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Detailed numerical simulation has been carried out for fully developed laminar flow through a
circular straight pipe with radius a, which is rotating with constant speed ) about an axis
perpendicular to its own axis. The flow is symmetric about a plane containing the pipe axis
with its normal parallel to the rotation axis. There are four types of flow regime that result
from the various effects of the secondary flow on the main stream via the convection and
Coriolis term. When R, <10 and R, G< 100, the axial velocity profile is essentially
axisymmetric and parabolic. Here R, = Qa?/v and G = G *a*/(pv*), where G * is the reduced
axial pressure gradient driving the flow, p is the fluid density, and v is the kinematic viscosity.
When R, <0.85(R, G)'"? and R, G> 100, the axial velocity profile is skewed toward the
pressure side with one maximum occurring on the symmetric plane. When

Rg > 1.26(R, G)?5 and Ry, > 10, the axial velocity shows a dumbell-like profile with the
“dumbell” center coinciding with the pipe axis and the “dumbell” axis perpendicular to the
symmetric plane. When 0.85(Rq, G)'/*<Rq <1.26(Rq, G)*”* and Ry, G > 100, the axial velocity
profile is skewed toward the pressure size but with two maxima, occurring symmetrically on
both sides of the symmetric plane. The present calculation bridges most of the previous
asymptotic analyses and provides a correlation formula for the friction factor ratio between the
rotating and stationary pipe flow for most of the laminar regime of engineering interest.

I. INTRODUCTION

The secondary flow driven by the centrifugal force in a
curved pipe has been studied extensively, as shown in the
review paper by Berger et al.! Here we study another type of
secondary flow driven by the Coriolis force in a rotating
frame. Consider a fluid flowing through a circular straight
pipe with radius a that is rotating at a constant angular ve-
locity — {)j about an axis perpendicular to its own axis (see
Fig. 1). Let (#,6,2') be the rotating cylindrical coordinates
moving with the pipe wall and (u',v',w’) be their corre-
sponding velocity components. Also, let (x',),z’) be the
Cartesian coordinates corresponding to (#,6,2'). The pri-
mary flow along the z’ axis is maintained by an imposed axial
pressure gradient — Jp’/3z’. The secondary flow is set up in
the 7 plane by the Coriolis force through its interaction
with the viscous force and the pressure term in the » and 6
directions. The secondary flow starts from € = 0 and sepa-
rates into two streams: one along the upper wall and one
along the lower wall. These two streams collide at @ = 7 and
form a return flow across the core region. The flow is sym-
metric about the plane y’ = 0. In the present study, we re-
strict ourselves to laminar fully developed cases with gravity
g in the y' direction. The flow field is characterized by two
independent dimensionless parameters: R% and R, G,
where R, = Qa®/v is the rotational Reynolds number and
G = (G*a’)/(pv*).HereG* = — Jp'/3z + pQ*isacon-
stant for fully developed flow, p is the fluid density, and v is
the kinematic viscosity. Both p and v will be taken to be
constants in the following analysis. The Reynolds number
based on the axial mean velocity w;, defined by R = w’,a/v
is also a suitable dimensionless parameter in characterizing
the flow field. The relationship among R, , G, and R will be
derived in the next section. Other dimensionless groups of
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interests, including those employed by the previous investi-
gators, can be derived from either two of these three dimen-
sionless parameters.

Baura® and Benton® considered the present problem for
small R, and hence were able to carry out a regular pertur-
bation solution for the Hagen—Poiseuille flow. Later, Benton
and Boyer* studied the case for R, > 1 and R, > R. They
found that the core flow is geostrophic and the viscous ef-
fects are confined to the thin boundary layer next to the pipe
wall. Ito and Nanbu® investigated both the laminar and tur-
bulent cases experimentally for wide ranges of parameters
and obtained correlations for the friction factor ratio be-
tween the rotating and stationary straight pipes. They also
carried out a theoretical analysis for laminar flow when
R>R,,RR, »1and R, >R, R, > 1 by the integral meth-
od.

Duck® studied the problem numerically by using a Fourier
decomposition method for Ry =0(1) and R,G
= 0(10°)-0(10%). Berman and Mockros’ obtained a third-
order regular perturbation solution for small parameter
N,(=R;/48 here) for flow in a rotating nonaligned
straight pipe. Their solution includes cases when the rota-
tion axis makes an angle a(0 < a < 90°) with the pipe axis,
and is expressed in terms of two dimensionless parameters:
NZ(=R}%/2304) and Ny N,( = Ry R /24). They found
that there exist three types of flow regime depending on the
relative magnitudes of the parameters Ny N, and N2. In the
regime where N2 is small but Ng N, is not, the effect of
rotation is to skew the parabolic axial velocity profile
(Hagen-Posieuille) toward the outside, i.e., rotation moves
the location of maximum axial velocity outward along
6 = 0°in Fig. 1. In the regime where N; N, issmallbut N 2 is
not, the effect of rotation is to reduce the centerline velocity
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FIG. 1. Configuration of the flow system.

and produce an axial velocity profile with two maxima, one
along 6 = 90°and one along 6 = 270°. Ifboth Ny N, and N2
are of significant size, the axial velocity profile is skewed
with two maxima. Mansour® reconsidered the low R, case
studied by Baura? and Benton.> He expanded the series solu-
tion in terms of a single similarity parameter K (proportion-
alto R, G here) up to 34 terms by computer, and found that
the friction factor ratio between the rotating and stationary
pipe grows asymptotically as the § powers of X and not as
the | power obtained previously by Ito and Nanbu.’

Figure 2 shows the relative positions in parameter space
of the regimes studied by previous authors for laminar flow
as well as that studied in the present paper. First of all, we
noticed that there are certain regimes that have not yet been
investigated, for example, the transition region between the
asymptotic solution studied by Benton and Boyer* and that
studied by Berman and Mockros.” Second, we found that the
detailed structure of the flow field has not yet been fully
explored. Furthermore, it is also interesting to see how well
the asymptotic solutions behave as certain parameters vary.
Therefore, the goal of the present paper is to carry out a
detailed numerical study of the full nonlinear equations, so
that the detailed flow physics can be investigated for wide
ranges of parameters. The ranges of parameters for the pres-
ent study are indicated in Fig. 2. The present secondary flow
problem is somewhat more interesting than the secondary
flow in curved pipes in the sense that it is a two-parameter
problem, and both of them may vary from very small to very
large values. Although it is also a two-parameter problem for
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FIG. 2. Layout of the parameter space. 1, asymptotic solution for R, » 1,
R, » R (Benton and Boyer); {, asymptotic solution for R, R» 1, R®R,,
(Ito and Nanbu); O, numerical solution by Duck; ||||, perturbation solu-
tion by Berman and Mockros; ////, the experimental study by Ito and
Nanbu; and \ \\\, the prmnt calculation.
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flow in a curved pipe in general, one of its governing param-
eters, the ratio of the pipe radius to the radius of curvature, is
always restricted to be less than unity. The results of the
present study also have engineering applications in the de-
sign of the cooling channels inside the rotating blades of gas
turbines (see Morris®) and other pipe flow systems in a ro-
tating frame.

