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The study presents a finite difference formulation for efficiently computing band structures of three-
dimensional photonic crystals. First of all, we will show how to correctly discretize the double-curl
equation for the magnetic field so that the transversality condition is exactly satisfied in the discrete
sense. The first few branches of nontrivial eigenfrequencies that determine the major full band gaps of
photonic crystals are computed by interlacing an inverse method with conjugate gradient projection and
full multigrid acceleration. The presently developed method is applied to compute band structures of
photonic crystals with modified simple cubic lattice, tetragonal square spiral structure (direct and inverse
structures), and diamond structure with sp3-like configuration. The computed results for the modified
simple cubic and square spiral structures are in close agreement with those obtained by previous authors.
Moreover, the sp3-like configuration made of silicon and air is reported to have a large band gap which is
larger than the largest reported elsewhere in the literature.
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1. Introduction

In recent years, photonic crystals have received extensive
studies because of their academic and practical interests. The
most attractive/distinguished feature of photonic crystals is
their full band gap structures.1,2) Large full band gaps allow
strong photon localization with the gap,3,4) and a detailed
manipulation of photonic defect states.5,6) They have
important applications such as defect cavities,7) optical
waveguides,8) defect-mode photonic crystal lasers,9) and
feedback mirror in laser diodes.10)

Photonic crystals, also named photonic band-gap materi-
als, are electromagnetic analogy of electronic structures in
quantum mechanics. But there are different difficulties with
eigenvalue problems of the two analogous fields. It has been
a challenging work to compute efficiently band structures of
three-dimensional photonic crystals. In computing band
structures of three-dimensional photonic crystals, we are
faced with a vector (double-curl) eigenvalue problem, say, in
H field formulation,

r �
1

"
r �H ¼

!

c

� �2

H: ð1Þ

It is a nontrivial problem to formulate a numerical method so
that the transversality condition r �H ¼ 0 is correctly
enforced.11) The transversality condition can be easily done
in the widely used method of plane wave expansions (PWE)
by choosing, for each component hGe

iðkþGÞ�r two orthogonal
polarizations hG so that ðkþGÞ � hG ¼ 0.12) In the finite
element method (FEM), the so-called vector edge elements
with each individual basis function satisfying the trans-
versality condition have been proposed for different shapes
of elements.13) Nonfulfillment of the transversality condition
would lead to nonphysical spurious solutions.14) On the other
hand, finite difference is the most straightforward method to
discretize the double-curl equation and the resultant matrix

is compact. For a comparison, the finite difference method
(FDM) leads to a sparse matrix and ordinary matrix
eigenvalue problem, whilst PWE leads to ordinary matrix
problem but the matrix is always full, and FEM leads to
sparse matrices, yielding a generalized eigenvalue problem.
The latter statement is true of other formulations of finite
element methods.15) There are several other methods using
different analytic/discrete formulations of Maxwell’s equa-
tions, such as transfer matrix method,16,17) multiple scatter-
ing method18) and finite-difference time-domain (FDTD)
method.19,20) These different methods lead to different
complexities to computing photonic band structures. How-
ever, finite difference analysis of photonic band structures in
three dimensions based on direct discretization of the vector
eigenvalue problem (1) has not been established in the
literature.

In the present study, three important issues are addressed
for the finite difference method. (i) First of all, the FDM
does not use series-expansion (like PWE) nor uses any basis
functions (like FEM). It is therefore essentially important
that how the formulation fulfills the transversality condition.
Actually, from eq. (1), r �H ¼ 0 implies that the left hand
side of eq. (1) must be correctly discretized so that the
resultant matrix is divergence-free in the discrete sense. (ii)
If FDM is correctly formulated, the next issue of importance
is the appearance of many zero eigenfrequencies, as already
noted in the literature of finite element analysis.21) The
number of zero eigenfrequencies was found to be equal to
the number of internal nodes of finite elements.22) In the
present finite difference formulation, it is shown to be
exactly equal to the number of grid points. If the size of the
matrix for the eigenvalue problem is large, it is impractical
to apply a direct eigenvalue solver (such as QR algorithm23))
or to deflate the many zeros in an iterative method (such as
inverse iteration). In the study of photonic band gaps, the
first few branches of non-zero eigenfrequency are of primary
interest. It is therefore important that the first few non-zero
frequency bands can be computed without the necessity of
deflating the zero frequencies. This can be achieved by
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and

connecting thin circular cylinders.25)
Fig. 2. Tetragonal square spiral structure comprising circular cylin-

ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-

tric spheres and connecting spheroids.
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modes of electromagnetic waves are described by

LH ¼
!

