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一、中文摘要 

    本研究旨在以重整群分析方法研究不
可壓縮之紊流場，在大尺度渦漩與小尺度
渦漩為統計之獨立的假設下，我們可以建
立一個遞迴重整群的程序，而建構出重整
群轉換，在此轉換下得到一具有換尺不變
性的 Navior-Stokes方程，此轉換的固定
點在數學上可被等價成渦漩黏滯力在
Fourier空間中的積微分方程式，藉由此積
微分方程式的求解，發現渦漩黏滯力光譜
與流場波數的-4/3次方呈正比的關係，以
及流場能量光譜與波數的-5/3次方呈正比
關係，此外，此解亦可進而推導出
Smagorinsky模 型 ， 並 且 精 確 指 出
Smagorinsky常數與隔點大小以及流場特
徵波數的關係。 
關鍵詞：紊流、重整群、渦漩黏滯力、
Kolmogorov常數、流場能量光譜、大尺度
渦漩模擬、Smagorinsky模型。 
 
Abstract 

The study starts with a brief review on recent 
development of renormalization group analysis for 
incompressible turbulence. It is found fruitful to take 
the simple hypothesis that large-scale eddies are 
statistically independent of those of smaller scales. A 
recursive renormalization procedure is then proposed 
for turbulence governed by the Navier-Stokes equation 
in an exact manner that a nonlinear triple term 
appearing in early treatment can be dispensed with in 
the present formulation. By employing the combined 
form of the scaling laws proposed respectively by Pao 
and Leslie \& Quarini for the energy spectrum, the 
relevant exponents for the spectrum are completely 
determined. Furthermore, the limiting operation of 
renormalization group analysis yields an 
inhomogeneous ordinary differential equation for the 
invariant effective eddy viscosity. The closed-form 
solution of the equation facilitates derivation of the 
Smagorinsky model for large-eddy simulation of 
turbulent flow, which reveals the explicit dependence 
of the model constant on the cutoff size and other 
characteristic wavenumbers. 

 
Keywords: turbulence, renormalization group, 
effective eddy viscosity,  

Kolmogorov constant, energy spectrum, large-eddy 
simulation, Smagorinsky model. 

1. Introduction 
Renormalization group (RG) analysis of turbulence 

has aroused a considerable interest in fluid society 
since Wilson (1974) and his colleagues developed the 
method and won a wonderful success in the study of 
critical phenomena. But as Frisch said in his notable 
book (1995), Twenty years later turbulence remains 
unsolved. However, RG methods stand a good chance 
of playing a role in the solution of problem of 
turbulence.  

Nelkin could possibly be among the earliest 
pioneers who studied the renormalization group theory 
of turbulence. But there are now basically two 
different RG approaches to fluid turbulence: one 
originated by Forster, Nelson and Stephen (FNS) , in 
which, the critical development has been done by 
Yakhot and Orszag ; the other based on the work of 
Rose , Rose Sulem ,known as recursive RG, which 
was recently studied extensively by Zhou, Vahala 
Hossain . FNS introduced the Navier-Stokes equation 
with a forcing term, which is regarded as the driving 
mechanism of turbulence. The eps-RG approach, in 
particular the work of Yakhot  Orszag (YO) has 
received critical reviews by several authors  in that 
their analysis lacks rigor in dealing with the usage of 
the parameter eps consistently, and in that YO's theory, 
if valid, can only hold true in the small wavenumber 
limit. On the other hand, the recursive RG approach 
dispenses with the driving force, and one may work on 
a finite range of wavenumbers by carrying out the 
renormalization procedure in a recursive manner. 
Although the recursive RG approach sounds a more 
reasonable one, there is no warrant that the existing 
procedure for carrying out renormalization is in its 
most adequate form. Like YO's theory being critically 
reviewed subsequently, the detailed procedure of the 
recursive RG approach is certainly worthy of further 
examination. For example, that existing recursive RG 
analysis shows appearance of a triple nonlinear term in 
the renormalized Navier-Stokes equation is an 
unnecessary complexity and may even cause 
inconsistency in the development of the whole theory. 
Moreover, Zhou, Vahala Hossain reported a cusp 
behavior of the effective eddy viscosity in the large 
wavenumber limit, which in turn depends on the 
refinement ratio in the renormalization procedure, 
while most of other studies did not show a similar 
behavior. Resolution of the latter point naturally 
requires limiting operation of the full recursive 
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renormalization to locate the invariant effective eddy 
viscosity. 