Il. FORMULATION

The governing equations for a steady incompressible
Newtonian fully developed pipe flow with constant viscosity
in the rotating coordinates (#,6,z') shown in Fig. 1 are

' u 1

—t—4——=0, 1
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where p* =p' — | pQ*(x’? + z'?) is the reduced pressure,
which includes the centrifugal effect resulting from rotation
and the operator
2 2
ga_ 9t 10 1.09°
arr: r or r?ae?
The axial reduced pressure gradient — dp*'/9z' (=G *) is
constant for fully developed flow. We now define a stream-
function ¢’ such that
, 1oy , ay
= — V= —— y 2
r a0 ar 2)
and thus the continuity equation (1a) is satisfied automati-
cally. After a certain amount of routine manipulation of the
equations of motion, the problem reduces to the solution of
the following set of dimensionless equations:

u

V= —¢, (3a)
s Lo 1w
r ar 96 r 06 or
2 dw dw
=—=— 042— X
20 cos 0 + E» sin 6, (3b)
1 9 dw 1 Y dw
Vw LB R,G
r or 96 r 068 or +Ra
2 W .
R3 (22 04 2% no),
A cos 8 + o sin 8 (3¢)

where the problem is normalized through

U. Leiand C. H. Hsu 64



r=r_” wzlp_' é‘ é"az
a

a0 v v (4)
w= w’, V2 = QZV'Z’
2
&' is the vorticity, and
G=G*a*/pV’, R, =Qa*/v (5)

are the two dimensionless parameters governing the flow
field. The boundary conditions to be satisfied by Eqs. (3a)-
(3c) are

¥(1,6) =% (1,6) = w(1,6) = 0. 6)
r

Once we obtain the axial velocity w(r,8), we can evalu-
ate the dimensionless mean velocity:

7 ol
w,, .—.lj J- w(r,0;R,,,G)rdrdo (7
T Jo Jo

and the Reynolds number based on the mean velocity:
R=w, ,a/v=w,,/Rq. (8)

Equation (8) provides a relationship among the parameters
R, R, , and G since w,, is a function of R, and G according
to Eq. (7). One of the major concerns for the engineers is the
change of the friction factor ( /) due to the rotating effect.
According to the definition of Ito and Nanbu,’

f=G*/}pw;i(1/2a),
which may be written as
f=4(G/R?), (9a)

in terms of the present dimensionless parameters. The fric-
tion factor for a stationary fully developed pipe flow (Ha-
gen—Poiseuille) is

f. =32/R.
Hence
f/f,=1G/R. (9b)

I1l. NUMERICAL METHOD

The numerical method employed here is basically the
same as that employed by Collins and Dennis'® for solving
the flow in curved pipes. It is an iteration method in which
solutions are first obtained by the method of upwind differ-
ence and then corrected using the difference correction
method of Fox!! so that the final solutions are correct to
central difference accuracy. The major differences between
the present method and the method by Collins and Dennis
are the iteration procedure and the criterion for conver-
gence.

We employed the alternating direction iterative method
(ADI) for iteration instead of the Gauss—Seidel procedure,
which was employed by Collins and Dennis. The criterion
for convergence according to Collins and Dennis'’ is

& (1,8) =& (1,0)| <1074 (10)

for all the grids along the wall, where the superscript
(m + 1) and (m) represent the (m + 1)th and mth itera-
tions, respectively. This criterion is not suitable for the pres-
ent problem since & is not of order unity for all the cases
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studied here. Hence we employed the following criteria for
convergence:

(w1 (r,0) — w'™(r,0)|

<1074,
'w(m+l)(r’9)| (lla)
|¢(m+ ”(r,0) _ ¢"”’(r,0)| < 10_4
|¢(m+l)(r’0)l
for all the grids inside the calculating domain,
|§(m+l)(1’€)__§(m)(1’e)| s
mih(1g <10 (11b)
¢ (1,0)]
for all the grids along the wall, and
lD(()m+l)(r’0)_D(()m)(r,6)| 0-4
D"+ (r,0) ’
(m+|n ’ (»!) (11
|Eo (r.0) — E§™(r,0)] 0—4

ES0(r0)]

for all the grids inside the domain, where D, and E, are the
axial velocity and vorticity correction terms for obtaining a
second-order accurate solution, respectively. Since the flow
field is symmetric about y = 0, according to Eqs. (3a)—(3c)
and (6), we shall carry out the finite difference calculation
for the semicircular region from 6 = 0 to 7. Solution proce-
dures are similar to those in Collins and Dennis. '® Details of
the discretizations and finite difference equations for the
present problem can be found from Hsu.'?

IV. RESULTS AND DISCUSSIONS

Calculations were carried out for a large number of
cases ranging from R, =1 to 100 and from R, G =1 to
0(10*) or O(10°), depending on the magnitude of Rg.
Some of the typical results are listed in Table I and plotted in
Figs. 3 and 4. The grid spacings for the calculations are }
and 7/401n the r and @ directions, respectively. Table I sum-
marizes the maximum values of w and ¢ (denoted by w,,,,
and ¢,.., ) and their locations, the mean axial velocity w,,
according to Eq. (7), the dimensionless parameters R 2,
R, G, R, K,( = 8Rg R), and R, /R, the friction factor ratio
( f/ £,),and the friction factor ratio based on the experimen-
tal correlation by Ito and Nanbu® ( f;/ f,). Figures 3 and 4
show the contours for constant values of dimensionless axial
velocity and secondary streamfunction with w/w,,,, (also
Y/ e ) = 0,02, 0.4, 0.6, 0.8, and 0.95 (starting from zero
at the wall r = 1 and increasing their values away from the
wall). Also shown in the figures are the locations of maxi-
mum values, which are denoted by closed circles. According
to the experimental correlation by Ito and Nanbu, the criti-
cal Reynolds numbers (R, ) for the present problem are
1250, 1466, and 2122 when R 2 = 100, 400, and 10 000, re-
spectively. No correlation is available when R, <8, but we
may expect R, =~ 1150 according to the experimental result
for the stability of Poiseuille flow. [ Note that R = w,,a/vin
the present paper instead of R = w,, (2a)/v employed by Ito
and Nanbu.] No further cases have been simulated for R }
<100 with R, G larger than those listed in Table I as a result
of the stability consideration. For cases R 4 = 400 (and 10*)
with R, G greater than those values listed in Table I and
cases with R 2 > 14 400, we have difficulty obtaining con-
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TABLE 1. Representative cases for the present study.

