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Abstract

The study starts with a brief review on recent
development of renormalization group analysis for
incompressible turbulence. It is found fruitful to take
the simple hypothesis that large-scale eddies are
statistically independent of those of smaller scales. A
recursive renormalization procedure is then proposed
for turbulence governed by the Navier-Stokes equation
in an exact manner that a nonlinear triple term
appearing in early treatment can be dispensed with in
the present formulation. By employing the combined
form of the scaling laws proposed respectively by Pao
and Ledie \& Quarini for the energy spectrum, the
relevant exponents for the spectrum are completely
determined. Furthermore, the limiting operation of
renormalization group  analysis yields an
inhomogeneous ordinary differential equation for the
invariant effective eddy viscosity. The closed-form
solution of the equation facilitates derivation of the
Smagorinsky model for large-eddy simulation of
turbulent flow, which reveals the explicit dependence
of the model constant on the cutoff size and other
characteristic wavenumbers.
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Kolmogorov constant, energy spectrum, large-eddy
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1. Introduction

Renormalization group (RG) analysis of turbulence
has aroused a considerable interest in fluid society
since Wilson (1974) and his colleagues developed the
method and won a wonderful success in the study of
critical phenomena. But as Frisch said in his notable
book (1995), Twenty years later turbulence remains
unsolved. However, RG methods stand a good chance
of playing a role in the solution of problem of
turbulence.

Nelkin could possibly be among the earliest
pioneers who studied the renormalization group theory
of turbulence. But there are now basicaly two
different RG approaches to fluid turbulence: one
originated by Forster, Nelson and Stephen (FNS) , in
which, the critical development has been done by
Y akhot and Orszag ; the other based on the work of
Rose , Rose Sulem ,known as recursive RG, which
was recently studied extensively by Zhou, Vahala
Hossain . FNS introduced the Navier-Stokes equation
with a forcing term, which is regarded as the driving
mechanism of turbulence. The eps-RG approach, in
particular the work of Yakhot Orszag (YO) has
received critical reviews by several authors in that
their analysis lacks rigor in dealing with the usage of
the parameter eps consistently, and in that Y O's theory,
if valid, can only hold true in the small wavenumber
l[imit. On the other hand, the recursive RG approach
dispenses with the driving force, and one may work on
a finite range of wavenumbers by carrying out the
renormalization procedure in a recursive manner.
Although the recursive RG approach sounds a more
reasonable one, there is no warrant that the existing
procedure for carrying out renormalization is in its
most adequate form. Like YO's theory being critically
reviewed subsequently, the detailed procedure of the
recursive RG approach is certainly worthy of further
examination. For example, that existing recursive RG
analysis shows appearance of atriple nonlinear termin
the renormalized Navier-Stokes equation is an
unnecessary complexity and may even cause
inconsistency in the development of the whole theory.
Moreover, Zhou, Vahala Hossain reported a cusp
behavior of the effective eddy viscosity in the large
wavenumber limit, which in turn depends on the
refinement ratio in the renormalization procedure,
while most of other studies did not show a similar
behavior. Resolution of the latter point naturally
requires limiting operation of the full recursive



renormalization to locate the invariant effective eddy
viscosity.

2. RG Procedure

In the present study, the flow turbulence considered is
isotropic, stationary and homogeneous, and is assumed
to be governed by the incompressible Navier-Stokes
equation. The correlation of velocity is invariant under
spatial tranglation:

TUa(k t)
Tua(k t)

|k| <ky (supergrid)

k,t) =
Ua ki) = ky <|k| <k (subgrid)

