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Abstract: Adaptive fuzzy cerebellar model articulation controller (CMAC) schemes are proposed
to solve the tracking problem for a class of nonlinear systems. The proposed method provides a
simple control architecture that merges CMAC and fuzzy logic, so that the complicated structure
and the input space dimension in CMAC can be simplified. Adaptive laws are developed to tune all
of the control gains online, thereby accommodating the uncertainty of nonlinear systems without
any learning phase. In particular, smooth compensation is adopted to overcome the chattering
problem associated with conventional switching compensation. By Lyapunov stability analysis,
it is guaranteed that all of the closed-loop signals are bounded and the tracking errors converge
exponentially to a residual set whose size can be adjusted by changing the design parameters.
Simulation results for its applications to three examples are presented to demonstrate the perform-
ance of the proposed methodology.

1 Introduction

Owing to its intrinsic difficulty, interest on the control of
nonlinear systems has persisted for many years. Various
control methodologies have been developed from the per-
spective of system theory and traditional feedback control
theory [1, 2]. Notably, these methods mostly depend on a
thorough understanding of the controlled system’s
dynamics, which makes their application unfavourable for
uncertain systems. To deal with uncertainties on dynamical
models or disturbances, some techniques in intelligent
control have found an application. Examples include
neural networks (NNs) using appropriated learning phases
[3–5] and fuzzy control by capturing human experiences
[6–9].
One subclass of NNs, introduced by Albus [10], called

the cerebellar model articulation controller (CMAC), has
attracted much attention because of faster learning, better
generalisation and simpler computation. In particular, a
trained CMAC can approximate nonlinear functions in a
generalised lookup-table manner over a domain to any
desired accuracy. Numerous researchers have applied it to
design the controller of unknown nonlinear systems such
as robot manipulators [11] and spacecraft [12]. Recently,
various modifications of CMAC have been proposed to
enhance the performance. The CMAC with a robust com-
pensation achieves H1 tracking performance [13]. The
merging of CMAC and the Hamilton–Jacobin–Bellman
(HJB) optimisation theory yields an optimal control
design [14]. Combining a fuzzy reasoning mechanism, the

resulting fuzzy CMAC (FCMAC) brings about a simple
control architecture [3, 12, 15, 16].

Traditionally, the weights in CMAC were trained by
an off-line learning phase, so the setting of CMAC may
take a long time. The effectiveness of CMAC is limited in
treating the problem that requires online tuning. Several
studies have suggested the use of the adaptive law to
update the CMAC weights online. The tracking perform-
ance of CMAC coupled with adaptive laws has been
shown by Peng and Woo [3] and Kim and Lewis [14] for
the robot manipulators, by Wai et al. [17] for linear piezo-
electric ceramic motors and by Lin and Peng [18] for a
Chua’s chaotic circuit. In these applications, a compensation
is required in the adaptive CMAC to attenuate the error
of CMAC approximation. This compensation is usually
designed to involve a switching function, which gives rise
to chattering on the control signals, and an undesirable
phenomenon may be excited in turn [1, 2].

To solve the chattering problem without sacrificing the
performance, we propose a modified adaptive FCMAC
(AFCMAC) scheme on the basis of previous work [16],
for dealing with the tracking problem of a class of nonlinear
systems. The AFCMAC approximation is adopted as rough
tuning, and the smooth compensation is developed as fine
tuning, so that (i) the design methodology is easy to
realise, (ii) all of the control gains, including the CMAC
weights, can be updated online without a prior learning
phase, (iii) chattering can be prevented, and (iv) the tracking
performance is guaranteed.

2 Structure of fuzzy CMAC

This section introduces the basic structure of CMAC and its
modification called the FCMAC that will be used later in
this paper. In general, to achieve the desired accuracy
with a FCMAC, a complicated structure and a sufficient
number of rules may be constructed, so that the dimension
of the underlying system becomes higher [19]. However,
for the real-time requirement in physical applications, the
computational load increases along with the complexity
of CMAC and may cause instability owing to the effect of
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time-delay. Some advanced control theories should be
integratedwith a FCMAC to enhance the system performance
if the number of rules is reduced. Consequently, simple
controller structures are used in many proposed schemes.

2.1 Basic CMAC design

The physical system to be controlled is assumed to have
only one control input and all of the state variables are
assumed available. Therefore a single-output CMAC [15]
is designed and the output is given by

zCMAC ¼ FðsÞ ð1Þ

where F:RL
!R is a nonlinear function of CMAC input

variable s ¼ [s1, . . . , sL]
T[S , RL. To mimic the oper-

ation of the cerebellum, the inputs (sensors) are related to
the output (response) through an association mechanism
with the association memory space A. Any element in A
consists of M number of 0s and 1s according to the
pattern of the inputs. Mathematically, the relation (1) can
be represented by a pair of mappings

