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Abstract

A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal
quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach
is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essen-
tially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder
in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to
explore various practical ideal quantum gas flows.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The ideal classical gas dynamics can be described by the local equilibrium Maxwell–Boltzmann distribution
which corresponds to the lowest order solution of the classical Boltzmann equation [1]. The conservation laws
based on the Maxwell–Boltzmann distribution is the well known Euler equations of gas dynamics. Similar to
the classical Boltzmann equation, a quantum Boltzmann equation for transport phenomenon can be devel-
oped for fermions and bosons, see [2,3]. The Chapman–Enskog procedure has been generalized for quantum
gases in [2] to obtain the expressions for the transport coefficients such as shear viscosity and thermal conduc-
tivity. More recent works on the derivation of hydrodynamic equations of a trapped dilute Bose gas based on
quantum Boltzmann equation using Chapman–Enskog procedure can be found in [4,5].

In the past three decades, various Euler equations solvers have been constructed for aerodynamic and gas
dynamical flow problems, particularly, involving shock waves, see [6,7]. Most methods are based on the macro-
scopic continuum description and the hyperbolic conservation law concept and characteristic information have
been heavily implemented. In the mean time, Euler solvers based on the microscopic kinetic description using
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Maxwell–Boltzmann distribution have been devised concurrently, for example, the beam scheme of Sanders and
Prendergast [8], the equilibrium particle simulation method of Pullin [9], the method of Reitz [10] and the kinetic
flux vector splitting method of Deshpande [11]. Basically, almost all the original Euler methods are of first-order
accuracy and are too diffusive to represent flow structures. Normally, high-order methods can be devised for
those basic methods to reduce the numerical diffusion, in particular, the so-called high resolution schemes with
some flux limiters. The above mentioned gas-kinetic Euler solvers are also of first-order accuracy in space and
possess some upwinding properties, i.e., in accordance with the characteristic wave propagation property and
capture the gas dynamical discontinuities correctly although rather diffusively. Normally, high-order methods
can be devised for the basic first-order methods to yield good computational tools for practical problems.

Beyond the kinetic schemes for the zeroth-order solution of the Boltzmann equations, there are several
kinetic numerical methods for higher-order extensions to Navier–Stokes equations have been developed, for
examples, Prendergast and Xu [12,13], Chou and Baganoff [14] and Ohwada [15]. However, they rely heavily
on the BGK-type models [16] for treating the collision term. In this work, we shall confine ourself to the kinetic
methods for the zeroth-order equilibrium limit solution nevertheless of the quantum Boltzmann equation.

In [8], Sanders and Prendergast presented an interesting explicit scheme, which they called the beam
scheme, for solving the equilibrium limit of the classical Boltzmann equation. The derivation was based on
the local thermodynamic equilibrium Maxwell–Boltzmann distribution and resulted a novel method for solv-
ing the transport processes governed by the Euler equations of Newtonian gas dynamics. Later in [17], the
concept of beam scheme of Sanders and Prendergast was successfully extended to relativistic Boltzmann trans-
port equation based on the Jüttner distribution. In the beam scheme, a presumed local thermodynamic equi-
librium distribution function is approximated by several discrete Dirac delta functions or discrete beams of
particles in each cell. These beams are permitted to move over a time step transporting mass, momentum
and energy into adjacent cells. The motion of each beam is followed to first-order accuracy. The transport
is taken into account to determine the new mass, momentum, and energy in each cell; and these macroscopic
moments are used to describe the new local equilibrium distribution for each cell. The entire process is then
repeated and advanced to the next time step. The choice of the size of the time step is dictated by the Courant–
Friedrich–Lewy stability condition that physically no beam of gas particles travels farther than one cell spac-
ing in one time step. The beam scheme, although it is a particle scheme, has all the desirable features of mod-
ern characteristics-based wave propagating numerical methods, the so-called upwind shock-capturing
methods for hyperbolic conservation laws of gas dynamics. The kinetic beam scheme turns out to have exactly
the same form as the so-called flux vector splitting methods for the Euler equations of Newtonian gas dynam-
ics [18,19]. This beam flux splitting method possesses an entropy-satisfying mechanism and can exclude expan-
sion shocks. For further details and discussion of the beam scheme, see [8,17]. The basic beam scheme is first-
order accurate and a class of high-order ENO methods were also presented for the beam scheme [17].

In [20], the concept of classical beam scheme has been adopted to devise a numerical method for the com-
putation of ideal quantum gas dynamics. Starting with the equilibrium limit of the quantum Boltzmann trans-
port equation, one assumes the particles obey the Bose–Einstein or Fermi–Dirac statistics and the particles of
the system are in the excited states. Similar to the ideal classical gas dynamics based on Maxwell–Boltzmann
distribution, we can claim that the present method is for ideal quantum gas dynamics based on quantum sta-
tistics, namely the Bose–Einstein and Fermi–Dirac distributions. By approximating the quantum local equi-
librium distribution by a superposition of several discrete Dirac delta functions (beams), each with suitable
weight, such that the conserved macroscopic quantities such as number density (or mass density), momentum
and energy defined by the moments of the distribution function are the same as those calculated by taking
moments of the approximated discrete beams. The basic first-order quantum beam scheme has been derived
for Bose–Einstein distribution and Fermi–Dirac distribution [20]. Formulations for one to three space dimen-
sions in Cartesian coordinates have been provided. In this work, we shall adopt the ENO interpolation to the
basic first-order beam method to yield a class of high-order beam splitting method for ideal quantum gas
dynamics. Formulations in general coordinates system are also derived for treating general geometries. Prob-
ably, one of the gas dynamical problems which can exhibit most important features such as shock waves, con-
tact surface and expansion waves and their nonlinear interaction is the unsteady shock wave diffraction by a
finite body. In this work, numerical simulations of unsteady shock wave diffraction by a circular cylinder are
carried out to test and illustrate the present beam-based methods.
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The paper is organized as following. We first briefly describe the elements of quantum Boltzmann transport
equation and related formulation in two space dimensions in Section 2. In Section 3, the basic kinetic quantum
beam scheme in two space dimensions is first described and then formulation in general coordinates system is
given. In Section 4, implementation of high resolution methods is outlined. In Section 5, boundary and initial
conditions for shock wave diffraction are described. In Section 6, numerical experiments of unsteady shock
wave diffraction by a circular cylinder in both classical and nearly degenerate regimes are simulated. Lastly,
some concluding remarks are given in Section 7. Formulation of the quantum beam scheme in three space
dimensions in general coordinates system is included in Appendix A.