Case R} Ry G Winax Yrnan W, R K, Ry/R FaA Nl 1
1 1 1 0249 (0000, 0) 000148 (0.450, 90°) 0.125  0.125 0.996 8.03 1.004
2 1 10 249 (0000, 0°) 00148  (0.450, 90°) 1.25 1.25 9.96 0.803 1.004
3 1 100 249 (0025, O)  0.148 (0.450, 907) 12.5 12.5 99.6 00803  1.004
4 1 1000 238 (0250, 09 131 (0450, 855 120 120 959 0.00835 1.043  1.082
5 1 10000 1746 (0525, @) 523 (0525, 85.5) 961 961 7684 000104 1301 1332
6 1 12000 2037 (0550, @) 563 0550, %07 1129 1129 9032 0000886 1.329  1.360
7 6.25 625¢ 1172 (0500, 0 42 (0500, 8557 632 253 5053 000989 1237  1.266
8 25 10 231 (0000, 0) 00130  (0.450, 90) 1.20 0.240 9.60 20.8 1.042
9 25 25000 3788 (0600, 0  7.27 (0.575, 94.5°) 2149 430 17194 00116 1454  1.487
10 25 50000 6915 (0625, ) 912 (0.625, 99) 3918 784 31341 000638 1595  1.630
1 25 75000 9807 (0650, 0°) 103 (0.650, 103.5%) 5537 1107 44295 000452 1693 1724
2 o 10 209 (0000, 0 00109  (0.475, 907 1.14 0.143 9.15 55.9 1.093
13 100 1 0.195 (0000, 0°)  0.000946 (0.475, 907) 0.111 0.0111 0.884 905 1.131
14 100 10 195 (0000, 0) 000946 (0.475, 90 111 o.111 8.84 90.5 1.131
15 100 100 19.5 (0025, 0°) 00945 (0475, 909 11.1 111 88.4 9.0 1.131
16 100 1000 193 0175, &) 0912 (0475, 855%) 109 109 875 091 1.143
17 100 10000 1654 (0525, 0y 477 (0.550, 85.5°) 943 94.3 7546 0.106 1325 1329
18 100 50000 6833 (0625, 0°) 895 (0.625, 99) 3898 390 31184 00257 1.603  1.629
19 100 100000 12446 (0675, 0) 112 (0.650, 103.5°) 7042 704 56337 0.014 1775 1.796
20 100 180000 20465 (0700, 0 133 (0.675, 108" 11550 1155 92397 000866 1948  1.959
21 225 10 167 (0325, 907) 000656  (0.500, 90°) 1017 00678 8136 221 1.229
2 225 10000 1550 (0500, 0 424 (0550, 855 922 61.5 731 0.244 135 1325
23 400 10 152 (0450, 907) 000464 (0525, 9C°) 0948 00474 758 422 1.319
24 400 100 152 (0450, 909 00464  (0.525, 90" 9.47 0.474 75.8 422 1.319
25 400 1000 152 (0450, 85.5) 0.462 (0.525, 90°) 94.6 47 757 423 1.321
26 400 10000 1437 (0500, 49.5%) 3.61 (0575, 85.5°) 895 447 7 158 0.447 1397 (1.32)
27 400 13000 1846 (0.500, 13.5%) 4.29 (0575, 85.5) 1141 57.1 9128 0.351 1424 (1.362)
28 400 15000 2119 (0500, 0  4.67 (0575, 907 1302 65.1 10416 0.307 1440 (1.386)
29 400 50000 6516 (0625, 0) 828 (0625, 99) 3825 191 30 608 0.105 1634  1.624
36 400 100000 12081 (0675, @ 107 (0.650, 103.57 6963 348 55700 00575 1795 1792
31 400 180000 20071 (0700, ¢ 129 (0.675, 108°) 11467 573 91736 00349 1963 1956
2 900 10000 1294 (0.550, 76.5%) 2.43 (0.600, 85.5) 832 27.7 6658 1.08 1.503
33 1600 10 121 (0625, 90°) 000167 (0625, 90°) 0777 0.019 622 2062 1.611
34 1600 10000 1193 (0.625, 85.5) 1.63 (0.625, 855) 772 19.4 6218 2.06 1.608
35 1600 100000 10769 (0.650, 0 890 (0.675, 99) 6689 167 53512 0.240 1.869  1.780
36 2500 100000 9960 (0.600, 0  7.81 (0700, 907 6520 130 52 160 0.383 1917
37 3600 100000 9197 (0.675, 63) 670 (0700, 907) 6342 106 50736 0.568 197
38 4900 100000 8962 (0.725, 81 566 (0.725, 855 6157 88.0 49258 0.796 2030
39 10000 10 0.846 (0775, SC°) 0000345 (0.750, 907} 0.567  0.005 67 454 17637 2204
40 10000 100 846 (0.775, 90°) 000345  (0.750, 907) 5.67 0.0567 454 1764 2204
41 10000 1000 846 (0775, 90°) 00345  (0.750, 90 56.7 0.567 454 176 2,204
42 10000 10 000 845 (0.775, 907) 0345 (0.750, 90°) 567 5.67 4536 17.6 2.204
43 10000 100000 8237 (0775, 85.5%) 3.36 (0.750, 81 5595 56.0 44760 1.79 2234
44 10000 300000 22266 (0.750, 67.5°) 8.53 (0.750, 81) 15769 158 126 152 0.634 2378
45 10000 400000 29050 (0650, 0 103 (0.775, 81°) 20443 204 163 544 0489  2.446
46 10000 1000000 71557 (0750, 0 160 (0.800, 85.5°) 45697 457 365 576 0219 2735 2550
47 10000 1300000 91415 (0775, 0°) 17.8 (0800, 907) 57245 572 475 960 0.175  2.839  2.690
vergent solutions based on the present numerical method.  pairs of grid sizes have been used, namely,
Further illustrations and detailed discussions will be pre-
sented later in this section. h=4, k=u/20 (21X21 grids),
. h= = 31 i
A. Grid dependence by k=7/30 (31X31 grids),
. . . ) = 1 = 41 3
Before we get into the details of the discussion, we first h=2, k=m/40 (41X41 grids),
check the grid dependence. In the present calculations, four h=4, k=u/50 (51X51 grids).
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FIG. 3. Contours for constant axial velocity with values w/w,,,, =0, 0.2,
0.4, 0.6, 0.8, and 0.95 (starting from zero at the wall x2 + y* = 1 and in-
creasing their values away from the wall). The locations of w,,,, are de-
noted by closed circles. The figure in the lower left corner shows the coordi-
nate system.

The results for eight cases using these four grid sizes are
shown in Table II. Three representative properties, namely,
W,ax s Yimax» aNd W, , as well as the CPU time, are listed in the
table for comparison. The calculations were carried out on
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FIG. 4. Contours for the constant secondary streamfunction with values ¢/
Ymax =0, 0.2, 0.4, 0.6, 0.8, and 0.95. The representing convention is the
same as that in Fig. 3.
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the CONVEX C-1 computer without vectorization. The ini-
tial guesses of the field for w, ¢, and £ were all set to zero. The
general trend of these results as the grid sizes are decreased
tends to indicate the solutions for the case of (41 X 41) grids
are probably accurate to within 1% tolerance up to
R, =100 and R, G = 10°. We also checked the detailed
variations of the flow field for different grid spacing, and
found that 4 = } and k = 7/40is indeed a reasonably accu-
rate choice for grid spacing. It is worth it here to point out
that the CPU time increases rapidly as the grid spacing de-
creases. In order to obtain a compromise between the cost of
the computer time and the accuracy of the solution, we car-
ried out all the numerical simulations with 42 =} and
k = w/40 in this paper.

B. Validity of the computer program

First we check the present numerical solution against
the asymptotic solution by Berman and Mockros’ for small
values of N_( = R, /48). Figure 5 shows the contours for
constant ¢ and w with their values ¥/¥,,, (and w/
W,a ) =0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and 0.875
(starting from zero at the wall at » = 1 and increasing their
values away from the wall). The agreement between the
present calculation and the asymptotic solution is excellent,
at least for this set of parameters, ie, Ry =1 and
R, G = 10. Further comparison will be shown later in Fig.
13(b).

