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R.

Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz,
and J. Bur, Nature(London) 394, 251 (1998).

48W. Patrick, W. Guthrie, C. Standley, and P. Schiable, J. Electro-
chem. Soc.138, 1778(1991).

CHANG et al. PHYSICAL REVIEW B 70, 075108(2004)

075108-12