2. Elements of quantum Boltzmann equation

In this section, we briefly describe the elements of quantum Boltzmann transport equation appropriate for
the development of present work. Following [2,3], we consider the quantum Boltzmann equation
o

ot
þ ~p

m
� r~x �rUð~x; tÞ � r~p

� �
f ð~p;~x; tÞ ¼ df

dt

� �
coll:

; ð1Þ
where m is the particle mass, U is the externally applied field and f ð~p;~x; tÞ is the distribution function which
represents the average density of particles with momentum ~p at the space–time point ~x; t. The (df/dt)coll. de-
notes the collision term. A formal solution procedure which generalizing the Chapman–Enskog method to
solve Eq. (1) was given in [2] where the first and second approximations of the distribution function and
expressions for the viscosity and heat conductivity coefficients were given. Here, we consider only the lowest
order (first approximation) of solution of the above Boltzmann equation and requiring that the collision term
in Eq. (1) to be zero, i.e., (df/dt)coll. = 0.

The lowest order solution to Eq. (1) (with rUð~x; tÞ ¼ 0) is given by
f ð0Þð~p;~x; tÞ ¼ exp
ð~p � m~uð~x; tÞÞ2

2mkBT ð~x; tÞ � lð~x; tÞ=kBT ð~x; tÞ
" #

þ h

( )�1

; ð2Þ
where h = +1 denotes the Fermi–Dirac statistics and h = �1 the Bose–Einstein statistics. To complete the
equilibrium solution we have to determine the five unknown functions T ð~x; tÞ; lð~x; tÞ, and~uð~x; tÞ, which appear
in Eq. (2). These five flow parameters can be determined by making use of the five conservation laws for num-
ber of particles, momentum, and energy. These five conservation laws are obtained by multiplying Eq. (1) by
1;~p, or~p2=2m, and then integrating the resulting equations over all~p. The integrals of the collision terms in all
three cases vanish automatically and we have the differential conservation laws for the conserved macroscopic
quantities, i.e., the particle number density nð~x; tÞ, the momentum density, ~J ¼ m~j, and the energy density,
�ð~x; tÞ as follows:
onð~x; tÞ
ot

þr~x �~jð~x; tÞ ¼ 0; ð3Þ

om~jð~x; tÞ
ot

þr~x �
Z

d~p

h3
~p
~p
m

f ð~p;~x; tÞ ¼ 0; ð4Þ

o�ð~x; tÞ
ot

þr~x �
Z

d~p

h3

~p
m

p2

2m
f ð~p;~x; tÞ ¼ 0: ð5Þ
Here the number density, number density flux, and energy density are given, respectively, by
nð~x; tÞ ¼
Z

d~p

h3
f ð~p;~x; tÞ; ð6Þ

~jð~x; tÞ ¼
Z

d~p

h3

~p
m

f ð~p;~x; tÞ; ð7Þ

�ð~x; tÞ ¼
Z

d~p

h3

p2

2m
f ð~p;~x; tÞ: ð8Þ
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Other higher-order moments can also be defined such as stress tensor and the heat flux vector. For the local
equilibrium Bose–Einstein solution, one can obtain these macroscopic quantities in closed form in terms of the
Bose function, for example, see [21,22]. In this work, we shall not consider the effect of the externally applied
field Uð~x; tÞ. To illustrate the method, we first consider the following local equilibrium Bose–Einstein distribu-
tion in two space dimensions,
f ð0Þ2 ðpx; py ; x; y; tÞ ¼ ½z�1e½ðpx�muxÞ2þðpy�muy Þ2�=2mkBT ðx;y;tÞ � 1��1
; ð9Þ
where zðx; y; tÞ ¼ elðx;y;tÞ=kBT ðx;y;tÞ is the fugacity, ux(x,y, t), and uy(x,y, t) are the mean velocity components. Then
the number density n(x,y, t) is given by
nðx; y; tÞ ¼
Z 1

�1

dpx dpy

h2
f ð0Þ2 ðpx; py ; x; y; tÞ ¼

g1ðzÞ
k2

ð10Þ
the momentum~jðx; y; tÞ,
jxðx; y; tÞ ¼
Z 1

�1

dpx dpy

h2

px

m
f ð0Þ2 ðpx; py ; x; y; tÞ ¼ nðx; y; tÞuxðx; y; tÞ; ð11Þ

jyðx; y; tÞ ¼
Z 1

�1

dpx dpy

h2
pymf ð0Þ2 ðpx; py ; x; y; tÞ ¼ nðx; y; tÞuyðx; y; tÞ ð12Þ
and the energy density �(x,y, t),
�ðx; y; tÞ ¼
Z 1

�1

dpx dpy

h2

ðp2
x þ p2

yÞ
2m

f ð0Þ2 ¼ g2ðzÞ
bk2
þ 1

2
nðu2

x þ u2
yÞ; ð13Þ
where k ¼
ffiffiffiffiffiffi
bh2

2pm

q
is the thermal wavelength and b = 1/kBT(x,y, t).