G: S �! A; s 7�! GðsÞ ¼ aðsÞ [ A ð2Þ

P: A �! R; a 7�! PðaÞ ð3Þ

In particular, we may choose the function Pwhich generates
the output zCMAC as follows

zCMAC ¼ PðaÞ ¼ aTw ð4Þ

where the vector w denotes the CMAC weight vector.
As an example, we consider the case with two input

variables s1 and s2 in the range of [22, 2]. Fig. 1 shows a
possible partition of the input variables of the CMAC, in
which both s1 and s2 are divided into four sub-regions
such that 16 blocks (m, n), with m, n ¼ 22, 21, 1, 2, are
formed. These sub-regions are further grouped into two
regions, (A, B) and (a, b), for s1 and s2, respectively, in
the first layer. Their combinations Aa, Ab, Ba and Bb
are the hypercubes. By shifting the first layer step-by-step
on the sub-regions, we obtain the second and third layers
such that an association vector can be expressed
as aT ; [Aa Ab Ba Bb Cc Cd Dc Dd Ee Ef Fe Ff ].
The map G defined in (2) is then given by associating

a set of input variables with the association vector according
to the corresponding block. For instance, if [s1, s2]

T ¼ [0.5,
0.2]T [ S, the corresponding block is (1, 1) and the associ-
ated hypercubes are Aa ¼ 1, Dd ¼ 1 and Ff ¼ 1, which
yields aT ¼ [1 0 0 0 0 0 0 1 0 0 0 1]. The output zCMAC

can then be obtained by using (4) as shown by the solid-
line in Fig. 2. To illustrate the CMAC mapping, the
process of determining the output for another input (21.5,
1.2) is shown by the dotted-line in Fig. 2. In this paper,
we will only consider the cases of two input variables and
the above-described CMAC mapping will be adopted.

2.2 FCMAC design

Owing to possible disturbances on the sensors, the input
data, namely s, may not be exact. To accommodate this
fuzziness and simplify the input partition, the structure
of FCMAC was proposed by Chen et al. [15]. For a
two-input problem, a fuzzy system with N fuzzy rules
may be designed, each of which in the form of

RðiÞ: IF s1 is Fi
1 and s2 is Fi

2; THEN z
ðiÞ
f is aTi w ð5Þ

where i ¼ 1, 2, . . . , N, and the THEN part is extracted from
the CMAC. Given the membership function of fuzzy set Fk

i ,
k ¼ 1, 2, denoted by mFk

i , the following defuzzification
process is chosen to compute the output zFCMAC

zFCMAC ¼
v1a

T
1wþ v2a

T
2wþ � � � þ vNa

T
Nw

v1 þ v2 þ � � � þ vN

¼

PN
i¼1 a

T
i wviPN

i¼1 vi
ð6Þ

where vi ¼
Q

k¼1
2 mFk

i(sk). The preceding equation may be
re-written compactly as

zFCMAC ¼ hTAw ð7Þ

where

h ¼ ½h1 h2 � � � hN �
T; hi ¼

viPN
i¼1 vi

and A ¼

aT1

aT2

..

.

aTN

2
66664

3
77775
ð8ÞFig. 1 Schematic diagram of fuzzy sets integrated with CMAC

Fig. 2 Mapping of basic CMAC
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In (7), the matrix A (determined by CMAC) and the vector h
(determined by fuzzy rules) are typically fixed, but the
weight vector w is adjustable herein.
For the two-input problem, a set of membership functions

may be chosen as shown in Fig. 1, in which P (positive) and
N (negative) fuzzy sets are imposed on each variable.
Accordingly, there are four fuzzy rules with four association
vectors, a1, a2, a3, a4, attached to (P, P), (N, P), (N, N ),
(P, N ), respectively. It is seen that, for this example, there
are 16 association vectors in CMAC, while only four are
used in FCMAC. To determine ai in FCMAC, the logical
operation ‘OR’ is performed on all possible (in the same
region) association vectors in CMAC. For instance, if (s1,
s2) is in the class (P, P), there are nine blocks
in the region and, by performing ‘OR’ on the corres-
ponding nine association vectors, we obtain
a1
T ¼ [1 1 1 1 0 0 0 1 1 1 1 1]. Table 1 shows the

relationship between the fuzzy rules and the CMAC, from
which, the matrix A in (7) is given by

A ¼

1 1 1 1 0 0 0 1 1 1 1 1

1 1 0 0 0 1 0 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1

1 0 1 1 0 0 1 1 1 1 1 1

2
6664

3
7775 ð9Þ

Intrinsically, the chosen FCMAC is more like a fuzzy
system, with the output function (7) depending on the
CMAC structure. Although a fuzzy system has been
proven to be a universal approximator [6], it is not
easily implemented with a large number of inputs in
real-time applications. In this work, we shall adopt the
simplest structure of FCMAC comprising two input vari-
ables and four fuzzy rules, so that the adaptive control
can be integrated easily to achieve basic performance.
Moreover, to suppress the approximated error of the
FCMAC, a switching compensation is imposed, and a
smooth compensation is developed to resolve the arising
chattering problem.