c

� �2

H ð2Þ

with the operator

L ¼ r �
1

"
r� ð3Þ

along with r �H ¼ 0. In the above equations, " ¼ "ðrÞ is the
dielectric function, ! is the angular frequency of the time-
harmonic modes, and c is the speed of light in vacuum. In
component form, eq. (2) is written as
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and Hx, Hy and Hz are components of the H field.
This section is aimed to discretize the operator L on the

left hand side of eq. (2) so that the transversality condition is
correctly imposed in discrete sense. For this purpose, we first
take the divergence of eq. (2) and integrate over a unit grid
cell Vcell, which is shown in Fig. 4. In this figure, Hx, Hy and
Hz are interleaved to occupy the sites of front and rear, left
and right, top and bottom sites, respectively. The reason of
choosing this becomes clear shortly. Applying the diver-
gence theorem, we haveZ

Vcell

r � LHð Þd� ¼
X6
l¼1

Z
Sl

LHð Þ � nda; ð6Þ

where Sl, l ¼ 1 to 6 are the six surfaces enclosing Vcell. Next,

we approximate the right hand side of eq. (6) by

0 ¼
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where Cl denotes the center of Sl and A is the area of Sl. Now
we approximate the double-curl operator on the right hand
side of eq. (7) at the centers Cl of six surfaces Sl by a second-
order central difference scheme. For example, consider
LxxHx and LxyHy at the center of front surface of Vcell. First,
the first-order derivatives at the middle points ðiþ 1=2; jþ
1=2; kÞ of the H field are approximated by
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where h is the grid spacing. Then the second-order
derivatives are approximated using the above derivatives,
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Substituting (8) for the derivatives in (9) eliminates the
middle fields at ðiþ 1=2; j� 1=2; kÞ. The complete finite
difference formulation for the diagonal term LxxHx is
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and the off-diagonal term LxyHy is
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Likewise, we discretize the other terms in eq. (5) in a similar
way, and collect the results into eq. (7). Altogether, there are
96 terms in these approximations. The 96 terms cancel each
other exactly, showing that the transversality condition is
satisfied in a discrete form of eq. (6). The discrete trans-
versality condition is satisfied even when the grid cell cross
the interface of different dielectric materials. The detailed
proof of the discrete transversality condition is given in
Appendix A. Indeed, our numerical experiments further
confirm this condition by giving 64 zero eigenvalues for
matrix of size 192� 192 (grid size 4� 4� 4), and 512

zeros for matrix of size 1536� 1536 (grid size 8� 8� 8).
It is now cleared that the grid arrangement in Fig. 4 is

sufficient to fulfill the transversality condition in the present
finite difference formulation. Namely, we use Hx only at
half-integer points iþ 1=2 and integer points j and k, Hy at
half-integer points jþ 1=2 and integer points i and k, and Hz

X

Y

Z

Hy(i,j+1/2,k)
Hy(i,j-1/2,k)

Hz(i,j,k-1/2)

Hz(i,j,k+1/2)

Hx(i+1/2,j,k)

Hx(i-1/2,j,k)

Fig. 4. The unit grid cell for finite difference formulation. Hx, Hy and Hz

are interleaved to occupy the front and rear, left and right, top and bottom

sites, respectively.
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at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH�i; j;k �
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2
64

3
75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2
64

3
75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik�aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r

aa

a

s

a1a2

a3

Fig. 5. Domain of computation for the modified simple cubic lattice in

Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r

and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in

Fig. 2 is a tetragon with square of side length a and height c. The square

spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like

configuration in Fig. 3 is a tetragon with length a0, width a0
ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length

b, and the foci located at the centers of the spheres.
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accompanied by the shift of one-half cell in the x-direction.
Furthermore, a3 has the component a0=2

ffiffiffi
3

p
¼ ða0

ffiffiffi
3

p
=2Þ=3

in the y-direction, application of Bloch’s condition in the z-
direction should be further accompanied by the shift of one-
third cell in the y-direction.

3. Inverse Method With Multigrid Acceleration and
Methods of Projection

In eq. (12) we obtain the discretization matrix A of the
vector differential operator L. The matrix structure is shown
in Fig. 8. Matrix A has a sparsity pattern very different from
that for the two-dimensional operators (either in transverse-
electric or magnetic modes). For the two-dimensional case,
there are only 5 nonzero entries in each row of A, but there
are 13 nonzero entries in each row for the three-dimensional
case. For example, the number of nonzero entries of matrix
A of size 192� 192 (grid size 4� 4� 4) is 192� 13 ¼
2496.

