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High resolution finite difference schemes for solving the nonlinear
model Boltzmann equations are presented for the computations of
rarefied gas flows. The discrete ordinate method is first applied to
remove the velocity space dependency of the distribution function
which renders the model Boltzmann equation in phase space to a
set of hyperbolic conservation laws with socurce terms in physical
space. Then a high order essentially nonoscillatory method due to
Harten et al. {J. Comput. Phys. 71, 231, 1987} is adapted and ex-
tended to solve them. Explicit methods using operator splitting and
implicit methods using the lower-upper factorization are described
to treat multidimensional problems. The methods are tested for
both steady and unsteady rarefied gas flows to illustrate its potentia!
use. The computed results using model Boltzmann equations are
found to compare well both with those using the direct simulation
Monte Carlo results in the transitional regime flows and those with
the continuum Navier-Stokes calculations in near continuum re-
gime flows. © 1995 Academic Press, Inc.

1. INTRODUCTION

The transitional regime flow between continuum regime and
free-molecule flow has remained one that is difficult to treat
either experimentally or theoretically. Recent engineering de-
velopments of current and projected space vehicles such as
Aeroassist Flight Experiment (AFE) vehicle and Aeroassisted
Space Transfer Vehicles (ASTVs) are concerned with aerother-
modynamics of hypersonic low-density flows, particularly in
the transitional regime. Another important application involv-
ing transitional regime flow is in the field of the microelectronics
industry in which plasma processing is being used to fabricate
solid thin film. The microgeometrical flows used in the mi-
croelectromechanical systems (MEMS) exhibit, too, the charac-
teristics of noncontinuum gas dynamics. The physical parame-
ter which characterized the transitional regime flow is the
Knudsen number which is defined as the ratio of the mean free
path to the characteristic dimension, For the hypersonic high
altitude, low-density flows the characteristic length is fixed
while the mean free path is getting larger as the vehicle flies
at higher altitude and the Knudsen number becomes larger. For
the plasma processing, such as etching and sputtering, the mean
velocity and thermal velocity are low; however, the characteris-

tic length is very small. Thus the Knudsen number is large.
The capability to accurately predict the rarefied gas flows over
the complete spectrum of flow regimes is, thus, very desirable.

The use of continuum Navier—Stokes equations is known
to be inadequate for treating this transitional regime and the
Boltzmann equation based on the kinetic theory of gases needs
to be used. Due to the complexity of the nonlinear integral-
differential nature of the equation, analytical solutions of the
Boltzmann equation are rare and approximate or numerical
solutions may be sought. The most commonly used numerical
method for solving the Boltzmann equation is the direct simula-
tion Monte Carlo (DSMC) method due to Bird [3]. A statistical
particle-in-cell method similar to Bird’s DSMC method for
solving rarefied gas dynamics problems has also been developed
by Belotserkovskii and Yanitsskii [4]. Applications of DSMC
method to a wide variety of rarefied gas flow problems have
been illustrated. The difficulties encountered in the solution of
the Boltzmann equation are mainly associated with the nonlin-
ear integral nature of the collision term. To circumvent this
difficulty, statistical or relaxation models were often proposed
as substitutions. The kinetic model equation proposed by Bhat-
nagar, Gross, and Krock [5] (BGK) provides a more tractable
way to solve comparatively complex rarefied gas problems
routinely. Several model equations for the nonlinear Boltzmann
equation have been proposed such as the ellipsoidal model by
Holway [13], the high order generalization of the BGK model
by Shakov [22], and the polynomial model by Segal and Fer-
ziger [21]. A hierarchy kinetic model equation similar to that
of Shakov was also proposed by Abe and Oguchi [1]. These
kinetic model equations bear a resemblance to the original
Boltzmann equation concerning the various order of moments.
In addition, the continuum Navier-Stokes equations can be
derived from these nonlinear model Boltzmann equations using
a Chapman—Enskog procedure [7, 8]. Thus, instead of solving
the full Boltzmann equation one solves the kinetic model equa-
tion and hopes to produce a more economic and efficient way
of computing rarefied gas dynamical flows. Recently a new
hydrodynamic code based on the solution of the BGK Boltz-
mann equation was presented by Prendergast and Xu [17] in
which a Boltzmann type scheme was employed.
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In this study, we consider accurate numerical methods for
solving the kinetic model Boltzmann equations. The approach
taken here is to apply the discrete ordinate method {14, 24] to
the distribution function to replace its continnous dependency
on the velocity space by a set of distribution functions which
are continuous functions in physical space and time but point
functions in velocity space. The resulting set of partial differen-
tial equations are of hyperbolic type and can be cast into hyper-
bolic conservation laws form with nonlinear source terms. Once
this is done, modern upwind shock capturing methods [12, 19]
can be adapted and applied to solve them. Here, we extend and
apply the high-order nonoscillatory method [27], which we
developed out of the original works of Harten et al. {10, 11]
for the Euler equations of gas dynamics to rarefied gas dynam-
ics. Qur aim is to present high resolution numerical methods
for the computation of rarefied gas flows over obstacles of
arbitrary shapes covering the full spectrum of flow regimes
using kinetic model Boltzmann equations. We compare our
computations with experimental results and DSMC calculations
whenever available. Comparisons of computations of flow in
the near continuum flow regime using both model Boltzmann
equations and Navier—Stokes equations are also included.

