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Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic
crystal with large full band gap
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In this study, we investigate the effect of metallic inclusion modeled as perfect conductor on a dielectric
photonic crystalsilicon/ain with large full band gap. The dielectric crystal consists of a hexagonal array of
circular dielectric columns, each connected to its nearest neighbors by slender rectangular rods. It is found that
inclusion of small metallic components inside the circular dielectrics sharply “turns off* the full band gap of
the dielectric photonic crystal. By increasing the radius of metallic inclusion above a threshold value, the full
band gapof the metallodielectric photonic crysjahakes its appearance again and continues to grow in size.
On the other hand, metallic inclusion in the air region shows an opposite trend that the full band gap is not
turned off, and its size diminishes gradually to zero with increasing the radius of inclusion. These peculiar
behaviors can be explained on a unified basis by examining different types of boundary conditions for TM and
TE modes, and employing variational arguments based on Rayleigh’s quotients. Moreover, the free-electron
model for metallic components is also considered for TM modes. At large plasma frequencies, these modes
show very close band structures to those described above for the case of perfect conductors.
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[. INTRODUCTION lic components in photonic crystals are modeled as the per-
fect conductors. Moreover, we also consider dispersive me-
Photonic crystals are also known as photonic band-gapallic components with free-electron model for TM modEs
materials. The most attractive/distinguished feature of photopolarization. Compared to the dielectric counterpart, com-
nic crystals is their full band-gap structure$.Large full  putation of photonic band structures for metallic or metall-
band gaps allow strong photon localization with the §4p, odielectric photonic crystals is more difficult. Below the
and a detailed manipulation of photonic defect stafem- plasma frequency, metals are able to reflect most of the elec-
tensive studies have been mainly concerned with dielectriromagnetic radiations, and very little fields could sustain
materials. They have important applications such asnside. Therefore, the electromagnetic field is compressed in
microcavities| optical waveguide8 defect mode lasefspp-  the dielectric region, and may vary drastically in the case of
tical fibers® and feedback mirror in laser diod¥sRecently, large portion of metallic inclusion. This becomes even more
photonic crystals comprising metal or metallodielectric ma-severe for TE modegH polarization, which intrinsically
terials have become increasingly important. possess more irregular patterns. The computed eigenfunc-
Photonic crystals with metallic components can possestons are more difficult to converge, especially at very long
much larger band gapgs:® They may also act like nearly wavelength€® In order to resolve the more complex struc-
perfect reflectord®l” New applications include high- tures of eigenfunctions, higher resolution and more efficient
impedance surfac¥sand resonator gyrotroff.In addition, methods are necessary.
new electromagnetic phenomena are explored in metallic There are several approaches to the band structure com-
crystals such as a new forbidden b&Adyand gaps in the putation of metallic and metallodielectric photonic crystals.
visible range?! strong capacitive couplingf, extraordinary  The most widely used method for this purpose is plane wave
optical transmissioR® extremely low frequency plasmo#@$, expansiort®2%-310ther various techniques include the trans-
surface enhanced Raman scattefingnd a perfect len®  fer matrix method? the finite-difference time-domain
Previous studies have shown that by including metallic commethod!333-35finite difference method!-?®generalized Ray-
ponents in the dielectric region the band gap can be signifileigh identity method? the multiple multipole method and
cantly opened up or enlarged in three dimensigiiéHow-  the so-called ordeld method®® In our previous paper, a
ever, there are also disadvantages of using metals as they drighly fast and accurate inverse method with multigrid ac-
usually quite lossy at optical frequencf&s. celeration is developed to be applicable to photonic crystals
In the literature, there are three ways to model the metatomprising dielectric materials of arbitrary shaidhe de-
property. The first one is to assume metals to be perfect corveloped algorithm is capable of resolving multieigenvalue
ductors. The second one is to model metals as dispersiveand structures, and is applicable to photonic crystals with
materials with the simple free-electron form of dielectric interfaces of strong contrast. In this study, we extend this
function. The third one is to model metals as dissipativemethod to be applicable to metallodielectric photonic crys-
materials with the Drude type of dielectric function. There-tals which contain both dielectric and perfectly conducting
fore, metallodielectric photonic crystals could be modeled asnaterials. The field inside the perfect conductor may be
combined structures of dielectric materials with one of thetaken to be identically zero. Therefore, internal boundary
three types of metallic materials. In the present study, metaleonditions must be imposed on the conducting surfaces. The
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FIG. 3. Metallodielectric photonic crystal with metallic circular
columns embeddeg) inside the dielectric column@) in the air
region.