3 Adaptive FCMAC controller design

The tracking problem of a class of nonlinear systems is first
described. The AFCMAC with different compensation
designs is the proposed on the basis of the FCMAC
introduced in Section 2.

3.1 Problem description and AFCMAC design

Consider a physical system that can be modelled by the fol-
lowing nth-order nonlinear equations [1, 18]

xðnÞ ¼ f ðx; _x; . . . ; xðn�1ÞÞ þ gðx; _x; . . . ; xðn�1ÞÞu ð10Þ

y ¼ x ð11Þ

where f, g: Rn
! R are continuous nonlinear bounded func-

tions; u [ R is the system input and y [ R is the system
output. Define the state vector x [ Rn as

x ¼ ½x1; x2; . . . ; xn�
T ; ½x; _x; . . . ; xðn�1Þ�

T
ð12Þ

For x in a certain controllability region V c [ Rn, it is
necessary that g(x)=0. As g(x) is continuous, we may
assume that g(x) . 0 for all x [ Vc without loss of gener-
ality. Furthermore, to implement the adaptive law proposed
in this paper, the function g is assumed to be known. The
goal here is to design a controller u such that the system
output y follows a desired smooth trajectory yd. Letting
~y ; y2 yd, the aggregate tracking error vector ~y is
defined as

~y ¼ ½~y1; ~y2; . . . ; ~yn�
T ; ½~y; _~y; . . . ; ~yðn�1Þ

�
T

ð13Þ

Now, if the system dynamics f is known, we may apply
the ideal control law u� given by

u� ¼ g�1ðxÞ½�f ðxÞ þ y
ðnÞ
d � cT ~y� ð14Þ

where c ; [cn, cn21, . . . , c1]
T with ci, i ¼ 1, 2, . . . , n being

positive constants such that the polynomial D(l) ¼ lnþ
c1l

n21
þ � � � þ cn is Hurwitz. With (14), the error

dynamics of the closed-loop system becomes

~yðnÞ þ c1 ~y
ðn�1Þ

þ � � � þ cn ~y ¼ 0 ð15Þ

and it follows that the tracking error ~y exponentially
approaches zero. However, the ideal control law (14)
cannot be directly applied if the function f is unknown.
One may need to find a scheme to approximate f, so that
an approximated control law can be used. The AFCMAC
provides such a scheme.

In applying the two-input FCMAC with simple structure
developed in Section 2.2, the input variables are chosen as

s1 ¼ dT ~y; s2 ¼ _s1 ¼ dT _~y ð16Þ

Table 1: Relationship between fuzzy rules and CMAC

Continuous input (s1, s2) [Aa, Ab, Ba, Bb, Cc, Cd, Dc, Dd, Ee, Ef, Fe, Ff ]

Class Blocks Hypercubes ai
T, i ¼ 1, 2, 3, 4

(P, P) (21, 21) [1 0 0 0 0 0 0 1 1 0 0 0]

[1 1 1 1 0 0 0 1 1 1 1 1]

(21, 1) [1 0 0 0 0 0 0 1 0 1 0 0]

(21, 2) [0 1 0 0 0 0 0 1 0 1 0 0]

(1, 21) [1 0 0 0 0 0 0 1 0 0 1 0]

(1, 1) [1 0 0 0 0 0 0 1 0 0 0 1]

(1, 2) [0 1 0 0 0 0 0 1 0 0 0 1]

(2, 21) [0 0 1 0 0 0 0 1 0 0 1 0]

(2, 1) [0 0 1 0 0 0 0 1 0 0 0 1]

(2, 2) [0 0 0 1 0 0 0 1 0 0 0 1]

(N, P) ..
. ..

.
[1 1 0 0 0 1 0 1 1 1 1 1]

(N, N ) ..
. ..

.
[1 0 0 0 1 1 1 1 1 1 1 1]

(P, N ) ..
. ..

.
[1 0 1 1 0 0 1 1 1 1 1 1]
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where d ¼ [d1, d2, . . . , dn]
T is the coefficient vector. The

errors of different orders are thus synthesised in one vari-
able, which is similar to the concept of the sliding surface
[1, 15]. With the optimal weight vector w� that is
assumed to exist, it is desired that the output of FCMAC
(7), rewritten as u�FCMAC ¼ hTAw�, would be close to the
ideal control feedback u� in (14). Let 1 denote their differ-
ence