The structure of the paper is as follows. In Section 2 the
governing model Boltzmann equations and related formulations
are given. In Section 3 the use of the discrete ordinate method
to discretize the distribution function which reduces the equa-
tions to a set of hyperbolic conservation laws with a source
term is described. In Section 4 accurate numerical methods to
integrate the nonhomogencous hyperbolic conservation laws
are proposed. Both explicit and implicit methods are included.
In Section 5 numerical results for one- and two-dimensional
rarefied gas flows are presented to demonstrate the use and to
test the accuracy of the numerical methods. Some concluding
remarks are given in Section 6.

2. THE GOVERNING EQUATIONS AND FORMULATIONS

We consider a class of mmodel Boltzmann equations of the
form

L
TV =D M

where f(x, v, } is the velocity distribution function which
depends on space, X, molecular velocity, v, and time, 1, v is
the collision frequency and f¥ is an appropriate distribution
function depending on the model selected. The number density,
macroscopic flow velocity, and temperature of the gas are the
first three moments of the distribution function

n(x, 1) = J f%,v, 0 d, : 2)

nie(x, ) = J vf v, 0 di, i=1,2,3 3)
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2
%_R.Tlx_’t_)zjg'ﬂf(x’ v, t)dav_ (4)
2 2
Here, R is the gas constant, ¢ = v — u(x, #) is the peculiar
velocity of the molecule. The gas pressure p and the stress
tensor 7, are defined by

pix, 0 = n(x, HxT(x, 1) {5)

7,0 = [cof v, 0 d — ps, ©)

where « is the Boltzmann constant and &; is the Kronecker
delta. The heat flux vector q is

gix, 1) = f%zcif(x, v, ) d’v. (N

The elastic collision frequency is of the form

v=n«l/w, (3
where g is the viscosity and is assumed to have a tempera-
ture dependence

i = (TIT P (9

Here y is a constant for a given gas. If we assume the depen-
dence of the viscosity on the temperature as for the Chapmann-
Enskog gas of inverse { power law, we have y = ({ + 3/
[2¢Z — 1. For Maxwell molecules, { = 5 then y = 1; thus the
collision frequency is independent of temperature. The viscosity
coefficient w., is related to the freestream mean free path A.
by the relation

Mo = 15 =27 RT2) " Aw . (10
In this study we consider two kinetic models for f¥; one is the
BGK model and the other is the Shakov model. For the BGK
model, we have ¥ equal to the local Maxwellian distribution fi:

= f= n(x, 1) xp[—(v — u(x, I))z]. (an

(27RT(x, )" IRT(X, 1)

For the Shakov model, we have

2
£ =f,,,[1 +(1 - Pr)c~q(}—§?— 5)/(5pRT)]. (12)

Here, Pr is the Prandtl number and is equal to % for a mon-
atomic gas.

We note that the derivation of the continuum Navier—Stokes
equations from the BGK model or the Shakov model can be
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obtained using a Chapman—Enskog procedure (see Chapman
and Cowling [81).
Reduced Distribution Functions

To illustrate the numerical method, we describe the relevant
governing equations for two-dimensional problems. First, to
reduce the computer storage requirements, the reduced distribu-
tion functions [9] are conventionally introduced:

g0y 10, v) = [ fley v dv,, (13a)

Wyt v v) = [ vifoyavde.  (13b)

A characteristic velocity C, and time t.. can be defined

Co=V32RT,, t.=LIC,,

where L is a characteristic length of the problem.
The definitions of nondimensional variables are introduced as

f=the, b, =ulCa, b,=ulC., 0;=v/C.,

A=ning, T=TIT., p=plGmn.CL), %, = n/mn.CL,
G = q/Gmn,CL), x=x/L, $=ylL,

2 =g/(nICY), h=hin,, G=Gl(nJCL), H=Hin..

After nondimensionalizing the equations and integrating out the
v, dependence in Eq. (1) using (13}, the single model Boltzmann
equation in three space dimensions reduces to two simultanecus
equations in two space dimensions and can be cast into conser-
vation law form as

99  of ok _ o (14a)
dt c')‘x Iy
where
" ¢ A! A! f’ Al’! A\ A U‘IA A Fo 8
Q:(gﬂ( .)j o ‘))’ F}c:(A‘?)’ F¥= :‘?
h(d?y! ’ J’!U\) U,(k U\!r’f
i (14b)
. (?)(G”—g))
S= .. .
WHY — h)
In Eq. (14),
A2
Gw[l +1 ~Pr)cq,(2—75} 4) %p)] (15a)

-~ "2
av = HM[I + (1 — PO&g; (2‘3 2)
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Gy = ﬁ[n'r]?').‘1 exp[—(dx &) ; @~ g‘)z]f (16a)
Ay =3TGy. (16b)
and
FT-x
Ve ?\IZ_TKH' D
In Eq. (17), Kn = A./L is the Knudsen number. A
Without causing any confusion we shall drop the “* ™’ sign

in the equations in the following. The macroscopic moments
are found as

- J:, J':, gdv, dv,, (180

1 (e (= B

,;J’_W J_m UigdU,:dU). (; = 1‘2) (lgb)
3 e (= o -
2 al = ka J_w hdv, dv, + Jw j_m io, - 1)

-+ (U_\‘ — uy)z]g dU, dv)_, (ISC)
p=nT, 150
= f:, ,( :ﬂ Vg du, doy — Ry

) %Mj =12 (18¢)

j f 28 Ul + (Uz + Ul)g] dUK d{)y

-2 2 Uy J:ﬁ f:: vu.g du, dU_;.