Next we check the present calculations with the experi-
mental results by Ito and Nanbu via the friction factor ratio.
Ito and Nanbu® proposed the following correlation accord-
ing to their experimental findings:

fi/f. =0.0883K ["*(1 + 11.2K 0.323y (12a)
for

22X10° <K, <10’, R,/R <0.25, (12b)
where

K, =8R,R. (12¢)

Table 1 lists our numerical calculations according to Eq.
(9b) together with the correlation from Eq. (12a). We
found that the present calculations agree well with the ex-
perimental correlations, including cases like R, = 100 and
R, G = 10° in which the grid dependence has not yet been
checked. The numbers within parentheses shown in the last
column of Table I are some cases outside the parameter
ranges for the experimental correlation according to Eq.
(12b); they still agree well with the present calculations.
Third, we check the asymptotic behavior for Ry, » R
and R, > 1 of the present calculation with the asymptotic
solution by Benton and Boyer.* Benton and Boyer proposed
that (1) the viscous effects are important only in the thin
boundary layer along the wall; (2) the flow in the core is
geostrophic, which implies that w = w(x) and ¢ = ¥(p),
where x = x'/a and y = y'/a; and (3) the inertia effects may
be neglected everywhere. We shall check these three points
according to our results shown in Table I and Figs. 3 and 4.
For cases R, =100 and R,G=10-10* (ie, Rqo/
R = 17.64-17 637), we found that most of the deformation
indeed occurs next to the wall, except the region in the vicini-
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TABLE II. Variations of w,,,, W,,., s ¥max» and CPU time in seconds with different grids.

R} R, G Grids w,, Winax Ymax CPU (sec)
12 10 21x21 1.24 2.49 0.0150 105.3
31x31 1.25 2.49 0.0148 415.5
4141 1.25 2.49 0.014 8 11327
12 10 21x21 955 1743 5.26 82.2
31x31 959 1746 5.24 369.3
4]1x41 961 1746 523 958.0
51x51 961 1747 5.23 2 390.7
10? 10 21x21 109 193 0.913 96.6
31x31 109 193 0.912 422.7
4141 109 193 0.912 1517.1
51x 51 109 193 0.911 2 663.3
10? 10 2121 937 1 646 4.830 86.4
31x31 942 1652 4.78 357.2
41x41 943 1654 4.77 1071.3
51x51 944 1654 4.77 2 537.5
10? 10 21x21 6943 12 353 113 175.6
31x31 7016 12421 11.2 1141.1
41x41 7042 12 446 11.2 41721
5151 7054 12 454 11.1 9682.5
100? 10 21x21 0.542 0.809 0.000 352 155.6
3131 0.560 0.838 0.000 346 1150
41 %41 0.567 0.846 0.000 345 4959.8
S1x51 0.570 0.850 0.000 344 13175.8
100? 10? 21x21 542 809 0.352 169.5
31x31 560 836 0.346 11579
41 x41 567 845 0.345 4 810.4
51%51 570 850 0.344 14 993.0
100? 10° 31x31 5528 8153 3.37 14484
41 %41 5595 8237 3.36 5430.1
5151 5627 8 280 3.35 15 831.6

ty of 8 =0 and 7, where the Coriolis effect is minimized.
This implies that a boundary layer region is formed next to
the wall. The axial velocity and the streamfunction contours
for the above cases shown in Figs. 3 and 4 also indicate that
the flow field in the core region is geostrophic. To quantify

perturbation solution present calculation

.00 -080 000 050 100 =100 -050 000 o050 100

-100 -qs0 000 0s0 100 400 -050 aoo os0 100

FIG. 5. Comparison between the perturbation solution (Berman and
Mockros) and the present calculation for R, = 1 and R, G = 10. The con-
tour values for w/w,,. (and ¥/¢,...) are 0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, and 0.875. The representing convention is the same as that in Fig. 3.
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this point, we have the axial velocity on the symmetric plane
as

w/w,,, = (1—x2)>** (13a)
and the streamfunction along the y axis as
¢/¢max = (RQG/ZRlz'I'ﬁmax )y9 (13b)

according to Ito and Nanbu® (or Benton and Boyer?) in
terms of the present parameters and variables inside the
core. Figure 6(a) shows Eq. (13a) together with the present
numerical solutions for R, = 100 and R, G = 10-10*. We
found the numerical solution agrees with the asymptotic so-
lution. Figure 6(b) compares Eq. (13b) with the numerical
results for R, = 100 and R, G 10-10*. We found that the
agreement is fair up to the location where ¢, occurs. Here,
it is worth mentioning that the term Ry G /(2R 2 ¥max)
~1.45 in Eq. (13b) and the numerical results in Figs. 6(a)
and 6(b) are almost independent of R, G for R, G = 10~
10*, so that the data collapse onto a single curve for these
cases as shown in the figures. Finally, for Ry >R and
Rg, > 1, the inertia term can be set to zero so that Egs. (3a)-
(3c) are reduced to a set of linear equations. Such linear
equations together with the boundary conditions [Eq. (6)]
indicate that
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] RaG = 10 ] /

/ (b)

/ FIG. 6. A comparison between the asymp-

/ totic solution by Benton and Boyer for

R, > 1, R, » R (dashed line), and the pres-
ent calculation for Ry, = 100, R, G = 10—
10* (O, X, A, ¥, solid line): (a) the axial
velocity profile on the symmetric plane; and
(b) the secondary streamfunction along the
y axis.

w(rd) =w(rm—0),
5(r,8) =§(rym—6).

The cases for R, = 100 and R, G = 10-10* shown in the
last column of Figs. 3 and 4 indeed show that both the w and
% contours are symmetric about the y axis.

¢(r30) = ¢'(r977' - 0);

(14)

C. The general flow structure

Now, we have a certain confidence to carry out detailed
numerical simulations. Since this is a two-parameter prob-
lem, a large number of cases are required to give a clear
picture of the flow structure. We have run many cases and
the most representative cases among them have already been
shown in Figs. 3 and 4 and Table 1. Here we shall give a
detailed discussion on these results.

We found that there are four types of flow regimes for
the present problem, namely, regime A, B, C, and D, accord-
ing to the results shown in Figs. 3 and 4 and Table 1. The
ranges of parameters for these flow regimes are sketched
qualitatively in Fig. 7 together with those studied by Berman
and Mockros. The edges of these regimes are determined

= v3
R,= 85RG)

nG=100

R G
Q

v

FIG. 7. Sketch of the relative positions in the parameter space for the four
flow regimes. Different regimes are separated by solid bold lines. Region in
shaded area is the approximate region covered by the perturbation solution
of Berman and Mockros.
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approximately by the scaling analyses together with the
present numerical results, which will be discussed later in
this section. We found that the perturbation solution by Ber-
man and Mockros covers the entire regime A and part of the
regimes B, C, and D. Hence the present solution may be
regarded as an extension of the perturbation solution. The
flow field for all these regimes is symmetric about the x-z
plane, which is thus called the symmetric plane. The general
trend for the present results shows that the strength of the
main stream and that of the secondary flow increase with
R, G for fixed values of R }, but decrease as R 2, increases
for fixed values of R, G. Dlﬁ'erent regimes are characterized
by different shapes of the axial velocity profiles, which were
predicted qualitatively by Berman and Mockros.”