1 ¼ u� � u�FCMAC ð17Þ

which is assumed to be bounded with a small positive
bound D [17]

j1j � D ð18Þ

By including u� in the system (10) and (11), we obtain

yðnÞ ¼ xðnÞ ¼ f ðxÞ þ gðxÞ½u� u� þ u��

¼ f ðxÞ þ gðxÞ u� u� þ g�1ðxÞð�f ðxÞ þ y
ðnÞ
d � cT ~yÞ

h i
¼ y

ðnÞ
d � cT ~yþ gðxÞ½u� u�� ð19Þ

which implies that

_~y ¼ F~yþ g½u� u�� ð20Þ

where

F ¼

0ðn�1Þ�1 In�1

� � � � � � � � � � � � � � �

�cT

2
4

3
5; g ¼

0ðn�1Þ�1

� � � � � � � � �

gðxÞ

2
4

3
5 ð21Þ

Replacing u� in (20) by (17), the error equations become

_~y ¼ F~yþ g½u� u�FCMAC � 1� ð22Þ

As D(l) is Hurwitz, so then is the n � nmatrix F. Hence for
any n � n symmetric positive definite matrix Q, there exists
an n � n symmetric positive definite matrix P, so that the
following Lyapunov matrix equation holds

PF þ FTP ¼ �Q ð23Þ

The solution P of (23) can then be used to construct a
Lyapunov function V ; (1/2)~yTP~y, with its rate being com-
puted as

_V ¼
1

2
~yTðPF þ FTPÞ~yþ ~yTPgðu� u�FCMAC � 1Þ

¼ �
1

2
~yTQ~yþ eðu� u�FCMAC � 1Þ ð24Þ

where e ¼ ~yTPg. Now if w� andD are available, we may use
the control

u ¼ u�FCMAC þ ur ð25Þ

to steer the system, where ur is designed as

ur ¼ �D � sgnðeÞ ð26Þ

with sgn(.) being the signum function [1, 2]

sgnðeÞ ;
1; e . 0

0; e ¼ 0

�1; e , 0

8<
: ð27Þ

It can be then shown that the tracking error (13) will
converge exponentially to zero. In this design, the
switching mechanism of the compensation ur is devel-
oped to accommodate the approximation error using

FCMAC. Nevertheless, the optimal weight and the
bound are mostly unknown in applications. When f is
uncertain, the optimal weight vector w� is conventionally
trained by some off-line learning process, which may
take a long period of time. Alternatively, the adaptive
laws described subsequently can be used to estimate w�

and D online.

3.2 AFCMAC with switching compensation

As stated earlier, the unknown optimal weights raise a
serious problem in the implementation of the FCMAC-
based scheme. To solve this problem, the adaptive laws to
estimate the optimal weights and the bound are incorporated
to yield the AFCMAC. We shall use the following laws to
find the estimates ŵ and D̂

_̂w ¼ �g1eA
Th ð28Þ

_̂
D ¼ g2jej; D̂ð0Þ . 0 ð29Þ

where the constants g1 and g2 are the design parameters.
As g(x) is known, the variable e is available and hence
the previous laws are well-defined. With these estimates,
the AFCMAC control scheme is designed as

u ¼ uAFCMAC þ uar ð30Þ

where

uAFCMAC ¼ hTAŵ ð31Þ

uar ¼ �D̂ � sgnðeÞ ð32Þ

The ‘Thm. 1’ part of Fig. 3 exhibits the nonlinear system
subject to the AFCMAC control scheme (28)–(32), whose
performance is summarised in the following theorem.

Theorem 1: If the design parameters g1 and g2 are both
positive, the application of the AFCMAC control scheme
(28)–(32) to the nonlinear system (10) and (11) yields a
closed-loop system in which

1. all signals are bounded;
2. the tracking error ~y converges asymptotically to zero (i.e.
~y(t)!0 as t ! 1).

Fig. 3 Architecture of the AFCMAC

IEE Proc.-Control Theory Appl., Vol. 153, No. 6, November 2006650

Authorized licensed use limited to: National Taiwan University. Downloaded on December 19, 2008 at 02:30 from IEEE Xplore.  Restrictions apply.



Proof: Consider the Lyapunov function candidate [1]

V ;
1

2
~yTP~yþ

1

2g1
~wT ~wþ

1

2g2
~D
2

ð33Þ

where ~w ; ŵ2 w� and ~D ; D̂2D. The time derivative of
V along the trajectory of the closed-loop system derived
from (22) is found as

_V ¼
1

2
~yTðPF þ FTPÞ~yþ eðu� u�FCMAC � 1Þ

þ
1

g1

_~w
T
~wþ

1

g2
~D
_~D

¼ �
1

2
~yTQ~yþ eðuAFCMAC � u�FCMAC þ uar � 1Þ

þ
1

g1

_~w
T
~wþ

1

g2
~D
_~D ð34Þ

where (23) and the control law (30) have been applied.
Next, from (28) and (29), and from (31) and (32), it
follows that

_V ¼ �
1

2
~yTQ~yþ ehTA ~w� D̂jej � 1e� ehTA ~wþ ðD̂�DÞjej

¼ �
1

2
~yTQ~y� 1e�Djej ð35Þ

By invoking the inequality

+1e � j1ej � Djej ð36Þ

we then obtain

_V � �
1

2
~yTQ~y ð37Þ

which shows that V is non-increasing. Therefore V is
bounded, that is, V [ L1, which implies that all signals
in the closed-loop system are bounded (~y, ~w, ~D[ L1).
Next, as the right-hand side of (22) is bounded, we have
_~y [ L1. Integrating and rearranging (37) yields

lim
t!1

ðt
0

~yTðtÞ~yðtÞdt�
2

lminðQÞ
½V ð0Þ� lim

t!1
V ðtÞ�,1 ð38Þ

where lmin(Q) (.0) denotes the minimum eigenvalue of
the matrix Q. Therefore ~y [ L2. Now the Barbălat
lemma [1, 2, 20] can be invoked to conclude that the
tracking error ~y converges to zero asymptotically. A