> 2 3 o
nul + ) = ST, (i=1.2).  (18f)

General Curvilinear Coordinates

In order to treat general geometry we consider the conserva-
tion equations of the two-dimensional rarefied gasdynamics in
general coordinates (&, 1),

aF?
an

99

ar r3§ =8, (19a)

where

0= (i) Fé=j (gi) Fr=J (“;f!) (19b)

with U = Lo, + &u,, V = 9o, + nu,.
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14 @) 14 . The metric Jacobian and the metric terms are given by
1.2 1.2
1.04 1.0 N J= gxn}‘ - §ynn fx = qu: ™= _Jy.fs (20)
‘g 9.8 3 o %\ﬂ‘s- §} = Jxy, = Jxe
5 0.8 e E 0.0 5 . ) .
2 el S sl The Jacobian ceefficient matrices Af = ¢F99Q and A" =
0.0 02 aF™aQ of the transformed equations are diagonal and have
' real eigenvalues
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F1G. 2. BGK model solution of the shock-tube problem for several Knud- .
sen numbers. Density profiles: symbols denote the comnputed solution and solid FIG. 3. BGK model solution of the shock structure problem in a gas of

lines denote the Euler exact solution. {ay Kn = 0.1; (b) Kn = 0.01; {c) Kn =  inverse power law molecules (M, = 9.0} (a) normalized density and (b) heat
0.001; (d) Euler limit solution. flux profiles.
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consists of replacing the integration over velocity space of the
distribution functions by an appropriate quadrature, requires
the values of the distribution function only at certain discrete
velocities. The choice of the discrete values of velocity point
is dictated by the consideration that our final interest is not in
the distribution functions themselves but in the moments.
Hence, the macroscopic moments given by integrals over mo-
lecular velocity space can be evaluated by the same quadrature,
The discrete ordinate method is then applied to the set of
equations (19) for the (v,, v,) velocity space and the resulting
differential equations are

80,5 . OF %, . AFT,

= 8.5
2 Y. an 5 (22)
0= ) (ga,a(& 7, t)) e 1 ( Uu,aga.a)
v ‘] hn‘.{i(gs n: I) ' v J U(Lﬁha,ﬁ '
V.58, WGos— 8as)
F3.§=1( ’ 5),Sm,s= ( ’ “). (23)
J Vu‘ﬁhmé y(H;'.ti - ho’.?})

Here, g,4. hss, Gas, and H, s represent values of g, 4, G, and
H evaluated at the discrete velocity point (v,, vy (o =
NS L LGNS = N, L =L L L NN, and N,
denote the number of discrete quadrature points used in the U,
and v, directions, respectively. Two types of discrete velocity
quadrature rules are used in the discrete ordinate method. One
is the Gauss—Hermite rule and the other is the equally spaced
Newton—Cotes rule. Also applying the discrete ordinate method
to evaluate the integrals appeared in Eq. (18); they are expressed
as, according to the Gauss—Hermite guadrature,

[ exp-vswr o = 3 W s, 24)

where v, (o = 1, ..., N) are the positive roots of the Hermite
polynomial of degree N and the W,'s are the corresponding
weights of the Gauss—Hermite quadrature. Both full-range and
half-range Gauss—Hermite quadratures are needed. It can be
shown that the above quadrature formula is equivalent to ap-
proximate Maxwellian distribution (which is Gaussian) by the
discrete distribution

N
e’ = Z:l W.8(u — v,), (25)

where & is the Dirac delta function. This can be considered as
the optimal discrete approximation in the sense that the first
2 moments of the Maxwellian distribution can be exactly du-
plicated,
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Shock Structure
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FIG. 4. Shakov model solution of the shock strugture problem in a gas
of inverse power law molecules (M, = 9.0)%: (a) normalized density and (b)
heat flux profiles.

N
f: e ul du = f: ; W.8(u — v du
(26)

N 1 (z+1)
= W":_ —
; wi=s——).

where / =0, 1,2, ..., 2N — 1 and I represents the usual gamma
function. The discrete velocity points and the corresponding
weights can be obtained using the algorithms described by
Huang and Giddens [15] and by Shizgal [24]. The advantage
of using Gauss—Hermite quadrature is its high accuracy, but
for high freestream Mach number flows the number of discrete
points needed to cover the appropriate velocity range could
become quite large. To attack hypersonic rarefied flows (i.e.,
high speed ratio § = U./(2RT.)'™?), composite guadratures
based on equally spaced Newton—Cotes formulas are more
convenient. In this study we employ an equally spaced three-
point composite Simpson’s rule to discretize the distribution
functions and to evaluate the macroscopic moments for free-
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FIG.5. A comparisen of BGK and Shakov models for the shock structure
problem in a gas of inverse power law molecules (M, = 9.0, { = 20):
(a) normalized density and (b} temperature profiles.

stream Mach number higher than five. The repeated Simpson’s
rule over an interval [g, b] divided into N panels of width
h=(b— a)Nis

[* stwydo =2 tgta) + 4gta + 1y + 250+ 200

"3
(27)
o+ dgla+ (N — DY+ g0 + Eginy.