(1) Regime A: When both R, G and R 7, are sufficiently
small (R, <10 and R, GK100), the secondary flow is too
weak to modify the main flow effectively, such that the axial
velocity profile is essentially axisymmetric and parabolic
with the maximum value occurring at or very close to the
center of the pipe. Cases with this kind of flow pattern belong
to regime A. Typical examples are cases 1-3,8, and 12-15 in
Table I, with the corresponding flow patterns shown in Figs.
3 and 4. Both the magnitudes of the axial velocity and the
secondary flow of this regime increase linearly with R, G for
fixed values of R },, but decrease slightly as R % increases for
fixed values of R, G. The location of ¢,,,, occurs on 8 = 90°,
and is shifted slightly outward as R  increases for fixed
values of R, G, but stays at the same position as R, G varies
for fixed values of R . The asymptotic solutions by Baura,?
Benton, and Berman and Mockros’ include this regime.

(2) Regime B: When R, is small but R, G is large
[Rq <0.85(R, G)'? and Ry G > 100], the location of w,,,,
is shifted outward along 8 = 0°so that the axial velocity pro-
file is skewed toward the pressure side (positive x). Cases
with such a flow pattern belong to regime B. Examples for
this regime are cases 4-7, 9-11, 16-20, 22, 28-31, 35-36, and
45-47 in Table I. The flow patterns in this regime are similar
to those in curved pipes in the loosely coiled pipe limit as
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expected from the governing equations. For small values of
R}, the terms on the right-hand side of Eq. (3c) can be set
to zero, and Egs. (3a)—(3c) then become a similar equation
set to that in Dennis and Collins for flow in curved pipes. The
Coriolis force in the present regime plays the similar role as
the centrifugal force in curved pipe flow and pushes the loca-
tion of w,,,, outward along the symmetric plane via the sec-
ondary flow.

(3) Regime C: When R, G is small but R, is large
[R,>1.26(R,G)?'® and R, > 10], the rotation effect dim-
ples the axial velocity profile at the center and creates a dum-
bell-like profile with two maxima, one along 6 = 90° and one
along 9 = 270°. Cases with this kind of flow pattern belong
to regime C. Cases 21, 23-24, 33, and 3942 in Table I are
typical examples for this regime. The locations of w,,,, and
Ymax do not depend on R, G but move continuously
outward along 8 = 90° (and 270°) as R, increases. Both the
strength of the axial velocity and the secondary flow increase
linearly with R, G for fixed R, but decrease as R, in-
creases for fixed R, G.

(4) Regime D: It is the transition regime between re-
gime B and C that occurs approximately when
0.85(RaG)'/*<Ry <1.26(R,G)*'® and R, G> 100. It is
characterized by a skewed axial velocity profile with two
maxima; one occurs at (r,,8,) and the other occurs at
(ry2m — 0,),where0 < r, < 1and 0 < 8, < 90°. Examples are
cases 25-27, 32, 34, 37-38, 43, and 44 in Table 1. Typical
flow patterns are shown in Fig. 3 for the cases R, G = 10%,
R2 =400 and R, G =3X10°,R% = 10*. Data shown in
Table I indicate that regime D is quite a narrow region in the
logarithmic plot of the parameter space (see Fig. 7). For
example, regime D occurs approximately from R, G = 10°
to 1.5x10* for R2 =400 (cases 25-28) and from
Ry, = 1540 for R, G = 10* (cases 22, 26, 32, and 34) ac-
cording to the data shown in Table 1. It is also worth men-
tioning here that the flow pattern in regime D occurs when
R, /R = O(1) according to Table 1.

The reason that we have different axial velocity profiles
for different regimes can be understood through the force
balance in the governing equations. It is the secondary flow
that makes the axial velocity profile different from the para-
bolic profile in Poiseuille flow. The effect of the secondary
flow enters the governing equation for w [ Eq. (3¢)] through
two terms: the convection term and the Coriolis term. In the
absence of these two terms, Eq. (3c) leads to the Poiseuille
solution which has an axisymmetric and parabolic profile.
The relative importance among the four terms in Eq. (3c)

depends on the magnitudes of R, G and R 3, and shows
different flow patterns for different regimes. The axial pres-
sure gradient is the driving term and hence is always impor-
tant. The viscous term is always important next to the wall,
but may not be significant in the core region for certain
ranges of parameters. The scales in Eq. (4) are convenient
for the present calculation, but not suitable for illustrating
the force mechanisms. In order to study the force balance for
various regimes, we had to rescale the problem through the
following simple scaling analyses.

When both R and R, are small, the viscous term is
important and is of the same order as the driving term G */p
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in Eq. (1d) throughout the whole flow field; the Coriolis
force, the viscous force, and the pressure term in Egs. (1b)
and (lc) are of the same order; and Eq. (1a) shows that
u' ~v'. A simple scaling analysis based on these arguments
shows that the proper scales for w' and ¢’ are (v/a)G and
vRq G, respectively. Equation (3c) then becomes

139 w1 a¢aw)
Vi + R G(—————-— 1
WAt Re O\ e T T e ar) T
=R? ( a¢co 9+28¢sm6> (15a)
r 06 ad
if it is rescaled through
=w/RyG, §=9/RoG (15b)

The data shown in Table I (cases 1-3, 8, and 12-15) indicate
that &=0(1) and ¢ =0(10"2) for Ry<10 and
R, G<100. Both the convection term and the Coriolis term
are then of one order less than the viscous term or pressure
term in Eq. (15a) when R, <10 and R, G<100. Hence we
have essentially axisymmetric profiles for the axial velocity
when both R, G and R}, are small (i.e., regime A).

As R, G increases by keeping R,, small and fixed, the
convection term in Eq. (15a) increases. The secondary flow
across the r-6 plane also increases as R, G increases. Such
cross-flow shifts the location of the maximum axial velocity
outward along 6 =0 in the manner similar to the flow in
curved pipes. When R, G is sufficiently large, the scales in
Eq. (15b) become invalid. In such a case, the convection
term balances the driving term G */p in Eq. (1d) in the core
region; the Coriolis term, the pressure term, and the convec-
tion term are of the same order in Egs. (1b) and (1c); and
the continuity shows 4’ ~v'. Based on these arguments, scal-
ing analysis shows that the proper scales for w’ and ¢’ are
[V*/(@°Q) ] (Rg G)*? and v(R, G) /. Equation (3c¢) then
is rescaled as

1 2. 1 8¢ 80 1 3P

- —_GYyow oY ow 4
(R, G)'? rdr 38 r 30 or +
2
=i——(2 a¢coso9 +2 zpsmé’) (16a)
(Ry, G)Y?? a6 a

where
=w/(RoG)?, P=y/(RqG)"> (16b)

The data shown in Table I (cases 5-6, 9-11, 18-20, 29-31,
35,46, and 47) indicate that the convection term is indeed of
order unity and ¥=~O(10~"). The Coriolis term in Eq.
(16a) is then of one order less than the convection term and
plays only a minor role in affecting the shape of the axial
velocity profile when R 7 <(RyG)?? for large values of
R, G. The convection effect pushes the location of w,,,,
along 6 = 0 and hence the axial velocity profile is skewed
toward the pressure side in regime B. It is found from the
data in Table I that this criterion also works for cases when
R Gis not so large. Detailed numerical data (from Table I
and other simulations not shown here) indicate that we have
the flow pattern of regime B when R, G> 100 and
R, <0.85(R, G)'/3.