Although the AFCMAC control scheme described
earlier can be used to track the reference trajectory, the
switching compensation (32) may cause chattering in the
control input, which, in turn, may lead to undesirable
effects [1, 2]. To deal with this problem, a modified
AFCMAC scheme is proposed, in which the switching
compensation is replaced by a smooth compensation,
so that chattering can be eliminated, while keeping the
performance satisfactory.

3.3 AFCMAC with smooth compensation
(modified AFCMAC)

Basically, the chattering of control input comes from the
discontinuity of the switching function. To prevent chatter-
ing, one may replace the switching by other continuous

maps. Owing to its similarity to the switching function
such that the performance can be preserved, the saturation
function would be a good choice. As a result, the compen-
sation uar in (32) of the previous AFCMAC control scheme
is modified to

uar ¼ �D̂ � satbðeÞ ð39Þ

where satb(.) denotes the saturation function [1, 2]

satbðeÞ ;
sgnðeÞ if jej . b

e=b otherwise

�
ð40Þ

with the constant b . 0 specifying the boundary layer. It is
seen that as b ! 0, the saturation function approaches the
switching function. Moreover, to assure the convergence
rates of the estimation, the adaptive laws (28) and (29)
are replaced by

_̂w ¼ �s1ŵ� g1eA
Th ð41Þ

_̂
D ¼ �s2D̂þ g2jej; D̂ð0Þ . 0 ð42Þ

where the constants g1, g2, s1 and s2 are the design par-
ameters. The first terms on the right-hand side of (41) and
(42) represent the s-modification, increasing the robustness
of the adaptive law (28) and (29) [20, 21]. The closed-loop
system of the nonlinear system subject to this modified
AFCMAC control scheme (30) and (31) and (39)–(42) is
depicted by the ‘Thm. 2’ part in Fig. 3. The following
theorem summarises the main result of this study.

Theorem 2: Consider the nonlinear system (10) and (11)
controlled by the modified AFCMAC scheme (30) and
(31) and (39)–(42). If the design parameters (g1, g2, s1,
s2, b) are positive, and the parameters (s1, s2) are chosen
such that max(s1, (3/4)s2) , lmin(Q)/lmax(P), where
lmax(P) (.0) denotes the maximal eigenvalue of the
matrix P, then

1. all signals in the closed-loop system are bounded;
2. the tracking error ~y converges exponentially to a residual
set that can be made small by adjusting the parameters s1,
s2 and b.

Proof: The same Lyapunov function candidate (33) as in
Theorem 1 shall be used to perform the analysis.
Referring to (34), the time derivative of V along the trajec-
tory of the closed-loop system by using the modified laws
(39)–(42) becomes

_V ¼ �
1

2
~yTQ~y� D̂e � satbðeÞ � 1e

þ ðD̂� DÞjej �
s1

g1
~wTŵ�

s2

g2
~DD̂ ð43Þ

Depending on the values of jej, the following two cases are
considered separately

Case 1: jej . b. As satb(e) ¼ sgn(e), (43) yields

_V ¼ �
1

2
~yTQ~y� 1e� Djej �

s1

g1
~wTŵ�

s2

g2
~DD̂ ð44Þ

The application of the inequality (36) leads to

_V � �
1

2
~yTQ~y�

s1

g1
~wT
ð ~wþ w�Þ �

s2

g2
~Dð ~Dþ DÞ ð45Þ
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As for a, b [ Rn, we have+a . b � (1/2)kak2þ (1/2)kbk2,
it follows that

_V � �
1

2
~yTQ~y�

s1

2g1
~wT ~w�

s2

2g2
~D
2
þ

s1

2g1
kw�k2

þ
s2

2g2
D2 ð46Þ

Now for any b1 . 0, the previous inequality may be
rewritten as

_V � �b1V þ b1

1

2
~yTP ~yþ

~wT ~w

2g1
þ

~D
2

2g2

 !
�
1

2
~yTQ~y

�
s1

2g1
~wT ~w�

s2

2g2
~D
2
þ

s1

2g1
kw�k2 þ

s2

2g2
D2

� �b1V þ ðb1lmaxðPÞ � lminðQÞÞ
k~yk2

2

þ ðb1 � s1Þ
~wT ~w

2g1
þ ðb1 � s2Þ

~D
2

2g2
þ a1 ð47Þ

in which the inequalities ~yTP~y � lmax(P)k~yk
2 and

2 ~yTQ~y � 2lmin(Q)k~yk
2 have been used, and the constant

a1 is defined by

a1 ;
s1

2g1
kw�k2 þ

s2

2g2
D2 . 0 ð48Þ

Now, if

b1 ¼ min
lminðQÞ

lmaxðPÞ
;s1;s2

� �
ð49Þ

is selected, we have

_V � �b1V þ a1 ð50Þ

which implies that all the signals are bounded according
to Ioannou and Kokotovic [21]. Moreover, if the parameters
s1 and s2 are chosen such that