The error bound is

NEMY _ (b —aM®
180 180 ’

|E51mp| =

(28)

where

M“) = SupsE{a‘bSlgm(S)) l

Here, g denotes the ith order derivative.
It is noted that a compact choice of discrete ordinates in
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T=0.1 T=0.2
T=0.3 T=0.4

T=1.0

=12

Density Contour M,=2.81 Kn=0.005 +=5/3
Ne Vel. slip Grid(241x121)  Shakov Model

FIG. 6. Shock diffraction around a circular cylinder in a rarefied gas based
on Shakov model using the ENO2 method (M, = 2.81, Kn = (.0035). A series
of isopycnics at different times.

velocity space which used only three-point Gaussian quadrature
in one dimension has been employed in the beam scheme by
Sanders and Prendergast [20] to treat equilibrium gas Hows,
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FIG.7. Supersonic rarefied flow past a circular cylinder, M. = 1.8, Kn., = 0.001. BGK model: (a) pressure; (b) density; (c) temperature; (d} Mach number
contonrs; (e) wake streamlines.
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i.e., inviscid Euler equations. In this work, we not only need
to solve the discrete distribution functions (not in equilibrium)
but also to use them to evaluate the macroscopic moments by
numerical quadratures. The selections of the discrete velocity
points and the range of velocity space in the Newton—Cotes
formulas are somewhat ad hoc and problem dependent.

Once the discrete distnibution functions g, and A, are
solved, one can obtain all the moment integrals using Gauss—
Hermite quadrature as

o« ® 2 2 2 2
j . f_m (g(v,, vy, x, y, De%e%)e e ™ du, dv,

n =
N Ny
= > X W Wilgaet e, (29)
T==N| d=—N,
1 Nl NZ
Uy == 2 W Wv.g,.e ), (29b)
N a==n, §=—N,
? Nl N:
ST= Y 3 WWilhes + UL+ vdg, e el
2 a=—N, 6=—N2 X '
— n( + ul), {(29¢)
p=nT, (29d)
NN,
Ty = 2 2 Wa'Wﬁ(UUUSgU.é‘eUE’ ev‘%) — R, (296)
o=—N, JZ—NZ
N Ny
9. = ZV 5Zv W W3 (s + (U3 + 03)gaslets &
O=TN 0= Ay,
Nl N2
=2, > > W Walg,et e
o==N d=—N,
Ny Ny
= 2u, D> > WW g, €'
T g=—N, 85N,
2 2 3
ol o) — EnTux. (291)

Other quantities such as u,, 7., ¥, and g, can be similarly
obtained. Expressions using Simpson’s rule can be analo-
gously defined.

4. NUMERICAL METHODS

In this section we describe the numerical algorithms for
solving the set of equations, Eq. (22). Both the time-accurate
explicit method using operator splitting for unsteady flow prob-
lems and implicit method using lower—upper (LU) factorization
for steady-state calculations are considered. We follow and
extend our previous work [27] for the hyperbolic conservation
laws of gas dynamics to include a source term. Some general
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remarks can be given here. When explicit methods are used to
integrate the equations for g, ; and A, one can decouple the
equations and solve them separately. When tmplicit methods
are employed, the equations in general are coupled through
the jacobian of the source terms since the source terms are
functionals of g, and f,;s. In the following we still keep the
equations in vector—matrix form and with the understanding
that they can be decoupled into scalar form and solved in
scalar manner.

Define a uniform computational mesh system (£, ;) with
mesh sizes Af = An = 1 and let Q% denote the value of
Q at time level a Ar, position (j A&, k Axn) and discrete ve-
locity point {v,, vs). Define the difference of the character-
istic variables in the local -direction and #-direction respec-
tively as

£ —
Eiinios = (Ointkes = Qe Ji1rks

1208 = (Qj,kﬂ.aﬁ - Qj.k,a,s) Jj.k+h‘2s

(30)

where Jypr = (i + /2

Explicit Method

To integrate the set of Eqgs. (22), we employ time (or operator)
splitting as

Q.65  OF%;
— —=1{ 31
a9 (31a)
aQU5 aFg.t?
R L i
ot S, 31b)
aQa‘J
= =8, 31
61‘ o8 ( C)

The time-splitting method described above closely patterns the
procedure first proposed by Bird and used in particle schemes,
in which free molecular motions and the intermolecular colli-
sions are two independent stages of the algorithm that uptake
the particle position and velocity.

In terms of operator form we have the time integration
scheme as

Q.1+ 2AD

= LANLLANLAADE, (ADLLADL(ANQ, o0, 5D

where the time step Af is chosen to be less than the local
mean collision time, 7. The time integration of the governing
equations is carried out on each pair of discrete velocity points
{v,, Us) with finite difference approximations. Without causing
any ambiguity, we omit the subscripts (o, &) in the operators
£, £, and £, to be described below.
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The integration of the source term is done using a second-
order Runge—Kutta method,

Qf = £(ANQ7 = Q) + AtS],,
Qn+l Q

(33a)

+ FAHLON + L.08). (33b)