In the above, gm(z) denotes the Bose function of order m which is defined by
gmðzÞ �
1

CðmÞ

Z 1

0

dx
xm�1

z�1ex � 1
¼
X1
l¼1

Zl

lm : ð14Þ
We note that Bose functions with m 6 1 diverge as z! 1 and g3/2(z) remains finite at z = 1 but with infinite
slope while gm(z) with m > 3/2 have finite values and slopes at z = 1. Since we will derive beam scheme in
one, two, and three space dimensions and they involve the Bose functions gd/2(z), gd/2+1(z), and gd/2+2(z)
for the beam scheme in d dimensions (d = 1,2,3). It is also noted that thermodynamic functions and the
Bose–Einstein condensation of an ideal (interactionless) gas of N bosons are peculiarly related to the space
dimensionality [23,24].
3. Quantum kinetic beam scheme

To illustrate the derivation of the kinetic beam scheme for ideal quantum gases, we first consider the for-
mulation in two space dimensions in Cartesian coordinates. Divide the computational space into a number of
cells of area DAi,j. Without loss of generality, we assume uniform rectangular cells with Dx = Dy and
DAi,j = DxDy. The local state of gas in each cell (i, j) at any time t is specified by Qi;j ¼ ðn; nux; nuy ; �ÞTi;j, which
the mass density, x- and y-momentum densities, and the energy density, respectively. We approximate the
Bose–Einstein distribution in two space dimensions, f ð0Þ2 , by
f ð0Þ2 ð~p;~x; tÞ ffi qi;jðpx; pyÞ
¼ ai;jdðpx � px0; py � py0Þ þ bi;jdðpx � pþx0; py � py0Þ þ bi;jdðpx � p�x0; py � py0Þ
þ ci;jdðpx � px0; py � pþy0Þ þ ci;jdðpx � px0; py � p�y0Þ; ð15Þ
where p�x0 ¼ px0 � Dpx and p�y0 ¼ py0 � Dpy .
The unknown parameters a, b, c, px0, py0, Dpx and they are given by
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a ¼ 2pm
b

� �
g1ðzÞ �

4

3

g2
2ðzÞ

g3ðzÞ

� �
; ð16Þ

b ¼ c ¼ 1

3

2pm
b

� �
g2

2ðzÞ
g3ðzÞ

; ð17Þ

Dpx ¼ Dpy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m
2b

g3ðzÞ
g2ðzÞ

s
; ð18Þ

pxo ¼ mux; pyo ¼ muy :
The conservative quantities carried by each beam in cell (i, j) are Qr,i,j = (Rr,Mr,Nr,Er)i,j, with
Rr;i;j ¼
Z

dpx dpy

h2
cr;i;jdðpx � �px;r; py � �py;rÞ; ð19Þ

Mr;i;j ¼
Z

dpx dpy

h2
cr;i;j

px

m
dðpx � �px;r; py � p0yÞ; ð20Þ

Nr;i;j ¼
Z

dpx dpy

h2
cr;i;j

py

m
dðpx � p0x; py � �py;rÞ; ð21Þ

Er;i ¼
Z

dpx dpy

h2
cr;i;j

p2
x þ p2

y

2m
dðpx � �px;r; py � �py;rÞ; ð22Þ
where �px;r ¼ p0x, for r = 1,4,5, �px;2 ¼ p0x � Dpx, and �px;3 ¼ p0x þ Dpx; �py;r ¼ p0y , for r = 1,2,3, �py;4 ¼ p0y � Dpy ,
and �py;5 ¼ p0y þ Dpy ; and cr,i,j = ai,j, for r = 1, and cr,i,j = bi,j, if r = 2,3,4,5.

The beam velocities in the x-direction in cell (i, j) are
V x
1;i;j ¼ V x

4;i;j ¼ V x
5;i;j ¼ uxi;j; V x

2;i;j ¼ uxi;j þ Dpxi;j=m; V x
3;i;j ¼ uxi;j � Dpxi;j=m; ð23Þ
and the beam velocities in the y-direction in cell (i, j) are
V y
1;i;j ¼ V y

2;i;j ¼ V y
3;i;j ¼ uyi;j; V y

4;i;j ¼ uyi;j þ Dpyi;j=m; V y
5;i;j ¼ uyi;j � Dpyi;j=m: ð24Þ
The beam mass associated with the beam velocities are
m1;i;j ¼ ai;jni;jDAi;j; m2;i;j ¼ m3;i;j ¼ m4;i;j ¼ m5;i;j ¼ bi;jni;jDAi;j: ð25Þ

The conservative quantities carried by each beam in cell (i, j) are
Qr;i;j ¼

mr;i;j

mr;i;jV x
r;i;j

mr;i;jV
y
r;i;j

1
2
mr;i;jðV x

r;i;j
2 þ V y

r;i;j
2Þ þ g2ðzÞ

bk2

2
66664

3
77775 ð26Þ
and the overall conservative quantities of gases in cell (i, j) are defined as Qi;j ¼
P5

r¼1Qr;i;j.
The kinetic beam formulation in two space dimensions in the Cartesian coordinates (x,y) can be given by
otQr þ oxðF þr þ F �r Þ þ oyðGþr þ G�r Þ ¼ 0; ð27Þ

where the split beam fluxes F �r and G�r at cell (i, j) are defined by
F �r;i;j ¼ V x�
r;i;jQr;i;j; G�r;i;j ¼ V y�

r;i;jQr;i;j; ð28Þ
where V x�
r ¼ ðV x

r� j V x
r jÞ=2 and V y�

r ¼ ðV y
r� j V y

r jÞ=2.
The basic first-order quantum beam scheme can be expressed in the form of a conservative scheme in terms

of the numerical flux
Qnþ1
r;i;j ¼ Qn

r;i;j � DtðF N
r;iþ1=2;j � F N

r;i�1=2;jÞ � DtðGN
r;i;jþ1=2 � GN

r;i;j�1=2Þ; ð29Þ
where the numerical fluxes are, respectively, given by
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F N
r;iþ1=2;j ¼ F þr;i;j þ F �r;iþ1;j; GN

r;i;jþ1=2 ¼ Gþr;i;j þ G�r;i;jþ1: ð30Þ
The time step Dt is subjected to the condition that no single beam moves farther than a cell size DAi,j during Dt
Dt 6 min
Dx
jV x

rj
;

Dy
jV y

rj

� �
: ð31Þ
The final 2D governing equations in generalized coordinates (n,g) based on the beam splitting method can be
expressed as:
otQ̂r þ onðF̂ þr þ F̂ �r Þ þ ogðĜþr þ Ĝ�r Þ ¼ 0; ð32Þ
where Q̂r ¼ Qr=J , F̂ �r ¼ ðnxF
�
r þ nyG�r Þ=J , Ĝ�r ¼ ðgxF

�
r þ gyG

�
r Þ=J , and J = nxgy � nygx is the metric Jacobian.

The beam velocities in the generalized coordinates at grid point (i, j) are
V n
r ¼ nxV

x
r þ nyV

y
r; V g

r ¼ gxV
x
r þ gyV

y
r: ð33Þ
Define V n�
r ¼ ðV n

r� j V n
r jÞ=2 and V g�

r ¼ ðV g
r� j V g

r jÞ=2. Then we have F̂ �r ¼ V n�
r Q̂r and Ĝ�r ¼ V g�

r Q̂r.
Without causing any ambiguity, we can omit the hat signs below. The first-order quantum beam scheme

can be expressed in the form of a conservative scheme in terms of the numerical flux
Qnþ1
r;i;j ¼ Qn

r;i;j � DtðF N
r;iþ1=2;j � F N

r;i�1=2;jÞ � DtðGN
r;i;jþ1=2 � GN

r;i;j�1=2Þ; ð34Þ
where the numerical fluxes are respectively given by
F N
r;iþ1=2;j ¼ F þr;i;j þ F �r;iþ1;j; GN

r;i;jþ1=2 ¼ F þr;i;j þ F �r;i;jþ1: ð35Þ
The time step is determined by
Dt 6 min
1

max jV n
r;i;jj

;
1

max jV g
r;i;jj

 !
: ð36Þ
For explicit methods in multiple space dimensions, the Strang-type dimensional splitting was employed and
the integrating scheme can be expressed in terms of operators as
Qnþ2
r;i;j ¼ LnðDtÞLgðDtÞLgðDtÞLnðDtÞQn

r;i;j: ð37Þ
The one-dimensional operator in the n-direction Ln is defined by
LnðDtÞQn
r;i;j ¼ Qn

r;i;j � DtðF N
r;iþ1=2;j � F N

r;i�1=2;jÞ: ð38Þ
Similar expressions can be given for the Lg operator and the numerical flux in the g-direction.
Formulations in three space dimensions in general coordinates (n,g,f) system are given in Appendix A.
In the case of Fermi–Dirac distribution, we simply replace the Bose function above by the following Fermi

function:
fmðzÞ �
1

CðmÞ

Z 1

0

dx
xm�1

z�1ex þ 1

X1
l¼1

�ð�ZÞl

lm : ð39Þ
Following the same procedure,we find that we can just replace Bose function with Fermi function to simulate
the Fermi–Dirac gas. In Bose–Einstein gas, the fugacity could not greater than one or less than zero, but in
Fermi–Dirac gas we do not have such limits.

The calculation for fugacity z can be done by combination of Eqs. (10)–(13) in dimensionless form as [20].
Substitute Eqs. (10)–(12) into Eq. (13), We can get the following equation:
v2 ¼ ��
j2

x þ j2
y

2n
� n

g1ðzÞ

� �2

g2ðzÞ ¼ 0: ð40Þ
The fugacity is obtained by solving this equation numerically.
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4. Implementation of high resolution schemes

The above scheme is of first-order accuracy and for practical applications we need high-order methods. In
this section, we adopt the total variation diminishing [25] method and essentially non-oscillatory interpolation
method developed by Harten et al. [26] to the basic first-order quantum beam scheme to result in a class of
high resolution methods for the computation of quantum ideal gas dynamical flows.

Following [17,31], we consider the numerical flux in n direction of a class of high resolution schemes based
on essentially non-oscillatory interpolation concept as follows and for simplicity we omit the j subindexes.
F N
r;iþ1=2 ¼

1

2
ðF n

r;i þ F n
r;iþ1 þ /r;iþ1=2Þ; ð41Þ
where
/r;iþ1
2
¼ rð�ar;iþ1

2
Þðgr;i þ gr;iþ1Þ þ x�rð�ar;iþ1

2
Þðdr;i þ dr;iþ1Þ � wð�ar;iþ1

2
þ cr;iþ1

2
þ xdr;iþ1

2
ÞDþQn

r;i: ð42Þ
The formulations of the limiter functions, gr,i and dr,i, and characteristic speed functions, rð�aÞ, �rð�aÞ, cð�aÞ,
dð�aÞ, and functions m(x,y), �mðx; yÞ may refer the reference [17], or to be described as follows.