FIG. 1. Dielectric photonic crystalsilicon-airn consisting of a
hexagonal array of circular cylinders, each connected to its neare§(a)], or in the air regionFig. 3b)], to study the effect of
neighbors by slender rectangular rods. metallic inclusion. The findings are several. The inclusion of

metallic components in the dielectric region sharply “turns

eigensystem of the band structure remains a standard eigeoff” the full band gap of the dielectric photonic crystal, no
value problem, as is the case of dielectric photonic crystalsmatter how small is the size of the inclusion. The small size
Furthermore, the eigensystem preserves the Hermitian propf metallic inclusion is advantageous for higher operating
erty and has real eigenfrequencies. frequencies as the lossy effect will also be small. The band

In the present study we are focused on the effect of mestructure remains in the “off” state until the radius of inclu-
tallic inclusion on band structures of dielectric photonic crys-sion reaches a threshold value. By increasing the radius of
tals. We start by considering a dielectric crygialth lattice  the metallic inclusion above the threshold value, the full
constanta) as the base structure, as shown in Fig. 1. Theéband gagof the metallodielectric photonic crysjahakes its
crystal consists of a hexagonal array of circular dielectricappearance again. After that, the size of the full band gap
columns of radiug, each connected to its nearest neighborsancreases monotonically with further increasing the radius of
by slender rectangular rods of widith3® The reason of metallic inclusion. The latter result is consistent with early
choosing this geometry is as follows: previous studies indi-observations by other authd®?® On the other hand, the
cate that band gaps f@ polarization are favored in a lattice inclusion of perfectly conducting materials in the air region
of isolated highe region, and band gaps fét polarization  does not “turn off” the full band gap of the dielectric photo-
are favored in a connected lattifeA compromise must nic crystal. In this case the size of the full band gap decreases
therefore be reached between the sizes of the dielectric comonotonically as the radius of inclusion is increased. All
umns and the connecting rods in order to obtain an optimahese peculiar behaviors can be explained on a unified basis
full band gap. In fact, Fig. 2 shows that the optimahd by examining different types of boundary conditions im-
maximun) full band gap is attained when the band gaps forposed on TM and TE modes on the metal surfaces and
TM and TE modes have the simultaneous band gap, or themploying variational arguments based on Rayleigh’s quo-

same band edgés.

tients. Finally, interesting comparisons for the TM modes are

Next, we consider circular columns of perfectly conduct-made with the free-electron model for the metallic compo-

ing material embedded inside the dielectric colunjRgj.
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FIG. 2. (Color onling Band structure computed with a 256
X 256 grid for the dielectric photonic crystal in Fig. 1 witlia
=0.155 andd/a=0.035 fore/eg=13.

nents at different plasma frequencies in the mode shapes and
band structures.

II. BASIC EQUATIONS AND NUMERICAL METHODS

For linear isotropic and frequency-independent dielectric
materials with permeability close to one, the time-harmonic
modes in two dimensions foE polarization(TM) can be

written as
_<i+a_2)E_ (9)2 "
o ay?)- f\c) ™
andH polarization(TE) as
a(1a a(1d w)?
| === )+ 2] H= (2 H @
dX\edX dy\edy c

where E=E, and H=H, are the electric and magnetic field
intensities, respectively, and=«(r) is the dielectric func-
tion. To discretize Eqs(l) and(2), a second order central
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FIG. 4. Domain of computation for the metallodielectric photo-
nic crystal with metallic circular columns embedd@) inside the
dielectric columngb) in the air region.

L . . v
finite difference scheme is used. Inside the perfect conducto

the electric fieldE vanishes, and the magnetic field
may be taken to be zero. The boundary condition on th
perfectly conducting surface fd& andH polarizations are,
respectively,

0, ®3)

JH
E=0 and —
an

where d/dn is the normal derivative at a point on

the surfacé! In the present study, we also consider the

e
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shown in Fig. 4. Bloch’s theorem is applied at the domain
boundary:

Ei(r +a) = €X3E(r), (6)

Hi(r +ay) = €%H,(r), (7)
whereE, andH, are the Bloch functions for the electric and
magnetic fields, respectively, associated with the wave vector
k in the first Brillouin zone, andy (i=1,2) is the lattice
translation vector. For the hexagonal lattieg=a(1,0) and
a,=a(1/2,y3/2). Sincea, makes 60 degrees with the
axis, the application of Bloch’s condition in thedirection
should be additionally accompanied by one half cell in the
x-direction.

From the practical point of view, the first few branches
of eigenvalues are of primary interest. As a first step,
it is natural for us to propose the method of inverse
iteratiorf?*3to compute the eigenvalues as well as eigenvec-
tors from the smallest one. LeA be the discretization
matrix of the differential operators in E@l) or (2) or (5).