The one-dimensional space operator £:(At) is defined by

= EANQN = O — AHFY e — Flliny), (34
with the numerical flux F¥ defined by
Flone =8[F; + Foy + @Xnidinad, (35)

where all the metric terms such as (&)sy2x, (&1, and
Jis1iny ave evaluated using simple averages. The definition of
®Y1; has been given in [27]. For completeness, we repeat it
here and list it below. The components of &% ., are given by

¢‘,€+1fz,k’v = E'(/\}H.'z‘k)(e;.k + e}H‘k) + wﬁ'(/\fﬂm)(df.k + disp)

— Al s + Bl + wB}H.’lk)ajHﬂ.ks (36)
ej.k = m[ajHIZ.k - ﬂﬁ(ﬁ—a}+1fz.h A+Olj‘+1fz;<),
Off'—wz,k + ﬂﬁ(A—a}!—lms A+a}—l.’2,k)] (37)
. {E(A_a}m'k, Al i), i ool = |t 124; (38)
=1 '
! m(Ancdjﬂn.su A+Q’§+m,k), if la}—m,kl > l%ﬂm,x'
; _&(A}+If2.k)(€§+l.k - e}"x)/ajwz,k, if Olj‘ﬂm.k * 0
Bj+lf1,k = N (39
s otherwise.
. 5'()(§+m,k)(d§ﬂ,k - dj.k)l'ﬂf'ﬂtz,h if 01§+uz,k 0
Bj+1f2.& = . (40)
s otherwise,
where
(2) = 3{il(2) — Arz?) (41)

if \a},”g‘k\ = |otbv il

é(zlz\ -3 Az}

a(z) = | -
¢ (AP = e, if jeg-rd > ol

_ {IZL iffe] = e s

MZ) - (Z2 + 82)/28’ lf |Z| > g, ( )

Here ¢ is a small value and is taken to be 0.01 in all the
caleulations reported later. The 1 and m functions are given by
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smin(|y|, |z]), ifsgny=sgnz=1s;
m(y, z) = { ol . (44a)
z if|y) > |2,
o if|y = e;
miy,z) = { . 44h)
SR CRR ) (

Similar expressions for the £,(A7) operator can be defined.

The class of schemes covered by Eq. (36) includes the total
variation diminishing {TVD) [10] and essentially nonoscillatory
{ENO) [11] schemes. For w = 0 and & = 0 one has a second-
order TVD scheme and is denoted as TVD2; for @ = ( and
9 = 5, one has a second-order ENO scheme, denoted as ENO2;
for w = | and & = 0, one has a third-order ENO scheme,
denoted as ENO 3. A first-order upwind scheme, denoted as
UW1, can be deduced from Eq. (36) by setting all the elements
e}y and di; equal to zero. The accuracy and Fourier stability of
schemes defined by Eq. (36) can be analyzed by looking at
different possible combinations of the arguments in the m and
m limiter functions [28].

To see the confribution of the collision term in the BGK-
typed model we test a method which is generated from Eq.
(31) by neglecting Eqg. (31c) and setting the g,; and h,; in
Fisand F]sequal to the equilibrium Maxwellian distribution
8wzs and fy .5 In Eq. (31a) and Eq. (31b), respectively. We
denote the solution obtained by such a scheme as the Euler
lirnit solution.

Implicit Method
Using the Euler implicit time-differencing formula, Eq. (22)
can be written as

[+ AdGAS + 3,A7 + O] AQY! = (45a)

where AQ™" = 0" — (", Jis the unit matrix, C = (85/60Q)" and

BF” "
RHSI, = — At —=5] .
* ( d¢ )

ik

(45b)

Equation (45) can be approximately factored in several different
ways. Here we adopt the lower—upper method and Eq. (45) be-
comes

[+ Al + U+ O AQY' = RHSY,, (462)

where

L= §AS + SEA™,
RH, = _Aﬂ.(Fj'\f{-m‘& -

U= ng-f- + 5{7‘/\'1*’
Flino + (Fln — Flia) + AtSh.
{(46b)

In Eq. (46) & and & denote the backward and forward difference
operators, respectively. The split jacobian matrices are A* =
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FIG. 8. Supersonic continuum flow past a circular cylinder (M., = 1.8, Re, = 2966). Navier—Stokes solutions: (a) pressure; (b) density; (¢) temperature;
{d) Mach number contours; {e) wake streamlines.
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Pressure (D + AiL] AQY = RHS}, (492)

// [D + AtUTAQY" = D AQX, (49b)
On' = O+ AQI {49¢)

PIA

/A

The approximation factorization error of Eq. (48) is

Ey= AP LD U AQ™ (50)

which can be shown to produce the least amount of error among
several possible factorizations, particularly when the norms of
the source terms are large [23]. The collision source term, S,
of the model equation in general is a functional of the reduced
distribution functions g, ; and #,s. The exact evaluation of the
Jjacobian matrix of the source term, C, is difficult, In this work,
Density we approximate the jacobian of the source term by

g e 2
N ¥
ol 0‘;
3 1
0-'": /
\ \w 085 0
2\ 5 i
> o8 ~
<___ | g -
(b} 3
e -2
[
Q
wl
3
FIG. 9. Supersonic rarefied flow past a circular cylinder (M. = 1.8 i
Kn = 0.01). BGK model: (a) pressure and {(b) density contours. 4T
_s I p—
0 - 1000 2000 3000
diag{A'*}, where A'® = (X' * |A|)/2. The numerical fluxes Tter. Steps