The limiter functions gr,i and dr,i are defined as
gr;i ¼ mðDþQn
r;i � #�mðD�DþQn

r;i;DþDþQn
r;iÞ;D�Qn

r;i þ #�mðD�D�Qn
r;i;DþD�Qn

r;iÞÞ; ð43Þ

dr;i ¼
�mðD�D�Qn

r;i;DþD�Qn
r;iÞ if jD�Qn

r;ij 6 jDþQn
r;ij;

�mðD�DþQn
r;i;DþDþQn

r;iÞ if jD�Qn
r;ij > jDþQn

r;ij:

(
ð44Þ
The functions m(x,y), �mðx; yÞ in above equations are defined as
mða; bÞ ¼
s minðjaj; jbjÞ if signðaÞ ¼ signðbÞ ¼ s;

0 otherwise;

�
ð45Þ

�mða; bÞ ¼
a if jaj 6 jbj;
b if jaj > jbj;

�
ð46Þ
where a and b are arbitrary real numbers. The other variables and functions in Eq. (42) are defined as follows:
�ar;iþ1
2
¼ �aðQn

r;i;Q
n
r;iþ1Þ ¼

F n
r;iþ1
�F n

r;i

Qn
r;iþ1
�Qn

r;i
if Qn

r;i 6¼ Qn
r;iþ1;

V n
r;i if Qn

r;i ¼ Qn
r;iþ1:

8<
: ð47Þ

wðzÞ ¼
jzj if jzjP �;

ðz2 þ �2Þ=2� if jzj < �;

�
ð48Þ

rðzÞ ¼ ðwðzÞ � kz2Þ=2; ð49Þ

�rðzÞ ¼
ðk2jzj3 � 3kjzj2 þ 2jzjÞ=6 if jD�vn

i j 6 jDþvn
i j;

ðk2jzj3 � jzjÞ=6 if jD�vn
i j > jDþvn

i j;

(
ð50Þ

cr;iþ1
2
¼

rð�ar;iþ1
2
Þðgr;iþ1 � gr;iÞ=DþQn

r;i if DþQn
r;i 6¼ 0;

0 otherwise;

(
ð51Þ

dr;iþ1
2
¼

�rð�ar;iþ1
2
Þðdr;iþ1 � dr;iÞ=DþQn

r;i if DþQn
r;i 6¼ 0;

0 otherwise;

(
ð52Þ

D�Qn
r;i ¼ �ðQn

r;i�1 � Qn
r;iÞ; ð53Þ
where � is a small positive real number. The class of high resolution schemes covered by Eq. (42) includes the
total variation diminishing (TVD) and essentially non-oscillatory (ENO) schemes, which may be selected by
setting the parameters x and #.
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x ¼ 0; # ¼ 0! TVD2;

x ¼ 0; # ¼ 0:5! ENO2;

x ¼ 1; # ¼ 0! ENO3:

ð54Þ
For x = 0 and # = 0, one has a second-order TVD scheme; for x = 0 and # ¼ 1
2
, one has a second-order ENO

scheme; and for x = 1 and # = 0, one has a third-order ENO scheme.
Another type of high resolution scheme based on efficient weighted ENO methods [27,28] can also be con-

structed. Here we consider the third-order (r = 2) and the fifth-order (r = 3) WENO methods as follows. The
advantage of using WENO interpolation is that we can directly working on the split flux vectors F± and the
formulation is extremely simple. The implementation of WENO methods has been presented in [20] for the
case of one space dimension. Here we will not repeat the formulations.
5. Boundary and initial conditions

In this section, we describe the characteristic boundary conditions at the solid surface and at the far field
and the initial set up of the problem. To be more specific, we consider the shock wave reflection by a circular
cylinder in which the cylinder wall surface is at j = 1 and the outer far field boundary is j = J. Due to the finite
computational domain used, a non-reflecting boundary condition at far field needs to be employed. The
upwind feature of the basic beam scheme provides a natural way to implement the non-reflecting boundary
condition. At the outer far field boundary, we have
Q�i;J ¼ Qn
i;J � DtðGþi;J � Gþi;J�1Þ: ð55Þ
At the cylinder surface, the integrating scheme defined by Eq. (32) gives
Q�i;1 ¼ Qn
i;1 � DtðG�i;2 � G�i;1Þ; ð56Þ
where G�i;j ¼
P5

r¼1G�r;i;j.
This only partially update the state vector Q since information carried by positive eigenvalues are not

counted and additional conditions are needed to supplement in order to completely update the state variable
Q at the new time level.

In this work, we employed the equation of state
PV d ¼ gU d ; g ¼ 2=d; ð57Þ
where P is the gas pressure, Vd the system volume, d is the space dimensionality, and Ud is the internal energy,
and here we have d = 2, thus g=1. We express the boundary and initial condition in terms of parameter g in-
stead of specific heat in classical gas [30]. The boundary conditions on the surface of cylinder are as following
V nþ1
g � 2cnþ1

g
¼ V �g �

2c�

g
; ð58Þ

pnþ1

ðqnþ1Þgþ1
¼ p�

ðq�Þgþ1
; ð59Þ

U nþ1
g ¼ U �g ð60Þ
and the surface tangency condition
V nþ1
g ¼ 0; ð61Þ
where Vg = V/j$gj and Ug = (gyu � gx v)/j$gj.
The initial position of the incident shock wave is arbitrarily located at certain distance to the left of the

cylinder. The conditions ahead of (state 1) and behind (state 2) a moving shock are related by