The method of inverse iteration is based on the following
equations:

(A—-pul)x=v. (8)
The basic idea is to choogeclose to the smallest eigenvalue
one wishes to compute and do the following steps.

(1) Compute the first eigenpaifa) Pick up a random
vector as the initial. (b) Solve Eq.(8) for x and replace
by the normalized x. (c) Repeat step(b) until
ﬂAv—)\v||2< €, Wheree is a small number. The eigenvalue is
obtained by the Rayleigh quotiettt, Av). The first eigenpair
is denoted by(\4,q4).

(2) Compute the second eigenpaia) Pick up a random
vector as the initial. (b) Solve Eq.(8) for x and deflate the
components ok in the direction of the first eigenvectop
by
9

X — X =(q1,X)qs.

dispersive free-electron model for the metallic components,Replacev by the normalizedx. (c) Repeat stedb) until

2

s(w):l—fg, (4)

wherew, is the plasma frequency. In particular, we compute

the band structures fd polarization. The eigenvalue prob-
lem outside the metallic region is described by Eq.while

|Av =\V|,< €, wheree is a small number. The eigenvalue is
obtained by the Rayleigh quotietut, Av). The second eigen-
pair is denoted by\,,q,).

(3) Compute thenth eigenpair{a) Pick up a random vec-
tor as the initialv. (b) Solve Eq.(8) for x and deflate the
components ok in the directions of the firsh—1 eigenvec-

inside the metallic region it can be recast to the following©"Sd1---dn-1 BY

form:
R
X2 gy?

(O]

Cc

©p
c

RERANE SE

n-1

X = X = X (G X)C-

k=1

(10

For periodic structures, the domain of computation can bdeplacev by the normalizedx. (c) Repeat stepb) until
chosen as one unit cell along with suitable boundary condilAv—Av[,<e, wheree is a small number. The eigenvalue is
tions. For convenience of finite difference formulation, theobtained by the Rayleigh quotietwt, Av). Thenth eigenpair
domain of computation is chosen as a rectangle with thés denoted by(\,,q,).

same area of the primitive cell of the hexagonal lattice as The algorithm of inverse iteration is designed as follows:
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InverseEigen {

for n=11t0S
Initial guessv
do
Solve (A—ul)x=v by LUD or PCG
Deflatex by q; to q,,-1
Setv=x/|x|
Rayleigh Quotient,=(v,Av)
until [[(A=N\p)v|,<e
Setq,=Vv
end }

where\;<A\,<---<\gis the sequence of smallest eigen-
values, andj;...qg are the corresponding eigenvectors. The
inner produck-, ) is defined as

&(rj), for E polarization;
1, for H polarization

xy)= E Wi, W= {

in view of the different orthogonal properties of tkefield
and theH field:

1 f Veene () En(r)En(r)dr = 8, (11)
VceII
1 *
_f VceIIHm(r)Hn(r)dr = 5mna (12)
Vcell

where E,, and H,, are thenth eigenfunctions of the electric
and magnetic fields, respectively,; denotes the volume of
the primitive cell ands,,, is the Kronecker deltaL,UD de-
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FIG. 5. (Color onlineg Computing times in CPU seconds for the
first six eigenmodes at poirK for the metallodielectric photonic
crystal in Fig. 3a) with differentr;/a.

(1) Given random vectors as the initial guesses, compute
the firstn eigenpairsin(”,q(")...(\"”,q'P) on the coarsest
grid level by the inverse algorithm described previously.
(2) Interpolateq.”...q" to the next finer grid level as
the initial guesses. Replat&D in the inverse algorithm by
the multigrid V-cycle solvef?45 and compute the firsh
eigenpairs\'?,q\?)...\?,q?) on this grid level.

(3) Repeat step2) until the eigenpairs on the finest grid
level are obtained.

The algorithm of multilevel inverse iteration is designed

notes the LU decomposition solver for matrix inversion, andg@s follows:

PCG the preconditioned conjugate gradient solver.

In the previous study, we proposed an idea to accelerate

the convergence of matrix inversion in the algorithm. The

idea is to embed inverse iteration in the multigrid accelera-

tion structure. The basic idea of the multigrid metffot? is
to solve the matrix problem by approximating the solution on

a fine grid, solving the residue on a coarse grid, and then

improving the solution on the fine grid. Successively apply-

ing this idea on multilevel of grids causes a relaxation of

errors on different resolution, and hence accelerates the co
vergence of inverse iteration.