2. RG Procedure 

In the present study, the flow turbulence considered is 

isotropic, stationary and homogeneous, and is assumed 

to be governed by the incompressible Navier-Stokes 

equation. The correlation of velocity is invariant under 

spatial translation: 

For supergrid 1kk <  Navier-Stokes equation 

becomes: 
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Take the ensemble averge over the subgrid modes to 

obtain, 
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we make use of ),( ω>
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Adding those two equations together, 
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Substitute in subgrid mode, 
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The increment of the effective eddy viscosity is given 

in the integral form: 
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where { }011 k,k,k <−<<<=Ω jkjk0j0 .To 

obtain the general relationship for the effective eddy 

viscosity between two successive renormalization 

steps, exactly the same procedure is applicable to the 

next shell (k_2,k_1), the third shell and so on. After 

removing the n-th shell, we have the relationship 
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The increment of eddy viscosity at lower avenumbers 

are relatively insignificant in magnitude, compared to 

that at higher wavenumbers which exhibits a rapid 

increase near the cutoff wavenumber. This behavior is 

in good consistency with that obtained by Kraichnan 

based on his testing field model (TFM). In fact, what 

Kraichnan obtained could be appropriately interpreted 

as the result of one-step renormalization.Assume Pao’s 

energy model (1965) 
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∫ + ν=ε 1nk
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renormalized energy spectrum 
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and have the limiting result 
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Solution: (Fixed Point of RG-transformation) 
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where, sk  means the wavenumber of the largest 

eddy existing in the fluid.Therefore, 
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Using this value for Kolmogorov constant, we finally 

construct a relation between Kolmogorov constant and 

the physical parameter of fluid sk  and mesh size ∆ . 

Substituting KC  in )( ckν , we may express ε  in 

the resolvable velocity
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which is exactly the Smagorinsky model, and the 
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Smagorinsky constant is given by 
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3. Concluding remarks  
In the present study, we have developed a consistent 

approach to recursive RG analysis of incompressible 
turbulence. Salient features of flow properties are 
obtained in this approach, and can be 
compared/contrasted to early theoretical and 
experimentally measured results. The renormalized  
Navier-Stokes equation bears a close analogy with the 
original one by merely introducing one additional 
quadratic term which contributes to the increment of 
the effective eddy viscosity. The rapid increase of the 
increment of the effective eddy viscosity near the 
cutoff wavenumber is in good consistency with 
Kraichnan's result based on his testing field model 
(TFM). Furthermore, we determine all the exponents 
for the energy spectrum, which is supposed to be a 
combination of the scaling laws proposed respectively 
by Pao and by Leslie Quarini. In particular,  

the k^{-5/3} power dependence of the energy 
spectrum is found to be dominating in the inertial 
subrange..The limiting operation of recursive 
renormalization yields an inhomogeneous ordinary 
differential equation for the invariantb effective eddy 
viscosity. The equation is much simple, compared to 
the series form that appeared in Rose and Zhou, 
Vahala  Hossain. Simplicity of the equation enables 
us to derive a closed-form solution, which shows 
k^{-4/3}power dependence of the invariant effective 
eddy viscosity at the small wavenumber limit; this is 
consistent with the result of Yahkot Orszag's theory. 
The invariant effective eddy viscosity shows also a 
mild cusp behavior near the cutoff wavenumber. The 
closed-form solution of the invariant effective eddy 
viscosity further facilitates derivation of the 
Smagorinsky model for large-eddy simulation of 
turbulence. In particular, we are able to show that the  

Smagorinsky constant is proportional to the power 
3/4 of the Kolmogorov constant, which in turn 
depends on the cutoff size, the wavenumber of the 
largest eddy existing in the flow and the wavenumber 
at the peak of the energy spectrum. The Kolmogorov 
constant is illustrated to vary between 1.35 and 2.06; 
this is in close agreement with the generally accepted 
range of experimental values: 1.2--2.2 McComb.The 
derived Smagorinsky model along with other ideas 
will be implemented to compute several complicated 
turbulent flows; the results will be reported elsewhere. 
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