Y.-H. Shi et al. / Journal of Computational Physics 222 (2007) 573–591 581
p2

p1

¼ 2ðg þ 1ÞM2
s � g

g þ 2
; ð62Þ

q2

q1

¼ Gðp2=p1Þ þ 1

Gþ ðp2=p1Þ
; ð63Þ

u2 ¼ Ms 1� gM2
s þ 2

ðg þ 2ÞM2
s

� �
c1; ð64Þ
where G = (g + 2)/g and c1 = ((g + 1)p1/q1)1/2.
Initially, when t = 0, the fugacity at state 1 (z1) is assigned, then n1, p1, T1 and �1 can be calculated by the

following equations which are derived from state equation with an assigned value of Ms and a given value of g

for a particular quantum gas.
T 1 ¼
g1ðzÞ

g2ðzÞðg þ 1Þg ; n1 ¼ T 1g1ðzÞ; p1 ¼
n1

g þ 1
; ð65Þ

�1 ¼ T 2
1g2ðzÞ þ

1

2
n1ðu2

1 þ v2
1Þ: ð66Þ
The velocity components of state 1 are set to zero, u1 = v1 = 0. The conditions at state 2 are calculated by Eq.
(63) and the energy density �2, temperature T2 and fugacity z are given as previous procedure.

Moving shock relations are applied to both sides of the incident shock and the consequent movement of
motion is simulated without imposing any explicit equation of motion for the incident shock.
6. Numerical examples and discussions

In this section, we report some numerical examples to illustrate the performance of the present high reso-
lution quantum beam schemes in general coordinates. For validation and comparison purposes, we first apply
the numerical methods to quantum shock tube flows in one space dimension. This has been done in [20] and
will not be repeated here. After validation, we apply the method to simulate a two-dimensional complex
unsteady shock wave diffraction by a circular cylinder placed in a quantum gas.

Example 1 (shock wave diffraction in ideal Bose–Einstein gas). In this problem we consider a plane shock wave
located initially at a certain distance ahead of the circular cylinder that propagates with shock Mach number
Ms = 2.0 toward the cylinder and experiences transient shock diffraction. For the classical gas, an
experimental study has been given in [29] and a detailed numerical simulation has been reported in [30]. A
simple cylindrical grid system of 361 · 241 was used, consisting of 361 rays around the cylinder and 241 circles
between the cylinder surface and outer boundary which is slightly stretched with Drmin = 0.007. The diameter
of the cylinder is 1.0 and the distance between the origin of the cylinder and the outer boundary is 7.0.

First, we report the results for the case of Bose–Einstein gas. The initial conditions are set as Ms = 2.0 and
fugacity z1 = 0.8. The flow quantities of state 1 and 2 are as follows:
ðq1; u1; �1; T 1Þ ¼ ð1:205; 0:000; 0:603; 0:749Þ;
ðq2; u2; �2; T 2Þ ¼ ð2:410; 1:000; 4:214; 1:763Þ:
The fugacity in state 2 is 0.744. In Fig. 1, the number density isolines obtained by the ENO2 scheme at a series
of time are shown. In Fig. 1a, the incident shock is about to hit the cylinder surface and the number density
contours is constant on either side of the moving shock. Figs. 1b–h show the subsequent development of the
diffraction process that covers regular reflection, transition to Mach reflection, the Mach shocks collision at
the wake, and the complex shock on shock interaction. The primary incident shock (I.S.), reflected bow shock
(R.S.), Mach shock (M.S.), contact discontinuity (C.D.), and vortex (V.) can be easily identified. Fig. 2 shows
the detail view of density contours (upper) and the gray scale map of gradient of density (lower) in the down-
stream of the cylinder wake at time t = 1.7. It is observed that the complicated flow interaction resulting in
Mach shocks, second contact discontinuities, and triple point were well captured.



Fig. 1. Number density isolines of shock diffraction on a cylinder with Ms = 2.0 and fugacity z1 = 0.8 for Bose–Einstein gas.
(I.S. = incident shock, R.S. = reflected shock, M.S. = Mach shock, C.D. = contact discontinuity, T.P. = triple point, V. = vortex).
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Fig. 2. Detail view of density contours (upper) and the gray scale map of gradient of density (lower) in the downstream of the cylinder
wake at time t = 1.7.

Fig. 3. Pressure (left) and temperature (right) isolines of shock diffraction on a cylinder with Ms = 2.0 and fugacity z1 = 0.8 at time 2.3.

Fig. 4. Detail view of fugacity contours in the downstream of the cylinder wake, Bose–Einstein gas with z1 = 0.8.
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Fig. 5. Comparison with flow patterns of the two cases with fugacity z1 = 0.1 and 0.95, number density isolines of shock diffraction on a
cylinder with Ms = 2.0 at time 1.7
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Additional contour plots such as pressure and temperature are shown in Fig. 3 to assist the analysis of flow
field. Various contours are shown to reveal the complex phenomenon. Fig. 4 shows the detail view of fugacity
contours in the cylinder wake. It can be seen that the fugacity does not obviously change except in the vortex
zone, where the value is decreasing toward the vortex center. The fugacity at vortex center is under 0.4.

We also report results for the cases of Bose–Einstein gas with two different fugacity z1 = 0.1 and 0.95. The
shock Mach number is 2.0, too. The initial flow quantities of states 1 and 2 of case z1 = 0.1 are as follows:
Fig. 6. Comparison with flow patterns of the two cases with fugacity z1 = 0.1 and 0.95, temperature isolines of shock diffraction on a
cylinder with Ms = 2.0 at time 1.7.