FYiny and Flien are defined analogously by Eq. (35). For
steady-state calculations, the use of Egs. (40) and (41) can lead
to the undesirable results that the steady state depends on the 1
time step At and causes slow convergence. We use the following
approximation which still maintains the spatial accuracy:

a(z) = 3 (2),
{IZ]B, if oy 104 <= Jerimals

)= .
—lzlr6, i [og-rndl > legairdl-

Los(ﬂnlz)

{47)

An approximate LU factorization for Eq. (46) can be given as

(D + AiL]D7'[D + AtUTAQ' = RHSY, (48a)

I

% —_— —_

0 1000 2000 3000

D=1+ AC, (48b) Iter. Steps

and it is implemented in the sequence: FIG.10. Plots of converging history for the case M. = 1.8 and Kn.. = (.01.
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FIG. 11.
Kn. = 0.1: {a) BGK model and (b) Shakov model.

Supersonic rarefied flow past a circular cvlinder, M., = 1.8,

With this simplified approximation the equations become diago-
nal and completely decoupled and the solution procedure be-
comes rather simple and can be sclved scalarly. The numerical
experience indicates that such an approximation works well.

Boundary Conditions

In order to specify the interaction of the molecules with the
solid surface, it is assumed that molecules which strike the
surface are subsequently emitted with a Maxwellian velocity
distribution characterized by the surface temperature 7,,. The
two-stream concept is also applied here by defining the half-
range distribution functions,

gE&mnu,y)=0 forv, <0,
g (& mo,v)=0 forv, >0,

where v, = v-n and n is the outward unit normal to the solid
surface. On the solid wall, the wall distribution function is
given by

e = s exp[ﬁ—l— (v — uw){l, ifv.n>0

aT, T,
w=4T.g. 42

The density of the molecules diffusing from the surface, n,, is

YANG AND HUANG

not known a priori and may be found by applying the condition
of zero mass flux normal to the surface at the wall. One has

112
= 1 = ® ' i
y — 2(TM) J‘m J—x Ung (xa )’s tv vxsv_v) dvxd))'a (53)

where v; = (v, — )2

The inflow and outflow boundary conditions are treated using
characteristic-based boundary conditions which are in accord
with the upwind nature of the interior point scheme. For prob-
lems with symmetry, only the half plane is computed and the
syminetry condition is assigned to the distribution function.

5. NUMERICAL EXAMPLES

Several numerical examples are computed in this section to
illustrate the present numerical methods and to demonstrate its
potential use in solving rarefied gas dynamical problems.

The first example we considered is the Riemann shock-tube
problem. The numerical treatment of this problem has been
studied by Sod [25] for the case of continuum gas dynamical
description and by Chu [9] and by Reitz [18] for the case of
kinetic theory description. This problem was also treated by
Prendergast and Xu [17] using a rather unique gas-kinetic based
hydrodynaimic scheme. In this problem a diaphragm, which is
located at x = 0.5, separates two regions, each in a constant
equilibrium state at 1 = (). Here we consider a case with initial
conditions: p = 0445, T = 1321, 0 = 0.698 for 0 = x = 0.5
and p = 05,7 =19, u = 0 for 0.5 < x = 1. The ratio of
specific heats is § for a monatomic Maxwell gas. Since we do
not have a characteristic length for this initial-value problem
we choose a nondimensionalized reference length I, and the
length of the tube is taken as 100/, . Define the Knudsen number
based on the reference state as Kng = Ag/ly. We used 100 space
grid points (Ax = [;) with physical spacing Ax = 1000A; (Kng

[OPRESENT ,L
(OMaslach & Schaaf(Exp.) Paih
& (o)
“u.._: 3
2 o®
[#] ["'.
o (o $hE
B o
L]
[ »
. i
10 10? 10° 10!
Kn

FIG. 12. Drag coefficients for supersonic rarefied flow past a circular
cylinder in argon gas, M.. = 1.8
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Pressure

{a)

(b)

FIG. 13, Supersonic rarefied flow past a cirenlar cylinder (M. = 548,
Kn. = 0.025): (a) pressure and (b) density contours.

= (.001) and 18] discrete velocity points ranging from —910 9.
The Newton—Cotes quadrature formuia was used. The Courant
number based on the maximum gas velocity is taken to be 0.9.
The results of computed nondimensional density and tempera-
ture profiles (dencted as symbols) for the case of Kny = 0.001
at time t = 0.1314 are presented in Fig. 1 for BGK model
using the first-order upwind UW1, second-order TVD2 and
ENQ2, and third-order ENO3 schemes. The CPU seconds re-
quired on a CRAY-YMP/EL computer are 14.02, 19.03, 22.24,
and 24.87 for UW1, TVD2, ENO2, and ENO3 schemes, respec-
tively. The solid line denotes the exact solutions obtained using
the Euler equations of gas dynamics. The high order methods
TVD2, ENO2, and ENO3 give more crisp shock and contact
profiles compared with the first-order upwind method. The
ENO2 and ENO3 results indicate appreciable improvement
in resolving the shocks over the TVD2 resuht, The effect of
rarefaction on the shock tube flow is shown in Fig. 2 for
KN; = 0.1, 0.01, and 0.001, together with a Euler limit solution
using the second-order ENOZ scheme.
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The second example we considered is the shock structure
problem. Here a shock wave involves the transition from a
uniform supersonic upstream (state 1) to a uniform subsonic
downstrearn (state 2). The upstream state is chosen as the refer-
ence state with p, = 1., 7, = 1., and p, = 1.0. The shock Mach
number {M,) is defined as the ratio of the speed of the shock
wave, relative to the upstream gas, to the speed of sound in
this gas. The shock wave is generally regarded as a discontinuity
in a continoum flow and the relations of the flow states across
the wave are given by the Rankine—Hugoniot relations. In fact,
the shock wave has a finite thickness and the shock profile
depends on the transport properties of the gas. We use this
example to compare the BGK and Shakov models for the shock
profile, Here we calculated a case for shock Mach number
M, = 9 in a gas of inverse power law molecules. The space
grid points used are 121 with Ax = 0.25A and the discrete
velocity points used are 261 with spacing Av = 0.25. In Fig.
3, the results of the normalized density {(p — p)/(px — 1))
and heat flux profiles using the BGK model are compared with