Let there bel levels of grids. On each grid leveh, the
differential operator is discretized to form the matAx™.
The inverse method with multigrid acceleration is imple-
mented by the following steps.

TABLE |. Computing times in CPU seconds for the first six
eigenmodes at poirK for the metallodielectric photonic crystal in
Fig. 3@ with differentr;/a.

FMGlInverse {
Call InverseEigenat m=1
for m=2 toL
for n=11t0S
Interpolateq™ " to v(™
do
Solve (AM - u)xM™=v™ by MGV
Deflatex™ by ™ to g™,
Sety™M :X(m)/”X(m)”
Rayleigh Quotient™ = (v(™, Amy(m)
until [[(AM =\, < e
Setq™ =v(™
end
end}
Notice that in the above algorithm, the Rayleigh quotient is

n-

TABLE II. Convergence test for the full band gap against the
grid size for the metallodielectric photonic crystal in Figa)3with
ri/a: 0.1.

Ngrig No metals r;/a=0.01 r;/a=0.02 r;/a=0.05 Ngrid 128 256 512 1024

64X 64 0.203 0.297 0.297 0.438 awyp/ 27 0.5392 0.547 0.547 0.5457
128x 128 0.937 1.391 1.25 1422  awgyl2mC 0.3639 0.3627 0.3538 0.3534
256X 256 3.844 6.922 7.672 6.844 awnigl 27C 0.4516 0.4549 0.4504 0.4496
512x512 12.828 42.125 27.359 32422 aAw/2mC 0.1753 0.1843 0.1932 0.1923
1024x 1024 39.641 179.187 108.171 155.125 Aw/wmnig 0.3882 0.4062 0.429 0.4278
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FIG. 6. (Color onling Band structure computed with a 256
X 256 grid for the metallodielectric photonic crystal in Figag
with r;/a=0.01.

FIG. 8. (Color online Band structure computed with a 256
X 256 grid for the metallodielectric photonic crystal in FigaB
with r;/a=0.1.

updated after each multigrid V-cycle solver which may pro_frequency bands at poimfor the metallodielectric photonic
vide only an approximate solution to the inverse equation. A§rystal by embedding circular columns of perfect conductors

a result, the Rayleigh quotient updates more frequently anli! the base structure. Table | lists the computing times in
converges faster to the eigenvalue. The whole idea of procentral processing uniCPU) seconds for different radii of

0-
posing an inverse method with multigrid acceleration for

metallic inclusion. The computations are performed on a
computing photonic band structures has now become clear€ntium 4-2.8 GHz PC. Figure 5 shows a plot of these com-

ar.” . ;
First of all, the boundary conditiof8) is used to take care of puting times, which demonstrates that the present method is

perfectly conducting inclusions. Second, the deflation in the®f 900d Ordem=Ngq. , ,
algorithm of inverse iteration enables singling out the eigen- . 1 1€ convergence of the computed results against the grid

values one by one from the smallest even when they may peize is illustrated by computations performed on four differ-

degenerate. Third, interlacing the inverse iteration and mul€nt 9rids: 128, 256, 512, and 1024. Table Il lists the re-
tigrid acceleration makes the whole method an amazinglpU!ts of the band edges,, wiow), Midgap frequencywng),

fast algorithm for computing photonic band structures, a®and width(Aw) and gap-midgap ratiéAw/ wpg) for the
demonstrated below. metallodielectric photonic crystal in Fig(& with r;/a=0.1

for the gridNgy,jq= 128X 128. It can be seen that the numeri-
cal results for different grids fluctuate mildly but are in gen-
erally good agreement with each other. In the present study,

_ _ _ _ o A oBEx ; , -
In this study, we consider the dielectric crystal in Fig. 1 asthe grid sizeNgig =256 256 will be used in most computa

the base structure with fixada=0.155 andd/a=0.035 for tions.

= : . Let us now start to study the effect of metallic inclusion
eleg=13. As an example of the test, we compute the first SIXhown in Fig. @) by increasing the radius of inclusiap/a.

IIl. RESULTS AND DISCUSSION
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FIG. 7. (Color onling Band structure computed with a 256
X 256 grid for the metallodielectric photonic crystal in FigagB
with r;/a=0.06.