Fig. 7. Number density isolines of shock diffraction on a cylinder with Ms = 2.0 and fugacity z1 = 0.1 for Fermi–Dirac gas.
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Fig. 8.
z1 = 0.
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ðq1; u1; �1; T 1Þ ¼ ð0:054; 0:000; 0:027; 0:513Þ;
ðq2; u2; �2; T 2Þ ¼ ð0:108; 1:000; 0:189; 1:277Þ;
and that for the case z1 = 0.95 are as follows:
ðq1; u1; �1; T 1Þ ¼ ð3:114; 0:000; 1:557; 1:040Þ;
ðq2; u2; �2; T 2Þ ¼ ð6:229; 1:000; 7:787; 2:383Þ:
The isoline of number density and temperature of the two cases with fugacity z1 = 0.1 and 0.95 are shown in
Figs. 5 and 6. The minimum and maximum level of number density contours ranged from 0.02 to 0.18 for the
case of z1 = 0.1, and from 1.2 to 9.4 for the case of z1 = 0.95. The number of levels is 41 for both cases. The
flow patterns are very similar. It can be seen from the figures that the computing results of the flow structure
are very similar in the classical and nearly degenerate limit.

Example 2 (shock wave diffraction in ideal Fermi–Dirac gas). Next, we report corresponding results for the
case of Fermi–Dirac gas. The initial conditions are set as Ms = 2.0 and fugacity z1 = 0.1. The flow quantities
of states 1 and 2 are as follows:
ðq1; u1; �1; T 1Þ ¼ ð0:047; 0:000; 0:023; 0:488Þ;
ðq2; u2; �2; T 2Þ ¼ ð0:093; 1:000; 0:163; 1:226Þ:
Fermi–Dirac gas: Pressure (left) and temperature (right) isolines of shock diffraction on a cylinder with Ms = 2.0 and fugacity
1 at time 2.3.

Fig. 9. Detail view of fugacity contours in the downstream of the cylinder wake, Fermi–Dirac gas with z1 = 0.1.



Fig. 10. Number density isolines of shock diffraction on a cylinder with Ms = 2.0 and fugacity z1 = 0.8 for Fermi–Dirac gas.
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The fugacity in state 2 is 0.079. In Fig. 7, the number density isolines obtained by the ENO2 scheme at a series
of times are shown. The development of the diffraction process similar to the case of Bose–Einstein gas that
covers regular reflection, transition to Mach reflection, the Mach shocks collision at the wake, and the com-
plex shock on shock interaction. Additional contour plots such as pressure and temperature are shown in
Fig. 8 to assist the analysis of flow field. Various contours are shown to reveal the complex phenomenon.
Fig. 9 shows the detail view of fugacity contours in the cylinder wake. It can be seen that the fugacity does
not change obviously except in the vortex zone, where the value is decreasing toward the vortex center where
it is under 0.02. The last case considered is that the fugacity z1 = 0.8 and the flow conditions of states 1 and 2
are as follows:
Fig. 11
z1 = 0.
ðq1; u1; �1; T 1Þ ¼ ð0:254; 0:000; 0:127; 0:432Þ;
ðq2; u2; �2; T 2Þ ¼ ð0:508; 1:000; 0:889; 1:116Þ:
The fugacity in state 2 is 0.576. In Fig. 10, the number density isolines obtained by the ENO2 scheme at a
series of times are shown for the case z1 = 0.8. The development of the diffraction process similar to the case
of z1 = 0.1 that covers regular reflection, transition to Mach reflection, the Mach shocks collision at the wake,
and the complex shock on shock interaction. The pressure and temperature contour plots are shown in Fig. 11
to assist the analysis of flow field. Fig. 12 shows the detail view of fugacity contours in the cylinder wake. At
the vortex center, the fugacity is under 0.28.
Fig. 12. Detail view of fugacity contours in the downstream of the cylinder wake, Fermi–Dirac gas with z1 = 0.8.

. Fermi–Dirac gas: Pressure (left) and temperature (right) isolines of shock diffraction on a cylinder with Ms = 2.0 and fugacity
8 at time 2.3.
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In summary, the complete shock wave diffraction patterns generated by a moving shock wave impinging
upon a circular cylinder in ideal quantum gases, which exhibit shock wave reflection, contact surface and
expansion wave and their complex interaction, can be adequately resolved and captured by the present high
resolution quantum beam schemes.

7. Concluding remarks

In this work, a class of high resolution kinetic beam schemes in generalized coordinates system have been
devised for the computation of practical quantum gas dynamical flows. The kinetic beam scheme for ideal quan-
tum gas was first cast in the form of a flux splitting method and then general coordinate transformation was intro-
duced as those done in classical gas dynamics or inviscid aerodynamics. The essentially non-oscillatory
interpolation concept was adopted for the spatial flux difference to yield a class of high resolution schemes.
The resulting method was applied to simulate unsteady shock wave diffraction by a circular cylinder to investigate
the complex nonlinear manifestation of shock wave, contact surface, and expansion wave and their interactions.
The complete diffraction process was followed after the incident moving shock has travelled several times of the
cylinder diameter and the flow patterns were depicted through a series of density contours. Both Bose–Einstein
and Fermi–Dirac gases were considered. The simulated results indicate that the present high resolution quantum
beam schemes can resolve the flow structures accurately thus they may provide a valuable tool for exploring var-
ious ideal quantum gas dynamical flow problems, particularly, when there are very few experimental data avail-
able. Formulations for general coordinates in three space dimensions are also included in Appendix A.
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Appendix A

We approximate the Bose–Einstein distribution in three space dimensions, f ð0Þ3 , in cell (i, j,k) by
f ð0Þ3 ð~p;~x; tÞ ffi qi;j;kðpx; py ; pzÞ ¼ ai;j;kdðpx � px0; py � py0; pz � pz0Þ þ bi;j;kdðpx � pþx0; py � py0; pz � pz0Þ
þbi;j;kdðpx � p�x0; py � py0; pz � pz0Þ þ ci;j;kdðpx � px0; py � pþy0; pz � pz0Þ
þci;j;kdðpx � px0; py � p�y0; pz � pz0Þ þ di;j;kdðpx � px0; py � py0; pz � pþz0Þ
þdi;j;kdðpx � px0; py � py0; pz � p�z0Þ; ð67Þ
where p�x0 ¼ px0 � Dpx, p�y0 ¼ py0 � Dpy , and p�z0 ¼ pz0 � Dpz.
The coefficients a, b, c, d, px0, py0, pz0, Dpx, Dpy, and Dpz can be found in [20,21] and they are given by
a ¼ 2pm
b