maxðs1;s2Þ ,
lminðQÞ

lmaxðPÞ
ð51Þ

and b1 is selected as

b1 ¼ minðs1;s2Þ ð52Þ

the inequailty (47) implies that

_V � �b1V þ ðb1lmaxðPÞ � lminðQÞÞ
k~yk2

2
þ a1 ð53Þ

Now, define the residual set as

G1 ; ~y : k~yk2 ,
2a1

lminðQÞ � b1lmaxðPÞ

� �
ð54Þ

It is seen that outside the residual set, we have

_V � �b1V ð55Þ

such that the tracking error ~y converges exponentially [21].

Case 2: jej � b. For this case, satb(e) ¼ e/b, and (43) yields

_V ¼ �
1

2
~yTQ~y�

D̂

b
jej2 þ D̂jej � 1e� Djej

�
s1

g1
~wTŵ�

s2

g2
~DD̂

� �
1

2
~yTQ~y�

D̂

b
jej �

b

2

� �2

�
b2

4

" #
�
s1

g1
~wTŵ

�
s2

g2
~DD̂ ð56Þ

by applying (36). As (jej2 b/2)2 � 0, using similar tech-
niques as in Case 1, we find

_V � �
1

2
~yTQ~yþ

b

4
ð ~Dþ DÞ �

s1

2g1
~wT ~w�

s2

2g2
~D
2

þ
s1

2g1
kw�k2 þ

s2

2g2
D2 ð57Þ

Owing to the following inequality

b

4
ð ~Dþ DÞ ¼

1

4

ffiffiffiffiffi
g2
s2

r
b �

ffiffiffiffiffi
s2

g2

r
~Dþ

ffiffiffiffiffi
g2
s2

r
b �

ffiffiffiffiffi
s2

g2

r
D

� �

�
s2

8g2
~D
2
þ

s2

8g2
D2 þ

g2
4s2

b2 ð58Þ

Equation (57) can be further expressed as

_V � �
1

2
~yTQ~y� s1

~wT ~w

2g1
�

3

4
s2

� �
~D
2

2g2
þ

s1

2g1
kw�k2

þ
5s2

8g2
D2 þ

g2
4s2

b2 ð59Þ

It is observed that the inequality (59) is similar to (46), and
we may use an analogous method to perform the analysis. In
particular, by defining

a2 ;
s1

2g1
kw�k2 þ

5s2

8g2
D2 þ

g2
4s2

b2 . 0 ð60Þ

choosing s1 and s2 such that

maxðs1;
3
4
s2Þ ,

lminðQÞ

lmaxðPÞ
ð61Þ

and selecting b2 to be

b2 ¼ min s1;
3

4
s2

� �
ð62Þ

we can prove that all the signals are bounded, and ~y con-
verges exponentially to the residual set given by

G2 ; ~y : k~yk2 ,
2a2

lminðQÞ � b2lmaxðPÞ

� �
ð63Þ

In order to have the modified AFCMAC perform satisfac-
tory, it is further required that for both cases, the residual
sets can be made arbitrarily small. This can be achieved
by adjusting the parameters (g1, g2, s1, s2, b) such that
(a1, a2) are small enough, as kw�k and D are fixed. In par-
ticular, the residual set G1 can be made small and contained
in the region f ~y: k~yTPgk � bg, which corresponds to the
region of Case 2. For that setting, the exponential conver-
gence is assured for Case 1. When the errors enter the
regime of Case 2, they are driven exponentially to the
small G2, which guarantees the performance of the proposed
modified AFCMAC scheme. A
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4 Applications of the modified AFCMAC

To illustrate the performance of the proposed modified
AFCMAC, three applications shall be discussed. The first
one is on the tracking of an inverted pendulum with friction.
The second is on the one-link robotic manipulator [5, 18].

For the third example, the tracking problem for a third-
order highly nonlinear system is attacked.