#/Pa

3 32 28 24 20 6 12 B 40
X/

U/Uw

a6 32 28 4 2 6 2 8 4 0
X/ o

F1G. 14.  Stagnation tine profiles for a circular cylinder: (a) density; (b) ve-
locity.
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F1G. 15,  Supersonic rarefied flow past a circular cylinder (M., = 548, Kn.. = 0.001). BGK modei: (a) pressure; (b) density; (c) temperature; (d) Mach

number contours.

the DSMC calculation and the experimental data [2]. Several
values of { for the inverse power law molecular model are
given. The corresponding results using the Shakov model are
shown in Fig. 4. Tt is found that the use of { = 20 in the
Shakov model gives the best agreement with the DSMC and
experimental results, A direct comparison of results between
the BGK and Shakov models is shown in Fig. 5 for the density
and temperature profiles using ¢ = 20. The experimental data,
DSMC solution, and an Euler limit solution are also included.
The Shakov model gives a smoother shock profile and a higher
heat flux than the BGK model, as expected.

The third example we computed is the unsteady shock wave
diffraction produced by a plane moving shock wave that im-
pinges upon a circular cylinder in a rarefied gas. The ratio of
specific heats of the gas is ¥ = 8. The initial position of the
incident shock is arbitrarily located at a certain distance to the
left of the cylinder. The condition ahead of and behind a moving

shock wave is related by the moving shock conditions. Here,
the initial conditions at the undisturbed state | are p; = 1,
ey = 0,1, =0, T =1, and n, = 1. The Maxwell gas is
considered and the shock Mach number is M, = 2.81. The initial
wall temiperature s assumed to be equal to the temperature of
the undisturbed gas ahead of the incident shock wave, ie.,
T, = T,. Due to symmetry, only the half plane is computed
and symmetry boundary conditions were enforced. The grid
system used is 241 X 121. The Gauss—Hermite quadrature
formula were used in this case. The discrete velocity points in
the (v,, v,) space are 20 X 20. The CFL number used is (.95.
Shown in Fig. 6 are density contours at several different times
using the Shakov mode! for Kn = 0,005 which is in the near
continuum regime. The primary incident shock, the reflected
bow shock, the Mach shock, contact discontinuity, and vortex
can be easily identified. Downstream of the cylinder wake,
complicated fiow interaction-resulting Mach shocks, second
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FIG. 16. Navier—Stokes solution of steady supersonic flow past a circular cylinder (M. = 5.48, Re, = 9,066): (a) pressure; (b) density; (¢) temperature;

{d) Mach number contours.

contact discontinuities, and triple points were well captured.
These also compare well with the experimental schlieren
pictures obtained by Bryson and Gross [6] except that the
value of the ratio of specific heats is different. The Reynolds
number in this flow is rather small and is estimated to be
around Re, = 483, based on the cylinder diameter, The
CPU time per grid point required for each integration step
is 3.56 X 1073 s,

The fourth example we considered is the steady supersonic
rarefied flow past a circular cylinder under different freestream
Mach and Knudsen numbers. The steady-state solutions of rare-
fied gas flows are obtained using the implicit LU method.
Convergence of a steady-state solution is assumed to have
occurred when the L, norm of the residual is reduced less than
107, Two Knudsen numbers are computed; one is Kn,, = 0,001
which is in the near continuum flow regime and the other one
is Kn, = 0.1 which is in the rransitional regime. The wall

temperature T, of the cylinder is related to the freestream
temperature T, through T,/7. = 1 + 25%5, where S = u./
(2RT.)"* is the molecule speed ratio. The isothermal wall
boundary condition was used. The computed results of pressure,
density, temperature and Mach number contours, and wake
flow structures using the BGK model for M., = 1.8 and
Kn.. = 0.001 are shown in Fig. 7. The flow structures including
the bow shock, the stagnation region, the near wake, recompres-
sion shock, and far wake regions are well captured. For this
case the freestream is in the near continuum flow regime and
a recirculation zone is present in the near wake region. An
enlarged view of this recirculation zone is also shown in Fig.
7e. For comparison purposes, computed results using a Navier—
Stokes solver (hased on a high resolution method similar to
the present study) are alse shown in Fig. 8 for similar flow
conditions {(M.. = 1.8, Re, = 2996}. By comparing the results
shown in Fig. 8 to those shown in Fig. 7, one can observe that
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FIG. 17. BGK model solutions of hypersonic blunt body flow (M.. = 12.0,
temperature Contours.

most of the flow structures are similar. This can be expected
since the Navier—Stokes equations can be derived from the
kinetic model by using a Chapman-Enskog procedure.