3.1 Inverse iteration
From a practical point of view, the first few branches of

eigenvalues are of primary interest. A natural choice for this
purpose is the method of inverse iteration, applied to obtain
the smallest eigenvalues as well as the corresponding
eigenvectors. For the eigenvalue problem

Ax ¼ �x; ð14Þ

the method of inverse iteration finds the smallest eigenvalue,
which is closest to �, by iteratively solving

ðA� �IÞx ¼ b: ð15Þ

The second eigenvalue is obtained by repeating the same
method with deflation of the first eigenvector. The third
eigenvalue is obtained by repeating the same method with
deflating the first and second eigenvectors, and so on. In
particular, the Gram–Schmidt orthogonalization is used to
deflate, or to eliminate the components of previously
obtained eigenvectors. The inverse algorithm23,34) is pre-
sented as follows:

InverseEigen {
for n ¼ 1 to S

Initial guess b
do

Solve ðA� �IÞx ¼ b by LUD or PCG
Deflate x by q1 to qn�1

Set b ¼ x=kxk
Rayleigh Quotient �n ¼ hb;Abi

until kðA� �nIÞbk2 < �
Set qn ¼ b

end }

where � is the parameter for inverse iteration, �1 	 �2 	
� � � 	 �S is the sequence of S smallest eigenvalues, and q1 to
qS are the corresponding eigenvectors. The inner product
h�; �i is defined as

hx; yi ¼
X
i

xiyi ð16Þ

in view of the orthonormalization property of the H field:

1

Vcell

Z
Vcell

H�
mðrÞ �HnðrÞdr ¼ �mn; ð17Þ

where Hn is the nth eigenmode of the magnetic field, Vcell is
the volume of the primitive cell and �mn denotes the
Kronecker delta. LUD denotes the lower–upper decompo-
sition solver for matrix inversion, and PCG the precondi-
tioned conjugate gradient solver.

3.2 Methods of projection
In §2, we mentioned that matrix A has N=3 zero modes,

where N ¼ 3n3 for the grid size n� n� n. Since only the
first few nontrivial eigenmodes are of practical interests, it is
important to remove from the iterated solutions the
components of the null (zero-mode) space NðAÞ ¼ fxjAx ¼
0g. But it would be impractical and inaccurate to delate all
the N=3 zero modes. Instead, we propose two methods of
projection onto the range space RðAÞ ¼ fAxg that dispenses
with the necessity of deflating the many zero modes.

3.2.1 Projection by multiplying A
In the original inverse algorithm, we iteratively solve

x ¼
1

ðA� �IÞ
b ð18Þ

to obtain the eigenvector x. Let z be any solution
corresponding to zero frequency, that is, Az ¼ 0. Taking
inner product with x, and using the Hermitian property of A,
we obtain hx;Azi ¼ hAx; zi ¼ 0. The result indicates that
Ax is orthogonal to z. We can therefore multiply the
solution x by A to eliminate the components of zero modes
z. This idea is implemented by modifying the inverse
algorithm as

x ¼
1

ðA� �IÞ2
Ab: ð19Þ

This is equivalent to applying a forward iteration without
shift followed by two inverse iterations with shift �. The
overall effect is one inverse iteration, as is the original
inverse algorithm. The new algorithm, however, removes the
components of zero modes at each iteration, keeping the
iterative solutions falling into the range space of A.
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nz = 2496

Fig. 8. 13-band structure of the discretization matrix A of size 192� 192.
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3.2.2 Projection by conjugate gradient method
The above method exhibits a somewhat oscillatory

behavior, though the projection is successful and stable. A
better idea of projecting the solution x onto the range space
of RðAÞ is to find w which minimizes the object function

f ¼
1

2
kAw� xk2: ð20Þ

The solution which does not contain zero-mode components
is then obtained by replacing x by Aw. The minimization of
f is performed by equating the derivatives of f with respect
to the real and imaginary parts of w to zero, respectively.
This is equivalent to solving the normal equation

A�Að Þw ¼ A�x: ð21Þ

In practice, it is not necessary to solve w explicitly and
multiply it by A, but to solve

A�y ¼ A�x; ð22Þ

keeping in mind that y ¼ Aw falls into the range space of A.
It is noticed that A is singular and the above equation may
not be solvable. However, if y is kept falling into the range
space RðAÞ, a unique solution can be obtained. This is
achieved by applying the conjugate gradient method. For
completeness, the conjugate gradient algorithm35,36) for
solving Ax ¼ b is given as follows:

CG {
n ¼ 0; x0 ¼ 0; r0 ¼ b; p0 ¼ r0
do

n ¼ nþ 1

� ¼ r�n�1rn�1=p
�
n�1Apn�1

xn ¼ xn�1 þ �pn�1

rn ¼ rn�1 � �Apn�1

� ¼ r�nrn=r
�
n�1rn�1

pn ¼ rn�1 þ �pn�1

until krnk2 < � }

If A lies in the range space of A, then by construction each
rn (pn) also belongs to the range space of A. Starting from
x0 ¼ 0, the conjugate gradient algorithm uses consecutive
expansion of orthogonal spaces (Krylov spaces) to ensure
that each iterative solution xn would fall into the range space
of A. Projection is achieved by applying the algorithm to eq.
(22) with b replaced by A�x. Numerical results indicates that
this algorithm is a more stable and efficient method for
projecting the iterative solutions.

3.3 Multigrid acceleration
For the problem of arbitrary shape and/or with large

dielectric contrast, high resolution grid is necessary. There-
fore, the dimension of A is usually very large. The matrix
inverse problem may be solved in two ways: direct method
and iterative method. For direct solvers such as LU
decomposition or QR factorization, the operation count is
of order N3, which is computationally expensive. In this
study, we choose the multigrid method to accelerate
convergence of matrix inversion in the algorithm. This
extends our previous algorithm for two-dimensional prob-
lems.24)

Multigrid methods use multilevels of grids to attenuate the
errors of different frequencies.36,37) A plain idea for accel-

eration is to embed the multigrid solver in the inverse
iteration loop, namely, multigrid takes place of the expen-
sive LUD or less expensive PCG. A smart and novel idea
for acceleration is to embed inverse iteration in the multigrid
acceleration structure. In this idea, the Rayleigh quotient is
updated at each level of multigrid acceleration, which results
in a more efficient algorithm.

Let there be L levels of grids, with m ¼ 1 the coarsest
level and m ¼ L the finest level. On each grid level m, the
differential operator is discretized to form the matrix AðmÞ.
The inverse method with the full multigrid acceleration
implemented with the good idea and conjugate gradient
projection is designed as follows:

FMGInverse {
Call InverseEigen at m ¼ 1

for m ¼ 2 to L

for n ¼ 1 to S

Interpolate qðm�1Þ
n to bðmÞ

do
Solve ðAðmÞ � �IÞxðmÞ ¼ bðmÞ by MGV
Project xðmÞ onto Range(AðmÞ) by CG
Deflate xðmÞ by qðmÞ1 to qðmÞn�1

Set bðmÞ ¼ xðmÞ=kxðmÞk
Rayleigh Quot. � ðmÞ

n ¼ hbðmÞ;AðmÞbðmÞi
until kðAðmÞ � � ðmÞ

n IÞbðmÞk2 < �
Set qðmÞn ¼ bðmÞ

end
end }

where

� ðmÞ
1 	 � ðmÞ

2 	 � � � 	 � ðmÞ
S ð23Þ

is the sequence of S smallest eigenvalues on the grid level m,
and qðmÞ1 � � � qðmÞS are the corresponding eigenvectors.
RangeðAðmÞÞ denotes the range space of AðmÞ and MGV is
the multigrid V-cycle solver.36,37) In particular, SSOR
method with Chebyshev acceleration38) is used for relaxing
the errors in the smooth step of the multigrid V-cycle.

4. Results and Discussion

As an example of test, we compute the first six frequency
bands at the point Xð�; 0; 0Þ in the first Brillouin zone for a
simple cubic lattice of dielectric sphere with radius r=a ¼
0:345 for dielectric contrast "="0 ¼ 13. Table I shows a
comparison of computing times in central processing unit
(CPU) seconds between the present method (FMGI), con-
jugate gradient method and plane wave expansion method.

Table I. Computing times in CPU seconds for the first six frequency

bands at the point X for a simple cubic lattice of dielectric sphere with

radius r=a ¼ 0:345 for dielectric contrast "="0 ¼ 13.

Ngrid=Nwave FMGI PCG PWE

8� 8� 8 3.7 3.0 5.1

10� 10� 10 — — 32.3

12� 12� 12 — — 155.8

14� 14� 14 — — 628.6

16� 16� 16 25.3 32.4 —

32� 32� 32 280.5 636.1 —

64� 64� 64 3416.5 — —
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The plot of the computing times is shown in Fig. 9. All the
computations are performed on a Pentium 4-2.8 GHz PC.
The computing time for the present method is of order N1:18,
which is slightly larger than order N for the two-dimensional
problems.24) This is because additional computations are due
to the conjugate gradient projection, which is in general
slower than the pure multigrid method. If the multigrid
solver is replaced by the conjugate gradient method, the
computing time is of order N1:43. On the other hand, the
direct plane wave expansion has the computational cost of
about the order N2:87. However, it must be noticed that
iterative solvers with suitable preconditioners may signifi-
cantly reduce the operation counts for PWE.39)