FIG. 9. (Color online Band structure computed with a 256
X 256 grid for the metallodielectric photonic crystal in Figag
with r;/a=0.2.
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Figures 6—9 present the band structures computed with waveguides. However, the origin of the cutoff behavior for
256x 256 grid, respectively, for;/a=0.01, 0.06, 0.1 and the TM modes of the metallodielectric photonic crystal is
0.2. At the smallr;/a=0.01, there is no longer a full band very different from that of the conventional waveguide. In
gap, and for which we say that the metallic inclusion sharplythe conventional waveguide, the cutoff frequency originates
“turns off” the full band gap of the dielectric photonic crys- from the_sustenance of transverse oscillati‘t?nshile i_n the

tal. In a comparison of Fig. 6 with Fig. 2, we observe that themetallodielectric photonic crystals, the electric fields are
first two branches of TM modes suddenly shift upward, tresidentically zero_|n5|de and_on the surface of the perfect con-
passing into the region of the original full band gap, blockingductors. In particular, consider the TM modes at the symmet-
it completely. The TE modes are relatively inactive to metalfiC POINtI'. If the zero-frequency solutiotwithout a cutoff

inclusion, and the band structure almost remains unchangeg.equency is allowed in the crystal, the electric field should
The trend of the upward shift of TM modes continues. As e constant everywhere outside the perfect conductors. By

r./a is increased to about 0.06g. 7), the full band gap the continuity of the electric field at the metal boundégy

remains in the “off’ state. However, the lower edge of thezo)’ this constant must be zero, resulting in a trivial solution.

. . Therefore, TM modes with zero frequency do not exist, mak-
first TM branch is about to move away from the upper edgemg an appearance of the cutoff frequency. On the other hand,

of the f'.rSt TE b_ranqh. Meanwhlle, '_[he band gap of the TEthe cutoff behavior is not observed in TE modes for metall-
modes is widening in size. After this threshold valufa yigjectric crystals. This is because constant solutions with
=0.06, the full band gap makes its appearance again, S008erq frequency are allowed in the crystal without violating
becoming widely open as the radiysa is further increased. the boundary conditioigH/dn=0) for TE modes.
At ri/a=0.1, the lower edge of the first TM branch ap-  The variational analysis based ©b3) and (14) argues
proaches the upper edge of the widely opened band gap @hat both TM and TE modes favor accommodation of their
the TE modes. At even larger/a, the upward-shifted TM  ejgenfunctions in highs regions in order to minimize the
modes have moved completely out of the region of TE bandRayleigh’s quotients. However, because of the different
gap, leaving the full band gap size to be solely determined byoundary conditions, the inclusion of metallic components
the TE modes. In the meantime, the first few branches of TMepels the eigenfunctions of TM modes outward from the
modes are flattening out with the group velocity almost ideninclusion more effectively than those of TE modes. In the
tically zero(Fig. 9). These phenomena demonstrate that thgirst place, we consider the dielectric photonic crystal in Fig.
metallodielectric photonic crystals behave more like metallici and plot the first three eigenfunctions in magnitude at point
photonic crystals at large/a. This can be reasonably ex- T" for TM modes in Fig. 10 and for TE modes in Fig. 11.
pected because af/a=0.155 the metal inclusions have al- Since there are no internal boundary conditions, both modes
ready replaced in full the circular dielectric columfia  allow zero-frequency eigenfunctions. As expected, all the
=0.153. As the metallic components become large enougheigenfunctions except the zero-frequency ones are concen-
the eigenfrequencies of TM modes tend to be flattened®ut. trated on and around the highereircular regions, but the
Eventually these TM modes become standing waves with n@M eigenfunctions are more spread out. For a strong con-
dispersion. In the limiting case when the conducting materitrast, we next consider the metallodielectric photonic crystal
als connect to each other, both TM and TE band structurei Fig. 3(a) with r;/a=0.02 and plot the first three eigenfunc-
are straight lined? This is a typical behavior of the resonant tions in magnitude at poirif for TM modes in Fig. 12 and
modes of cavity® They are standing waves confined andfor TE modes in Fig. 13. For TM modes, the argument based
resonant in the dielectric region with eigenfrequencies indeen the boundary condition has excluded the possibility of
pendent of the wave vectors. The propagation of electromagzonstant eigenfunctions. All the three eigenfunctions rise
netic waves is shielded and neither electric field nor magsharply from 0 at the metal surface to peak values, causing
netic field could penetrate the conducting materials. large gradients in the eigenfunctions and thus contributing to
The behaviors observed may be explained by consideringhe sudden upshift of the eigenvalues. On the other hand, the
the different types of boundary conditions(@) for TM and  boundary condition for TE modes does allow constant eigen-
TE modes, and employing the variational argument based ofunctions, and only requires at the metal surface a round
the Rayleigh quotients: shape of the eigenfunctions around the rim of the metal in-
5 clusion. This requirement does not change effectively the TE
_Svcell [VE[*d7 (13) bands and the shapes of the corresponding eigenfunctions.
™™= fv_ e|E|%d7’ There is one further comparison with the case of dielectric
cel photonic crystals that for either TM or TE modes, the eigen-
functions of the metallodielectric photonic crystals tend to be