4.1 Example 1: inverted pendulum with friction

The inverted pendulum consists of a thin homogeneous rod
of mass m and length l, with a load of point mass mL

attached to the end, as depicted in Fig. 4. Assume that fric-
tion torque exists in the joint that can be modelled [22] as

bvð_qÞ ¼
tc sgnð_qÞ þ cv _q; _q= 0

te; _q ¼ 0; jtej , ts
ts sgnðteÞ; _q ¼ 0; jtej � ts

8<
: ð64Þ

where te denotes the external torque, tc is the Coulomb
friction, ts is the breakaway torque and cv is the coeffi-
cient of viscous friction. Let q denote the joint angle.
Euler’s law can be applied to find the equations of
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Fig. 5 Numerical results of Example 1

a Tracking response e Control input
b Tracking error f Updated CMAC weights
c Control input g Updated approximation error bound
d Tracking error h Tracking error

q = 0 (rad)

Fig. 4 Diagram of the inverted pendulum
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motion as

€q ¼ �
3

ðmþ 3mLÞl2
bvð_qÞ þ

3ðmþ 2mLÞg0

2ðmþ 3mLÞl
sin ðqÞ

þ
3

ðmþ 3mLÞl2
t ð65Þ

y ¼ q ð66Þ

where t is the torque applied to the joint and
g0 ¼ 9.8026 is the gravitational constant. Here the exter-
nal torque in the friction model (64) is given by
te ¼ tþ (m/2þmL)lg0 sin(q). As a specific example, it
is assumed that m ¼ l ¼ 1, mL ¼ 2/3 and tc ¼ 0.023,
vc ¼ 0.001, ts ¼ 0.035.
The objective is to drive the inverted pendulum and

follow the desired trajectory yd, defined by the reference
model

€qd ¼ � 5_qd � 5qd þ 5r ð67Þ

yd ¼ qd ð68Þ

with qd(0) ¼ 0, q̇d(0) ¼ 0, where the reference input r is a
unit periodic rectangular signal with period T ¼ 32 s. Now
suppose that in designing the controller, the friction
model is unknown, and thus the proposed AFCMAC
control schemes are applicable. First, the AFCMAC
control scheme discussed in Section 3.2 is applied. By
choosing the following design parameters

D̂ð0Þ ¼ 10; g1 ¼ 30; g2 ¼ 0:05; d ¼ ½1 0:001�T;

c ¼ ½1 2�T and Q ¼
10 0

0 10

� �
ð69Þ

the corresponding F, P and lmin(Q)/lmax(P) can be found
to be

F ¼
0 1

�1 �2

� �
; P ¼

15 5

5 5

� �
and

lminðQÞ

lmaxðPÞ
¼ 0:5858 ð70Þ

The simulation was then performed with the results shown
in Figs. 5a and b for the tracking response and the tracking
error, respectively. It is seen that the tracking error indeed
converges asymptotically to zero. However, as shown in
Fig. 5c, the control input is bounded, but suffers from
severe chattering.
To resolve the chattering problem, the modified

AFCMAC control scheme is then applied. In addition
to selecting the same design parameters as before, we
choose

s1 ¼ 0:5; s2 ¼ 0:01 and b ¼ 1 ð71Þ

that meet with the requirement given in Theorem 2. The
simulation results show that the response remains rapid
and the tracking error (Fig. 5d) converges exponentially
to a residual set whose size can be roughly estimated to
be +0.0096 rad. It is further seen that the control input
(Fig. 5e) is now bounded without chattering because of a
smooth compensation. In Figs. 5f and g, the updated
weights and the upper bound of approximation error are
given, respectively, which indicates that all of the updated
control gains are bounded.

To further appreciate the effects of the parameters on the
performance, a different setting of parameters is chosen in
the modified AFCMAC as

s1 ¼ 0:05; s2 ¼ 0:001 and b ¼ 0:1 ð72Þ

From the simulation results, it is seen that the control
performance is the same as that obtained previously,
except that the residual set of the tracking error is now
about +0.0037 rad (Fig. 5h), which is smaller than that
in the previous case. This comparison justifies that the
residual set can be made smaller by using smaller s1,
s2 and b.

Note that a large D̂(0) is chosen here, as the bound
on the approximation error is not clear. Through the
s-modification in Theorem 2, the actual bound can be
attained presumably, so that the chattering can be attenu-
ated. One may argue that with small D̂(0), the chattering
phenomenon may not appear by using the adaptive law
with Theorem 1. However, as shown in Figs. 6a–d, the
chattering for D̂(0) ¼ 0.01, g1 ¼ 300, g2 ¼ 2, still exists.
On the contrary, if the modified AFCMAC is used
(Theorem 2), the chattering can be suppressed by choosing
D̂(0) ¼ 10, s1 ¼ 0.5, s2 ¼ 0.001, b ¼ 1, as shown in Figs.
6e, f.