The corresponding results for the case of Kn.. = 0.01 vsing
the BGK model are shown in Fig. 9. Plots of convergence
history are also shown in Fig. 10. A comparison of the BGK
and Shakov models for the case Kn, = 0.1 is shown in Fig,
11. Both the BGK and Shakov models give very similar results.
In both cases, very good representations of the complete flow
fields can be obtained. The thickening of the front bow shock
and no recompression shock above the near wake are noticeable
differences in the more rarefied case. For a typical case run, it
takes about 600 iterations to reach a steady-state solution. The
results using the BGK model are almost identical to the Shakov
results. The computing time required for the Shakov model is
only slightly more than that for the BGK model. The calculated
cylinder drag coefficients for Mach number M. = 1.8 and
Knudsen numbers encompassing the near-free molecule, transi-
tional to near continuum flow regimes are shown in Fig. 12,
together with experimental data for argon gas [16]. Very good
agreement is found.

Another case we computed was for M., = 5 48. We employed
an equally spaced Newton-Cotes quadrature with the three-
point composite Simpson’s rule for this higher Mach number
case. The total number of discrete velocity points used are
43 X 43 points ranging from —10.5 to 10.5 in each velocity
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Rep = 19,780, Kn.. = 0.001); {2} density; {b} Mach number; (c) pressure; (d)

direction. A 61 X 91 grid system was used. We compare our
results with DSMC results [26]. Three Knudsen numbers
Kn. = 1.0, 0.3, 0.025 were computed. The pressure and density
contours for Kn,. = 0.025 are shown in Fig. 13. The stagnation
line profiles of density and velocity are shown in Fig. 14,
together with the DSMC results [26] for three Knudsen num-
bers. In general, good agreement between the present computa-
tions and DSMC solutions can be observed. Some deviations
appear at the bow shock front. It is due to the use of different
molecule models. In DSMC the hard sphere model was used
and here we employed the Maxwellian molecule model. The
computed flowfield profiles using the BGK model and the
ENO2 scheme are shown in Fig. 15 for Kn® = 0.001, which
is in the near continuum flow regime. This Invites comparison
with the Navier—Stokes solution for compatible flow condi-
tions. In Fig. 16, the corresponding results using the Navier—
Stokes calculation (M, = 5.48, Re, = 9066) are also shown.
The flowfield structures from both the kinetic model and the
continuum model display rather striking similarity.

Finally, to illustrate the capability for higher Mach number
flow, we include a case for hypersonic blunt body flow with
free stream conditions: M., = 12, 7. = 1., p. = I. A gnd
system of 85 X 51 and discrete velocity points of 89 X 69 are
used and the range of v, is from —27.8 to 24.8 and the range
of v, is from —28.2 to 28.2. For this problem there exist a high
temperature region at the stagnation point, where the distribu-
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tion function has a flat shape with a wide spread, and a low
temperature region, where the distribution function has a high
peak with a narrow spread. The selection of the discrete ordi-
nates needs to cover such a widespread velocity range and the
velocity spacing has to be accurate enough. In Fig. 17, the
computed contours of flow properties using the BGK model
are shown for M,, = 12.0, Kn,, = 0.001, and Re, = 19,780.

6. CONCLUDING REMARKS

In this work, accurate numerical methods, which combine
features of the modern high resolution upwind method in com-
putational fluid dynamics and the discrete ordinate method in
kinetic theory, have been proposed for the computations of
rarefied gas flows using the nonlinear model Boltzmann equa-
tions. Two kinetic models are employed. One is the BGK model
and the other is the Shakov model. Both explicit and implicit
methods are considered. For multi-dimensional problems, oper-
ator splitting is employed in the explicit methods for unsteady
flow computations and LU facierization was employed in the
implicit methods for steady-state calculations. Numerical exper-
iments with one- and two-dimensional rarefied gas flows indi-
cate that good agreement between present computations and
theoretical or experimental results can be obtained. Computed
results using model Boltzmann equations compare well with
those using the Navier—Stokes equations for flow in the near
continuum flow regime. A comparisen of results obtained using
the present method and the DSMC method also indicate good
agreement. The present approach is applicable 1o rarefied gas
flows over a wide range of Mach and Knudsen numbers. For
the two kinetic models tested, there are some notable differences
in solutions for the one-dimensional unsteady shock-tube prob-
lem and the steady shock wave structure problem. The Shakov
model gives a more realistic shock profile than the BGK model
does and it compares well with experimental data. For the two-
dimensional problems tested, both BGK and Shakov models
seem to give similar results. Based on the above computed
examples, we conclude that the present proposed method pro-
vides an economical and efficient way to obtain accurate numer-
ical solutions of the nonlinear model Boltzmann equations for
rarefied gas flows, particularly for flows with moderate mean
velocity and thermal velocity. The present use of Gauss—
Hermite quadrature and equally spaced Newton—Cotes formu-
las, although capable of treating high Mach number flows, is
very computationally expensive. Further improvement on the
selection and reduction of the number of discrete ordinates in
velocity space to treat hypersonic rarefied flows is warranted.
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