Ty 1|VH|2dr even more concentrated on and near the annular dig#-
Qre= celg (14) gions for better minimization of the Rayleigh’s quotients.
TE™ fv |H|2d7- ’ This is no longer possible if the radius of metal inclusion

cell

ri/a comes close to that of the dielectric circular columns
respectively, for TM and TE modes, where we recall thatr/a=0.155. The eigenfunction of the first TM mode rises
Veei denotes the volume of the primitive cell. The inclusion more abruptly from 0, while the first TE mode can adjust
of metallic materials significantly modifies the band structureitself to be an even smoother function.

of TM modes by introducing a zeroth-order band gap, Figure 14 shows the gap map computed with a 128
which is analogous to the cutoff behavior of conventionalx 128 grid for the metallodielectric photonic crystal in Fig.
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FIG. 10. (Color onling The first three TM eigenfunctions in
magnitude at point” for the dielectric photonic crystal in Fig. 1.

3(a) by varying the radius;/a. As the shifted TM bands are
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FIG. 11. (Color onling The first three TE eigenfunctions in
magnitude at point’ for the dielectric photonic crystal in Fig. 1.

Fig. 7. It is noticed that for large size of metallic inclusion,

trespassing into the original band gap region of the dielectri¢he full band gap is very large because the zeroth-order band
photonic crystals, the band structure remains in the “off’gap for the TM mode covers the whole band gap for TE
state. By increasing the size of the metallic inclusion above anode. This phenomenon was also identified in Ref. 28.

threshold value, the full band gapf the metallodielectric

On the other hand, we consider metallic inclusions in the

photonic crystalsopens again and its size continues to growair region, as shown in Fig(8). The full band gap decreases
as the upward shifted TM bands are moving away from thenonotonically in size and finally diminishes to zero with
upper band edge of the TE band gap. In this case, the threshicreasing the radius;/a of metallic inclusion. Figure 15

old value of the metallic inclusion is about/a=0.06, and

shows the gap map computed with a 22828 grid by vary-

the corresponding band structure at this inclusion is shown iing the radiug;/a. It is observed that the cutoff behavior for
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FIG. 12. (Color onling The first three TM eigenfunctions in FIG. 13. (Color onling The first three TE eigenfunctions in
magnitude at point” for the metallodielectric photonic crystal in magnitude at poinf” for the metallodielectric photonic crystal in

Fig. 3(a) with ri/a=0.02. Fig. 3@ with r;/a=0.02.

TM modes also exists, as in the case of metallic inclusion in

the dielectric region. But the shifted TM bands do not tres-smaller. Meanwhile, the TE band gap begins to shrink and
pass into the original band gap region of the dielectric phofinally leads the full band gaps to close. Figure 16 shows the
tonic crystal, and the band structure remains in the “on’detailed band structure for the metallodielectric photonic

state. In fact, only the first TM band in a portion near padint

crystal atr;/a=0.005. In comparison with Fig. 2, the band

is substantially shifted upward, while all the other higherstructure is almost identical to that for the dielectric crystal

bands are changed only slightly. The fie{d$vi and TE in

without metallic inclusion except the first TM band near

the air region are relatively weaker than in the dielectricpointI'. Figure 17 shows another band structure at the larger
region, and therefore the effect of metallic inclusion isrj/a=0.1. In this case, the band edges of the TE band gap
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FIG. 14. A map of band gaps computed with a ¥2B28 grid r M K r
for the metallodielectric photonic crystal in Figia3 by varying the ) )
iusr FIG. 16. (Color onling Band structure computed with a 256
radiusr;/a.

X 256 grid for the metallodielectric photonic crystal in FighB

. with r;/a=0.005.
become close to each other, making the full band gap :

smaller.

Next, as an intermediate structure, metallic component§n
are only included in one of two dielectric circular columnsep
for each primitive cell. It is expected that the band structur magnitude at pointl’ for TM modes for r./a=0.02 at

also behaves in an intermediate manner. This is indeed thSpa/ZTrc:l. The mode pattern is very similar to Fig.(b2