4.2 Example 2: one-link rigid robotic
manipulator

To compare the proposed modified AFCMAC control
scheme with the methods used by Zhihong et al. [5] and
Lin and Peng [18], the same one-link rigid robotic manipu-
lator is chosen as

ml2 €qþ b_qþ mlgv cosðqÞ ¼ u ð73Þ

where l is the link length, m is the mass and q is the angular
position with initial conditions q(0) ¼ 20.1 and q̇(0) ¼ 0.
Let the state variables be x1 ¼ q and x2 ¼ q̇, so that the
model (73) can be expressed as

_x1
_x2

� �
¼

0 1

0 0

� �
x1
x2

� �
þ

0

1

� �
ð f þ guþ dÞ ð74Þ

where f ¼ (2b/ml2)x22 (gv/l ) cos(x1) and g ¼ (1/ml2).
The parameters are given by m ¼ l ¼ b ¼ gv ¼ 1, and it is
assumed that d is the external square wave disturbance
with magnitude 0.1 and period 2p, which is the same as
in Zhihong [5] and Lin and Peng [18]. The reference
signal xd is generated by the following model

_xd1
_xd2

� �
¼

0 1

�16 �8

� �
xd1
xd2

� �
þ

0

1

� �
rðtÞ ð75Þ

with initial condition [xd1, xd2]
T ¼ [0, 0]T, where r(t) is a

periodic rectangular signal with a period of 6 s.
The proposed modified AFCMAC control scheme is now

used to perform the tracking. The design parameters are
selected as

D̂ð0Þ ¼ 30; g1 ¼ 30; g2 ¼ 0:01; s1 ¼ 0:001;

s2 ¼ 0:0001; b ¼ 0:1; d ¼ ½1 0:001�T;

c ¼ ½9 6�T and Q ¼
90 9

9 2

� �
ð76Þ
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such that

F ¼
0 1

�9 �6

� �
; P ¼

30 5

5 1

� �
and

lminðQÞ

lmaxðPÞ
¼ 0:0353 ð77Þ

The simulation was then performed with results shown in
Figs. 7a–c. Although the system performances (Figs. 7a–
c) are similar to that given by Zhihong [5] and Lin
and Peng [18], the tracking error (Fig. 7b) is smaller
than that by Zhihong [5], and the choice of the initial
bound of approximation error D̂(0) ¼ 30 is more
reasonable than that of d̂(0) ¼ 0.01 in Lin and Peng [18].

4.3 Example 3: third-order nonlinear system

To demonstrate that the proposed control schemes can
handle a higher order nonlinear system, a third-order one
is constructed as

€x_¼ �4€x2 � 3e�j_xj � 2 sinðxÞ þ u ð78Þ

y ¼ x ð79Þ

where y is the system output, u is the control input. Now,
consider the following reference model

€x_d ¼ �6€xd � 11_xd � 6xd þ r ð80Þ

yd ¼ xd ð81Þ

where r is a piecewise constant signal. Suppose that
f ¼ 24€x22 3e2jẋj22 sin(x) is uncertain. We now apply the
proposed control scheme.
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Fig. 6 Numerical results of Example 1

a Tracking error d Control input (ur)
b Control input (u ¼ uFCMACþ ur) e Tracking error
c Control input (uFCMAC) f Control input (u ¼ uFCMACþ ur)
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The modified AFCMAC control scheme is first used with
the following parameters

D̂ð0Þ ¼ 10; g1 ¼ 1:5; g2 ¼ 0:5; s1 ¼ 0:1;

s2 ¼ 0:01; b ¼ 1; d ¼ ½3 2 1�T; c ¼ ½1 2 3�T

Q ¼

10 0 0

0 10 0

0 0 10

2
64

3
75; F ¼

0 1 0

0 0 1

�1 �2 �3

2
64

3
75;

P ¼

23 21 5

21 46 13

5 13 6

2
64

3
75 and

lminðQÞ

lmaxðPÞ
¼ 0:1617 ð82Þ

Figs. 8a and b show the tracking response and tracking
error, respectively. Obviously, the tracking error converges
exponentially to a residual set whose size is about 0.0036.
The control input is shown in Fig. 8c, which is seen to be
bounded without chattering. Simulation was conducted

with some adjusting of the parameters as

s1 ¼ 0:01; s2 ¼ 0:001 and b ¼ 0:5 ð83Þ

which also satisfies the requirement in (62). The perform-
ances are similar, but the residual set of the tracking error
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becomes about 0.00036 (Fig. 8d) that is smaller than that in
the previous case. This example shows that the proposed
control scheme is applicable to deal with a class of compli-
cated, higher-order nonlinear systems.

5 Conclusions

In this study, a modified AFCMAC scheme was developed
to solve the tracking problem for a class of nonlinear
systems. The proposed method was based on the CMAC
technique that was integrated into the THEN part of a
fuzzy reasoning mechanism. The resulting architecture,
the FCMAC, was simpler than that of the basic CMAC.
The FCMAC method was then combined with the adaptive
law, so that the entire controller gains or weights could be
adjusted online without preliminary off-line learning. To
accommodate the approximation error of the control from
the ideal control input, two different compensations were
considered. Although the AFCMAC control scheme using
the switching compensation drives the tracking error to con-
verge asymptotically to zero, severe chattering resulted that
could cause undesirable effects. Alternatively, the modified
AFCMAC scheme with the saturation compensation
prevented the chattering and steered the tracking error to
converge exponentially to a residual set whose size could
be adjusted. The application of the method to three
examples demonstrated the effectiveness of the proposed
modified AFCMAC scheme, as shown by the corresponding
simulation results.
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