When R is small and R, is large enough, Benton and
Boyer* showed that the inertia term is negligible everywhere,
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the core flow is geostrophic and the viscous effects are con-
fined inside a boundary layer next to the wall. Hence we have
the scale for ¢ as v(RaG)Rs? and v' (or u') as
(v/a)(Rg G)R ;2 in the core region by balancing the Cor-
iolis force to the driving term G*/p in Eq. (1d). Let v” and
w” be the scales for v’ and w' inside the boundary layer, and 6
be the scale for the boundary layer thickness. Conservation
of mass for the secondary flow in the #-8 plane requires that
v"8~v'a~'. On balancing the Coriolis and viscous terms
inside the boundary layer, we have w”/§%°~Quw” and

vw" /8% ~Qu". Therefore we may solve for v”, w”, and 8
based on the above relations. The results are 8/a~R 5 ',
V" ~(v/a)(RaG)R 5 ¥% and ~(V/a*Q) (R G)
X R & ', which agree with the integral analysis by Ito and
Nanbu.? The scale for w’ inside the core is the same as that
inside the boundary layer, i.e., w’' ~w”. Hence Eq. (3¢) can
be rescaled as

R Q_ l/2v2w +

RaG(10b 70 1 39 30)
RY>\r 9r 36 r 36 or

2 81// bl
cos@ +2—sinf 17a
r ado or (172)
for flow in the core, where
Y=9YRL/R.G, ib=uwRY*/R,G (17b)

When (R, G)R 5 ¥?<0(10™"), the convection term is of
one order less than the Coriolis term, so that the shape of the
axial velocity profile is mainly affected by the Coriolis force.
The Coriolis term in Eq. (17a) is maximized when
U = JY/3dr is maximized and @ = 90°. As stated in the pre-
vious scaling, the velocity of the secondary flow inside the
boundary layer is of order R {2 greater than that in the core.
The maximum value of ¥ then occurs somewhere near the
outer edge of the boundary layer at 8 = 90°, which implies
that the Coriolis force is also maximized there. Also note
that Tis positive there so that the Coriolis force enhances the
axial velocity at the outer edge of the boundary layer. On the
other hand, 7 is negative in the core and is of order R };* less
than its maximum value. The Coriolis force then retards the
axial velocity in the core by a small amount in comparing
with the enhancement at the outer edge of the boundary
layer. Hence we may have the dumbell-like two-maxima
profile in regime C according to Eq. (17a) when R, is large
enough and R (proportional to G) is sufficiently small. De-
tailed numerical data according to Table I and other simula-
tions (not shown here) indicate that we have the flow pat-
tern of regime C when R, > 10and R, > 1.26(R, G)?/>.
Now, we know that there are two mechanisms that may
affect the shape of the axial velocity profile. Consider the
right semicircular region in Fig. 1, the convection term shifts
the location of w,,,,, toward the wall along § = 0° while the
Coriolis force shifts it toward the wall along 6 = 90°. We
have just studied cases when either of these two mechanisms,
or both of them, are negligible. In case both of these two
mechanisms are important and are not negligible in compar-
ing with the driving term G */p, the location of w,,,,, is shift-
ed to a new position in the first quadrant of Fig. 1, so that the
axial velocity profile is skewed with two maxima which was
classified as the profile of regime D. This occurs when
0.85(R, G)'*< R, <1.26(R,, G)*'* and R, G> 100 accord-
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ing to the above analyses and the numerical data in Table 1.

In order to quantify the above scaling analyses, we cal-
culate the terms in Eq. (3c) based on the present numerical
solutions. First Eq. (3c) is multiplied by #, then integrated
from r =0 to r, and from 8 = O to 7, where 0<r, <1. After
certain manipulation, we have

—2—[ —f fcrvzw drd6b
TT)'zRQG 0 JO
_ fﬂf" (ﬂ ow 9 a_w) drdo
ar 96 46 or
f (—- —L-cos 8

+2—‘/’sin9) rdrd6]=l. (18)
ar
The terms on the left-hand side are the viscous, convection,
and Coriolis terms, respectively, normalized through the
axial pressure gradient term. Table III shows the magni-
tudes of these terms in the core region for several typical
cases when r, = 0.7125. Note that the sum of these three
terms should equal unity for a given case. The results shown
in the table show some discrepancies as a result of the nu-
merical approximations in evaluating these terms. The result
for case 3 which belongs to regime A indeed shows that the
viscous term dominates. As R, G increases by holding R,
fixed, the convection term increases (see cases 4 and 5) and
modifies the flow field. In case 5, the convection term is of
the same order as the viscous term. Similar transitions from
regime A to B can also be observed from cases 14, 16, and 19
in Table I11 for larger values of R, . In case 19, R, G is large
enough that the convection term dominates and balances the
axial pressure gradient term as expected from Eq. (16a).
When R, is sufficiently large, say, R, = 100, cases 39, 41,
and 43 in Table III show that the Coriolis term dominates
and is of one order greater than the viscous term. It balances
the axial pressure gradient term and thus confirms the geo-
strophic flow pattern in the core region proposed by Benton
and Boyer.* Recall that the scaling analysis leading to Egs.
(17a) and (17b) is based on the argument of Benton and
Boyer. In order to study the force mechanisms next to the
wall, we also calculated the viscous term, the convection
term, and the Coriolis term in Eq. (18) with r, = 0.9875 for
cases 39, 41, and 43, and found that they are equal to 0.984,
0.8 10722, and 0.34 X 10~ for case 39; 0.984, 0.14 X 10~¢,
and 0.34xX 10! for case 41; and 0.981, 0.13X 1072, and
0.34 10~ for case 43. By comparing these results with the
corresponding results in Table ITI, we indeed found that the
viscous effect is confined inside a thin boundary layer next to
the wall, and that the convection term is negligible every-
where in the flow field, as proposed by Benton and Boyer
before. Cases 26 and 44 show that both the convection term
and the Coriolis term are of the same order and hence they
belong to regime D. Cases 23, 25, 26, and 30 (also 39, 41, 43,
44, and 47) show the changes of the relative importance of
each term as the flow transmits from regime C to D and then
to B. The results agree with the above scaling analyses.

The flow pattern transmits from one regime to another
smoothly as the parameters vary. First consider the transi-
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TABLE III. The relative importance of the various forces in the core region (from r = 010 0.7125).