For supergrid |k|<k; Navier-Stokes equation
becomes:
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approximation.
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Multiply both sides of up(j,w) by ug(k-jw), and
take average,
ol *%(u (. wiug (k - j.w)
= 2M )0 (U (K - J. WGl - 6w)) upeigwydje
we make use of up(j,w) by renaming b by ¢ and
i by k-

up (W) ,

j, followed by multiplying on both sides
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Adding those two equations together,
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Substitute in subgrid mode,
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The increment of the effective eddy viscosity is given
in theintegral form:

dng(k) = —
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obtain the general relationship for the effective eddy
viscosity between two successive renormalization
steps, exactly the same procedure is applicable to the
next shell (k_2,k 1), the third shell and so on. After
removing the n-th shell, we have the relationship
Np+1 =Np +dng (K)
where
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Theincrement of eddy viscosity at lower avenumbers
are relatively insignificant in magnitude, compared to
that at higher wavenumbers which exhibits arapid
increase near the cutoff wavenumber. This behavior is
in good consistency with that obtained by Kraichnan
based on histesting field model (TFM). In fact, what
Kraichnan obtained could be appropriately interpreted
as the result of one-step renormalization.Assume Pao’s

energy model (1965)
l
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where A¢(x) =,

1+x3

and Kp denotes the

wavenumber corresponding to the peak of
energy-containing eddies. Substitution in

RG-transformation gives and the dissipation relation



e= ¢ 2n, (k)k%E, (k)dk , then obtain the

renormalized energy spectrum
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where W istheintersection part of two unit spheres,

and have the limiting result
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Solution: (Fixed Point of RG-transformation)
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Substituting F(k) = n(k)CK e 3 in the dissipation

where, the constant s =AS

equation gives
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where, kg, means the wavenumber of the largest

eddy existing in the fluid. Therefore,
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Apply n(k) formulafor k;=kq,andevaluate n(k)
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We obtain B(l) =+0.44 = 0.6633
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Using this value for Kolmogorov constant, we finaly

construct arelation between Kolmogorov constant and
the physical parameter of fluid kg, and meshsize D.

Substituting Cx in n(k;) , wemay express e in
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which is exactly the Smagorinsky model, and the
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Smagorinsky constant is given by
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3. Concluding remarks

In the present study, we have developed a consistent
approach to recursive RG anaysis of incompressible
turbulence. Salient features of flow properties are
obtained in this approach, and can be
compared/contrasted to early theoretical and
experimentally measured results. The renormalized
Navier-Stokes equation bears a close analogy with the
origina one by merely introducing one additional
quadratic term which contributes to the increment of
the effective eddy viscosity. The rapid increase of the
increment of the effective eddy viscosity near the
cutoff wavenumber is in good consistency with
Kraichnan's result based on his testing field model
(TFM). Furthermore, we determine all the exponents
for the energy spectrum, which is supposed to be a
combination of the scaling laws proposed respectively
by Pao and by Leslie Quarini. In particular,

the k™{-5/3} power dependence of the energy
spectrum is found to be dominating in the inertial
subrange..The limiting operation of recursive
renormalization yields an inhomogeneous ordinary
differential equation for the invariantb effective eddy
viscosity. The equation is much simple, compared to
the series form that appeared in Rose and Zhou,
Vahala Hossain. Simplicity of the equation enables
us to derive a closed-form solution, which shows
k™{-4/3} power dependence of the invariant effective
eddy viscosity at the small wavenumber limit; this is
consistent with the result of Yahkot Orszag's theory.
The invariant effective eddy viscosity shows also a
mild cusp behavior near the cutoff wavenumber. The
closed-form solution of the invariant effective eddy
viscosity further facilitates derivation of the
Smagorinsky model for large-eddy simulation of
turbulence. In particular, we are able to show that the

Smagorinsky constant is proportional to the power
3/4 of the Kolmogorov constant, which in turn
depends on the cutoff size, the wavenumber of the
largest eddy existing in the flow and the wavenumber
at the peak of the energy spectrum. The Kolmogorov
constant is illustrated to vary between 1.35 and 2.06;
thisis in close agreement with the generally accepted
range of experimental values: 1.2--2.2 McComb.The
derived Smagorinsky model aong with other ideas
will be implemented to compute several complicated
turbulent flows; the results will be reported el sewhere.
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