i?sa?]%t?ﬁrﬁ:e?ngﬁbﬁ tgi ?ﬁgg;ﬂ'gf’:gﬁ;ﬁ .n:(ra]tea Ifltjc,!l lggr?]d g_aﬁ is noticed that the field inside the metal is not forced to
ts, but is divideginto two branchesra& is increased trz) zero and the boundary conditiaB) is not applied on the
gggu{ 0.014. The upper branch diminishes to zera &5 _metal surface._As a result, the field may somgwhat penetrate
reaches. 0 0'3 while the lower branch continues tlo gro mto'the metallic region ar)d _no'sh.arp discontinuity exists in
gradually iﬁ si,ze which is however smaller than the case o he interface. In spite of similarity in mode shapes, the band
' structures could be very different depending on the plasma

double inclusion(cf. Fig. 14). These behaviors can also be
explained as the result of the upward shift of the first two TME:ggegt% cltrll rc;rsde; rt; Z?gsaert]:ggd f,t(;‘girg gle rfaetctdcift?g:jeunc;tors,

gf: ggs';‘]s(;‘u/ ahlfolrr]r?;ekistii ];lrrc')s,TT?\/l ttt]aengrz:vrvc?stg tﬁé‘f;;g_otaplasma frequencies,a/27c=1, 4 and 8. At the lower value
9 g 9 pa/2mc=1, Fig. 20 shows that the band structures are quite

region of TE modes, while the second TM band does treESpaS(ﬁf'ferent from those presented for the case of perfect conduc-

Ir?etl(r)rct\r/]veerrei}r?lggéIr:j:)rjssai?sclgr% ﬁzteelse;g::?( ;I;]'\g tk))::g t;elr; rs in two places(i) the cutoff frequency of the first band is
the TE modes Iéadin toa divigion gz‘the full band ag iﬁto elatively small, andii) the band gap is wide-open between
' 9 9ap the second and third bands. At the medium valya/27c

two branches. As;/a is further increased, the upward shift _ ;
of the second TM band eventually makes the upper brancﬁ4’ Fig. 21 shows that the cutoff frequency becomes larger

disappear. At large;/a, the band structure is the balanced While the band gap between the second and the third bands
result of both effects of metallic and dielectric components.

Finally, we consider the free-electron modé) for the
etallic components and compute the band structureg& for
olarization. Figure 19 shows the second eigenfunction in

1 T T T T
5 5 b oot -
| B Full band gap i —
R 0.8 E
E 07 - ° E \5
E‘ o SRR % < .
§ 0.4 RERRRRRRRRRERRRRRRRRRRS E2 » -,
= 19 < 5
2ot \J v 4 ,
02} \\\\\ 4 ",
0.1 __9 E polarizati ™\
0 \\\\\\\\\\\\\\ e Flan N
0 0.05 0.1 0.15 0.2 0.25 0
Radius (r/a) r M K r
FIG. 15. A map of band gaps computed with a ¥B8 grid FIG. 17. (Color onling Band structure computed with a 256
for the metallodielectric photonic crystal in Figi3 by varying the X256 grid for the metallodielectric photonic crystal in Fighg
radiusr;/a. with r;/a=0.1.
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FIG. 18. A map of band gaps computed with a ¥2B28 grid B M K T

for the intermediate metallodielectric photonic crystal by varying
the radiusrj/a.

FIG. 20. (Color online A band structure computed with a 256
X 256 grid for the metallodielectric photonic cryst&iee-electron

becomes smaller. At the large valuga/2mc=8, Fig. 22 ~ Moded in Fig. 3@ with 1;/a=0.01 andwpa/2mc=1.
shows that the cutoff frequency is even larger and has the : . : .
value 0.188 which is pretty close to 0.211 in Fig. 6 for per-m a dielectric photonic crystal. Th_e metalllc_ components are
fect conductors, while the band gap between the second ar];ﬁSt mod_eled as perfectly qondut_:tmg matfar[als_. In p_art|cular,
the third bands is now very small. A close comparison ber's can|der two cases .9f .'”C'“S'O!’“ me_-taksm&de dielec-
tween Fig. 22free-electron modeland Fig. 6(perfect con- trlc.cwcular cqum_ns, ofii) in the air region of a hexagonal
ductorg shows that the whole band structures for TM modeslattlce. made of silicon and ‘.”1('8/80_13)' The two types of

qt:gclusmn have completely different effects on the band struc-

are in close agreement with each other. These trends a d In th i the full band . ddenl
expected because as the plasma frequency becomes lar fi,’lr,es an Qaps- h the c'ae_ag € full’band gap IS su an
urned off” upon metallic inclusion, remaining in the “off

the dielectric function becomes more negative. EquivalentlySt 1 il th d finclusi h threshold val
the index of refraction is purely imaginary and large in mag- ake_ un_; € radius otinc l_JSlor_1threfacthes a thresno tr\]/a ue,
nitude. The fields inside the metallic region are thereford@KINg IS appeéarance agan with furthér increéasing the ra-
evanescent modes. In the limit of perfect conductors, th?us, and eventually behaving like metallic photonic crystals.