Case R2 RoaG Viscous term Convection term Coriolis term Regime
3 1 100 0.998 0.55x10~? 0.27x107? A
4 1 1 000 0.947 0.42x10~! 0.24x10? B
5 1 10000 0.636 0.362 0.11x107? B

14 100 10 0.829 0.31x10™° 0.181 A
16 100 1000 0.836 0.14x10~! 0.176 B
19 100 100 000 0.191 0.803 0.29x 10! B
23 400 10 0.631 0.2x10¢ 0.398 C
25 400 1000 0.637 0.22x10°2 0.397 C
26 400 10000 0.553 0.137 0.326 D
30 400 100 000 0.183 0.726 0.112 B
39 10000 10 0.100 0.13x107* 0.923 C
41 10 000 1000 0.101 0.3610~* 0.923 C
43 10 000 100 000 0.85%x 10! 0.35x 10! 0.903 C
44 10 000 300 000 0.22%x 107! 0.238 0.766 D
47 10 000 1 300 000 0.42x 10! 0.702 0.366 B

Viscous term = — ——z—j f " WVwdrde
ar R, G Jo Jo

Y ow Y ow

. 2 " por,
Convection term = — —~ (——————)d 9
nvection ferm mﬁR,,GLL or o8 36 ar) "

2R 2 T o,
Coriolis term = ———>— J J (—
0 JOo

7PR, G

2 ﬂcosG +2é¢——sin O)rdrdB
r 06 ar

tion from regime A to B. For a given small value of R, , the
location of w,,,,, is shifted continuously outward along 8 = 0
as R, G increases, as shown by the figures in the first two
columns of the diagrams of Fig. 3 and the values listed in
Table I for R = 1 and 100. The location of ¥, is first
shifted a little bit to the right from 8 = 90° as R, G increases,
which agrees with the analysis by Berman and Mockros, and
then is shifted to the left as R, G increases further for a given
value of R, . The secondary streamfunction is distorted even
more as R, G increases. Table I also lists the values of the
dimensionless parameters K, ( = 8R, R) and R, /R, which
were employed by Ito and Nanbu. We found that the flow
field approaches the limiting case R> Ry, , Rq R> | studied
by Ito and Nanbu® as K, increases with small values of R, /
R (see the last figure in each column of Figs. 3 and 4). Figure
8(a) shows the axial velocity profile along the symmetric
plane for R, = 10 as R, G varies. The flow pattern is

] RaG = 10

(a)

FIG. 8. Variation of the axial velocity profile (a) on the symmetric plane
and (b) along the y axis with R, G for R,, = 10.
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skewed continuously from the parabolized profile (Hagen—
Poiseuille) as the effect of rotation increases. Figure 8(b)
shows the variation of w along the y axis with Ry G for
R = 10. The transition from regime A to C can be seen
clearly if we go through the figures on the first row of dia-
grams of Figs. 3 and 4. The location of w,,, is shifted
outward along the y axis and the flow tends to approach the
geostrophic core pattern [i.e., w = w(x), ¥ =9(y)] as R,
increases. To give a further illustration, we plot the velocity
profiles along the y axis for R, G = 10: R, =1, 10, 20, 40,
and 100 in Fig. 9. Note that the profile for R, = 100 indeed
shows a flat region, i.e., w#w(y), which is regarded as a
feature of the geostrophic core for the limiting case R, 3 1,

(also the Poiseuille solution)

FIG. 9. Variation of the axial velocity profile along the y axis with R,, for
R,G=10.
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R, > R studied by Benton and Boyer. The third and fourth
column of diagrams in Figs. 3 and 4 illustrate the transition
from regime C to D, and then to B sequentially as R, G
increases for fixed values of R }, with the pattern of Benton
and Boyer on the top end and the pattern of Ito and Nanbu at
the bottom. For R 2, = 10 the location of #,,,, is shifted
more toward the right from 6 = 90° (regime C—»D-B)
than that for R 3 = 10? (regime A—B) as R, G increases.
For example, the location of ¢, can reach 81° for
R % =10*but only reaches 85.5° for R 3, = 107 according to
Table 1. The third and fourth row of diagrams in Figs. 3 and
4 illustrate similar transition from regime B to D and then to
Cas R }, increases for fixed values of R, G. Further details of
the above transitions can be seen from the data in Table 1.
For example, the locations of ¢,,,,, shown in cases 30, 35, 36,
37, 38, and 43 of Table I indicate that the transition of the ¢
pattern takes place continuously as R, increases for
R, G = 10°, even though the contours shown in Fig. 4 for
case R, G = 10°, R, = 20*and R, G = 10°, R, = 100%are
quite different.

Since the present flow patterns for various regimes had
already been predicted qualitatively by the asymptotic solu-
tions of Berman and Mockros,’ it is helpful to see how accu-
rate the asymptotic solution is as R, G and R, increase.
Figure 10 shows w,,, ; 4 /W, g aNd Yoy 1 11/ Yimax e fOr dif-
ferent values of Ry G and R,,, where the properties with
subscript LH denote the present calculation and those with
subscript BM denote the results by Berman and Mockros.
We found that the discrepancies between the two solutions
are within 10% for w,, when R, <8, R, GK1000 and 20%
for ¥,,.x when R, <5, Rq GK1000.

(a) Ra = 10
Wm L # 1.2 /8
Wm, e ™ ‘45
: 1.0 1
4
: T Ty
2.2
1 Rp =10
4 (b) *
1.8
Ymax LK L
¢M¢I,IM -1
1.4
/s
104 =
. 1
4 rere

1 10 100 1000

Ra G
FIG. 10. Discrepancies between the present calculation and the perturba-
tion solution by Berman and Mockros for different values of R, Gand R, :

(a) the mean axial velocity ratio w,,, y/W,, 3 and (b) the maximum
streamfunction ratio ¥,,.. 1 4/ Ymax.8M -
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FIG. 1. Variation of the friction factor ratio ( f/f,) with R, and K. The

dashed lines show the present calculation. The solid line shows the experi-
mental correlation by Ito and Nanbu.

D. The friction factor ratio ( 7/7,)

As stated before, the present result for f/ f, agrees with
the experimental correlation [Eq. (12a)] so that f/f,
=~F_(K,) when R, /R <0.25 and K, >220. On the other
hand, f/ f, = F,(R, ) for small values of K, according to the
datain TableI. In general, f/ f, should be a function of both
K, and Rg,. Such a relationship is plotted in Fig. 11 for
R, =1,5,20, and 100. We found that the data collapse onto
the correlation curve as X, increases but trace out different
horizontal lines for different values of R, when X is small.
For any given value of R, the discrepancies between the
data curve and the two legs (the horizontal line and the
correlation curve) are within 10% according to the present
calculation. For example, the values inside the parentheses
in the last column of Table I are calculated based on Eq.
(12a), even though the corresponding parameters are out-
side the range shown in Eq. (12b), but they are less than the
corresponding numerical results by at most 5.5%. Hence the
friction factor ratio can be approximated as

frf.=F_(K)), K >k,
J7fe =Fy(Ry), K,<K,*,

where K, =K, ,(R,) is the solution of
F_(K,) =Fy(Ry), F_ (X)) is the right-hand side of Eq.
(12a), and F,(R,, ) is determined by Eqs. (21a) and (21b)
(see below). Equation (19a) and (19b) are valid within
10% error for the parameter ranges studied in this paper.

The horizontal lines which formed the left legs of the
data curve in Fig. 11 according to Eq. (19b) may be regard-
ed as the asymptotic solutions for R, > R. There are closed
form solutions if we further let either R, » 1 or R, €1. The
former case is the asymptotic solution studied by Benton and
Boyer* and Ito and Nanbu.® The result according to the inte-
gral analysis of Ito and Nanbu is

Fy(Ry) =0.1344R {?/(1 — 1.055R 5 /%),

for Ro>»1, R,>R. (20a)
The latter case may be obtained through the perturbation
solution by Berman and Mockros. They obtained the vol-
ume flow rate in terms of the parameters G and R,,, which
may be related to the mean velocity w/, in this paper. On
using Eqgs. (8) and (9b), we obtained

(19a)
(19b)
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FIG. 12. Variation of the friction factor ratio ( f/f;) as K, =8R,G-0
with R,,. The circles represent the results of the present calculation.