� �3=2

g3=2ðzÞ �
g2

5=2ðzÞ
g7=2ðzÞ

" #
; b ¼ c ¼ d ¼ 1

6

2pm
b

� �3=2 g2
5=2ðzÞ

g7=2ðzÞ
; ð68Þ

Dpx ¼ Dpy ¼ Dpz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m
b

g7=2ðzÞ
g5=2ðzÞ

s
; ð69Þ

pxo ¼ mux; pyo ¼ muy ; pz0 ¼ muz: ð70Þ

The conservative quantities carried by each beam in cell (i, j,k) are Qr,i,j,k = (Rr,Lr,Mr,Nr,Er)i,j,k, with
Rr;i;j;k ¼
Z

d~p

h3
cr;i;j;kdðpx � �px;r; py � �py;r; pz � �pz;rÞ; ð71Þ

Ma
r;i;j;k ¼

Z
d~p

h3
cr;i;j;k

pa

m
dðpx � �px;r; py � p0y ; pz � �pz;rÞ; a ¼ x; y; z; ð72Þ

Er;i;j;k ¼
Z

d~p

h3
cr;i;j;k

p2

2m
dðpx � �px;r; py � �py;r; pz � �pz;rÞ; ð73Þ
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where �px;r ¼ p0x, for r = 1,4,5,6,7, �px;2 ¼ p0x � Dpx, and �px;3 ¼ p0x þ Dpx, �py;r ¼ p0y , for r = 1,2,3,6,7, �py;4 ¼
p0y � Dpy , and �py;5 ¼ p0y þ Dpy and �pz;r ¼ p0y , for r = 1,2,3,4,5, �pz;6 ¼ p0z � Dpz, and �pz;7 ¼ p0z þ Dpz. We have
cr,i,j,k = ai,j,k, if r = 1, and cr,i,j = bi,j, if r = 2,3,4,5,6,7.

The beam velocities in the x-direction in cell (i, j,k) are
V x
2 ¼ ux þ Dpx=m; V x

3 ¼ ux � Dpx=m; V x
1 ¼ V x

4 ¼ V x
5 ¼ V x

6 ¼ V x
7 ¼ ux ð74Þ
and similarly the beam velocities in the y- and z-direction in cell (i, j,k) are
V y
1 ¼ V y

2 ¼ V y
3 ¼ V y

6 ¼ V y
7 ¼ uy ; V y

4 ¼ uy þ Dpy=m; V y
5 ¼ uy � Dpy=m; ð75Þ

V z
1 ¼ V z

2 ¼ V z
3 ¼ V z

4 ¼ V z
5 ¼ uz; V z

6 ¼ uz þ Dpz=m; V z
7 ¼ uz � Dpz=m: ð76Þ
The beam mass associated with the beam velocities are
m1;i;j;k ¼ ai;j;kni;j;kDV̂ i;j;k; mr;i;j;k ¼ bi;j;kni;j;kDV̂ i;j;k; r ¼ 2; 3; 4; 5; 6; 7; ð77Þ

where DV̂ i;j;k is the volume of cell (i, j,k). The conservative quantities carried by each beam in cell (i, j) are
Qr;i;j;k ¼

mr;i;j;k

mr;i;j;kV x
r;i;j;k

mr;i;j;kV y
r;i;j;k

mr;i;j;kV z
r;i;j;k

1
2
mr;i;j;kðV x

r;i;j;k
2 þ V y

r;i;j;k
2 þ V z

r;i;j;k
2Þ þ 3g5=2ðzÞ

2bk3

2
66666664

3
77777775

ð78Þ
and the overall conservative quantities of gases in cell (i, j,k) are defined as Qi;j;k ¼
P7

r¼1Qr;i;j;k.
The kinetic beam formulation in two space dimensions in the Cartesian coordinates (x,y,z) can be given by
otQr þ oxðF þr þ F �r Þ þ oyðGþr þ G�r Þ þ oyðHþr þ H�r Þ ¼ 0; ð79Þ

where the split beam fluxes F �r and G�r and H�r at cell (i, j,k) are defined by
F �r;i;j;k ¼ V x�
r;i;j;kQr;i;j;k; G�r;i;j;k ¼ V y�

r;i;j;kQr;i;j;k; H�r;i;j;k ¼ V z�
r;i;j;kQr;i;j;k; ð80Þ
where V a�
r ¼ ðV a

r � jV a
rjÞ=2 for a = x,y,z.

The 3D governing equations in generalized coordinates (n,g,f) based on the beam splitting method can be
expressed as:
otQ̂r þ onðF̂ þr þ F̂ �r Þ þ ogðĜþr þ Ĝ�r Þ þ ofðĤþr þ Ĥ�r Þ ¼ 0; ð81Þ

where
Q̂r ¼ Qr=J ; F̂ �r ¼ ðnxF
�
r þ nyG�r þ nzH

�
r Þ=J ; ð82Þ

Ĝ� ¼ ðgxF
�
r þ gyG

�
r þ gzH

�
r Þ=J ; Ĥ�r ¼ ðfxF

�
r þ fyG�r þ fzH

�
r Þ=J ; ð83Þ
and J is the metric Jacobian.
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