evanescent field is completely expelled from the metal an or the casgii), .th'e full pand gap only cha.ng.eg slightly in
vanishes there. size upon metallic inclusion, but gradually diminishes to zero

with increasing the radius of inclusion. These different trends
of behavior have been successfully explained on a unified
basis by examining the different types of boundary condi-
. . . tions for TM and TE modes at metal surfaces, and employing

In_ th'S study, we have extended an inverse method W'tr};\ variational analysis based on Rayleigh’s quotients for the
multigrid acceleratioff to compute the band structures of TM and TE modes. Moreover, intermediate dielectric photo-

two-dlmens_lona_\l metallodielectric photonic cry_sta_lls. T.henic crystals are shown to exhibit intermediate behaviors in
present article is focused on the effect of metallic |nclu5|or1the band structures

IV. CONCLUDING REMARKS

wa/2nc=0.4144 0.8

0.7

06

0.5

= 0.4
—

DR
N RS

Frequency (wa/2mc )

—
R _ 03 / =

0.1

0
04 0.4 r M K r

FIG. 19. (Color onling The second eigenfunction in magnitude
at pointI” for the metallodielectric photonic crystéiree-electron
mode) in Fig. 3@) with r;/a=0.02 andw,a/2mc=1.

FIG. 21. (Color onling Band structure computed with a 256
X 256 grid for the metallodielectric photonic crystélee-electron
mode) in Fig. @) with r;/a=0.01 andw,a/2mc=4.
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08 the ordinary sense. On the other hand, computation of the
modes ofH polarization is further complicated by the exis-
tence of resonant modes near the surface plasmon frequency.
. This special feature associated only with tHepolarization

\ has been studied using finite-difference time-domain
"
o

0.7

06

-\__’__
———
05 = method* and multiple multipole metho#. The latter refer-
\ ence might suggest that in the present formulation the eigen-
04 |- . .
value problem of théd polarization could be attacked by the
= 4 technique of detection used in nonlinear eigenvalue prob-
lems. For dissipative metallic materials, both the dielectric

= function and eigenfrequencies become complex. In addition

0.3

Frequency (wa/2mc )

0.2

L] ([ 2 . .
o : 4 | to the plasma freqL_Jency, the relaxation tlme of the free e;lec-
. tron may also play important roles on the dispersion relations
0 of metallic photonic crystalgcf. Refs. 34 and 3 These
r M K I more challenging topics are currently being under investiga-

FIG. 22. (Color onling Band structure computed with a 256 tion,_ and the results will be reported_ elsewhere. . .
X 256 grid for the metallodielectric photonic crystétee-electron Finally, some comments are available for possible fabri-
mode) in Fig. 3a) with r;/a=0.01 andw,a/2mc=8. cation of the proposed metallodielectric photonic crystals.
The following procedures of microelectronics fabrication
The perfectly conducting materials as metallic incIusiontsﬁl?gg:I?Sg%lgw(r;i)égervgtttgigéjrp;ns(?';?Cahe%f'{(s)t &heasdeégxz d
present an ideal case for studying the metallic shielding ef= P ' P ’

fects on photonic structures. More real and complicated pheqepth for the region of metallic components. In the second

nomena may resort to the study of dispersive, and even dié)-hase‘ the metal_|s deposnedi with hlgt;ﬁé)ressure, a_nd pro-
sipative effects of metallic materials. In this study, we alsoCessed by c_hem|cal mechar_ncal polishingin ‘the third
consider the dispersive free-electron model and compute tl"%h"’lse’.the silicon and metal IS patterned and etcheq for the
band structures for the modesBfpolarization. The numeri- ar region. T_he_n, the _surface is processed by_ chemical me-
cal results are presented at different plasma frequenciecshamcaI polishing to improve the surface quality.

wpal 2mc. It is shown that aso,a/27c becomes large, these
modes show close similarity to those computed for the me-
tallic components modeled as perfect conductors. However, This work was supported in part by Industrial Technology
the present method cannot be applied straightforwardly té&Research Institute under Contract No. 92S-23-N0, National
compute band structures ¢f polarization. On one hand, Science Council of the Republic of China under Contract
computation of the band structurestéfpolarization cannot No. NSC 91-2212-E-002-072, and the Ministry of Economic
be obviously recast to a standard eigenvalue problem: thaffairs of the Republic of China under Contract No. MOEA
eigenfunctions no longer constitute an orthogonal family in92-EC-17-A-08-S1-0006.
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