Fo(Rg) = (1—R%/576)~", for R, <1, Ro>R.

(20b)

Equations (20a) and (20b) are plotted in Fig. 12 to-
gether with the present numerical results. The numerical
solution agrees with Eq. (20b) within 10% discrepancy for
R, <11 and diverges from it rapidly as R,, increases further.
This is expected since the solution by Berman and Mockros’
is based on small values of N, ( = R, /48). The numerical
solution has a tendency to approach Eq. (20a), but it is un-
fortunate that we cannot carry out our numerical solution
further for a larger value of R, because of the limitation of
the present numerical scheme. We expect that Eq. (20a)
should underestimate the friction factor ratio since Ito and
Nanbu did not take into account the fact that there exists an
overshoot of the axial velocity along the y direction at the
outer edge of the boundary layer as shown in Fig. 9. How-
ever, the asymptotic behavior that f/f, ~R}/* for R, > 1
and R, > R predicted by Eq. (20a) does agree with the scal-
ing analysis. Also shown in Fig. 12 is the Poiseuille solution,
which gives us a lower bound for the present calculation at
small R, . A correlation that fits the numerical data in Fig.
12 within 4% error is

R G \2(f/f,) = 0.9655R ; 4%,
R (—)— l/z(f/f;) = 0.5338R 0—0.1946’

I<RG <12,

12<R, <120.
(21b)

(21a)

E. Compare with Duck’s result

Duck carried out numerical solutions for cases 4, 7, 9,
10, and 11 in Table I via a Fourier decomposition method.
Figure 13(a) compares the present result with Duck’s for
case4 (R, =1, R, G = 1000). The values for the contours
labeled in the figure [also those in Figs. 13(b) and 14] are
Duck’s dimensionless axial velocity and secondary stream-
function. Recall that the flow pattern should be symmetric
about y = 0, so that the present result and Duck’s result are
plotted inside the upper and lower semicircle, respectively,
in the figure for comparison. The agreement is fair for both
the streamfunction contours and the values of maximum
axial velocity, but the axial velocity contours are quite differ-
ent from each other. For example, w,,,, occurs at (0.25,0°)
in the present calculation instead of near the origin accord-
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FIG. 13. A comparison of the various re-
sults for R,, = 1 and R, G = 1000. The axi-
al velocity and the secondary streamfunc-
tion contours are represented by solid and
dashed lines, respectively. (a) The present
calculation (upper) versus Duck’s calcula-
tion (lower); (b) the present calculation
(upper) versus the perturbation solution by
Berman and Mockros (lower).

ing to Duck’s result. However, the present result does agree
fairly with the perturbation solution by Berman and Mock-
ros, as shown in Fig. 13(b). The scaling analysis according
to either Eq. (15a) or (16a) indeed shows that the convec-
tion term is not negligible, which implies that the axial veloc-
ity profile should be somewhat different from that of the
Poiseuille flow. For larger values of R, and R, G, the discre-
pancies of the axial velocity profiles between the present re-
sult and Duck’s grow such that they look as if they are com-
pletely different flow patterns. Figures 14(a) and 14(b)
show the comparison for case 9 (R, = 5, Ry G = 25 000)
and case 11 (R, =5, Ry, G =75 000). The present calcula-
tions indicate that the axial velocity profiles are skewed to-
ward the pressure side with one maximum occurring along
the symmetric plane, which belong to regime B defined be-
fore in Sec. IV C. Duck’s results show that there are two
maxima along the symmetric plane and the flow pattern in
Fig. 14(a) belongs to regime C instead of B. Despite the

(a)

FIG. 14. Comparison between the present
calculations (upper) and Duck’s results
(lower) for (a) R, =5, R,G = 25000
and (b) R, =5, R, G = 75 000. The axial
velocity and the secondary streamfunction
contours are represented by solid and
dashed lines, respectively.
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FIG. 15. A comparison of the dimensionless volume flow rate @ between
the present results (solid lines) and Duck’s results (dashed lines) for
R,, =1 (the lower two curves) and S (the upper two curves).

above discrepancies for the detailed flow structure, the di-
mensionless volume flow rate (Q) according to Duck’s de-
finition for both Duck’s and the present result agree with
each other within 10%, as shown in Fig. 15. Since the fric-
tion factor fis proportional to @ ~2, Duck’s result for falso
agrees with the experimental correlation in Eq. (12a) within
21% error according to the data shown in Table I and Fig.
15. One possible explanation for the discrepancies in Fig. 14
is that bifurcation occurs such that dual solutions exist for
those cases. Both the present result and Duck’s result could
be the solution of the present problem. Since Rg/
R = 0(10™?), the cases studied in Fig. 14 should be similar
to the curved pipe flow problem studied by Collins and Den-
nis'® and Dennis and Ng.'* The method employed by Dennis
and Ng was basically the same as that in Duck’s and they
found dual solutions for the same cases studied by Collins
and Dennis, who found only one solution. Note that the
present analysis employed basically the same method as that
in Collins and Dennis. However, Dennis and Ng found that
their secondary flow has a four-vortex pattern consisting of
two symmetrical vortex pairs, but Duck’s secondary flow
consists of only a symmetrical pair of counter-rotating vorti-
ces of the Taylor-Goertler type as the present study, which
seems to rule out the above possibility for dual solutions.
Anyway, further investigations are required for a better un-
derstanding of the bifurcation problem for the present flow
system.

V. CONCLUSION

By comparing the scaling results in Sec. IV C with the
detailed numerical results in Table I and Figs. 3 and 4, we
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found that there are four types of flow regimes, depending on
the relative magnitudes of the dimensionless parameters R,,
and R, G. (i) When R, <10 and R, G <100, the secondary
flow is too weak to modify the main flow such that the axial
velocity profile is essentially axisymmetric and parabolic
with the maximum value occurring at the pipe center; (ii)
when R, <0.85(R,G)'’? and R, G> 100, the convection
effect resulting from the secondary flow modifies the axial
velocity profile and shifts its maximum value toward the
pressure side (x > 0) along the symmetric plane; (iii) when
R, > 1.26(R,, G)**and R, > 10, the Coriolis force dimples
the axial velocity profile at the center and creates a dumbell-
like profile with two maxima along the y axis, one along the
positive axis and one along the negative axis; and (iv) when
0.85(R, G)'*<R, <1.26(R, G)*'* and R,,G > 100, both
mechanisms in (ii) and (iii) affect the axial velocity profile
and make it skew toward the pressure side with two maxima,
which occur symmetrically on both sides of the symmetric
plane. It is the transition regime between (ii) and (iii). The
transition takes place smoothly for the above four regimes.
These four regimes had already been predicted qualitatively
by the Berman and Mockros® perturbation solution. The pa-
rameter ranges that "are covered by the present study are
large enough that they bridge most of the previous asympto-
tic analyses. Based on the present calculations, the friction
factor ratio between the rotating and stationary pipe flow
can be approximated by Egs. (19a) and (19b) within 10%
error for most of the laminar regime of engineering interest.
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