The accuracy of the present method is illustrated by the
convergence test against the grid size for the band edges and
gap–midgap ratios for the optimized diamond structure with
sp3-like configuration. Computations are performed on three
different grids: N ¼ 24� 24� 24, 48� 48� 48 and 96�
96� 96. Table II lists the numerics of the location of the
band edge for the diamond structure with sp3-like config-
uration in Fig. 2. Basically, the computed results agree with
each other to three significant digits. In other words, the
relative differences of the computed results with the different
grids are less than 0.1%.

Figure 10 shows the band structure for the modified
simple cubic lattice in Fig. 1 at r=a ¼ 0:345 and s=a ¼ 0:11
for "="0 ¼ 13. The complete band gap lies between the 5th
and 6th branches with the lower edge located at point X and
the upper edge at point M. The gap–midgap ratio is 0:1363
with center frequency 0:4501. The modified simple cubic
lattice was previously investigated by Biswas et al., who
obtained a gap–midgap ratio 0:12 for "="0 ¼ 12:96.25) At the
same geometric parameters, the overall band structure of the

present study is in reasonably good agreement with their
results. However, our gap–midgap ratio is somewhat larger.
One possible reason for this could be that there are relatively
smaller number of plane waves used in ref. 25, compared to
the presently larger number of grid points N ¼ 48� 48�
48.

Figure 11 shows the band structure for the tetragonal
square spiral structure in Fig. 2 at r=a ¼ 0:13, c=a ¼ 1:3 and
L=a ¼ 1:65 for "="0 ¼ 13. A photonic band gap with gap–
midgap ratio 0:162 opens between the 4th and 5th bands.
The upper edge closes at point R and the lower edge at
point A. The center frequency of the band gap is 0:3974.
Figure 12 shows the band structure for the inverse structure
of the tetragonal square spiral structure with r=a ¼ 0:333,
c=a ¼ 1:69 and L=a ¼ 1:5 for "="0 ¼ 13. The inverse
structure has a similar band structure with the band edges
occurring at the same symmetric points: R (upper) and A

(lower), but with an even larger band gap. The gap–midgap
ratio is 0:2593 with center frequency 0:3826. These config-
urations were studied by Toader and John, who obtained the
gap–midgap ratios 0:162 and 0:236 for direct and inverse
structures, respectively, for "="0 ¼ 11:9.28) For the direct
structure, their gap–midgap ratio is identical to that obtained
in the present study, while for the inverse structure, our
result is a little bit larger.

Figure 13 shows the band structure for the diamond
structure with sp3-like configuration in Fig. 3 at r=a ¼ 0:12
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Fig. 9. Comparison of the present method, conjugate gradient method and

plane wave expansions in computing time.

Table II. Convergence test against the grid size for the band edges and

gap–midgap ratios of the diamond structure with sp3-like configuration in

Fig. 3 for r=a ¼ 0:12 and b=a ¼ 0:11.

Ngrid 24� 24� 24 48� 48� 48 96� 96� 96

!up 0.6890 0.6879 0.6874

!low 0.5016 0.5013 0.5010

!mid 0.5953 0.5946 0.5942

�! 0.1874 0.1866 0.1864

�!=!mid 0.3147 0.3139 0.3137

Gap-Midgap Ratio = 0.1363
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and b=a ¼ 0:11 for "="0 ¼ 13. A large photonic band gap
occurs between the 2nd and 3rd branches with gap–midgap
ratio 0:3139 and center frequency 0:5946. This band gap has
the upper edge at point L and the lower edge at point W . The
lower edge from W to K is a flat curve, which almost has the
edge value at point U. It is rather interesting to notice that
the gap is found to be larger than ever reported in the
literature for any other three-dimensional photonic crystals.

Finally, we illustrate the difficulty in accelerating con-
vergence of numerical methods for computing three-dimen-
sional photonic band structures. For this, we compare
convergence of the conjugate gradient solver for computing
two- and three-dimensional photonic band structures as well
as three-dimensional Laplace equation. The conjugate
gradient method is preconditioned with Jacobi, SOR or
SSOR preconditioners.38,40) For two-dimensional problem,
these preconditioners do help accelerate convergence of the
conjugate gradient method for the eigenvalue solver.
Figure 14 shows the effect of these preconditioners on the
convergence of the eigenvalue solver for the first band at
point X for a square lattice. The relaxation parameter has
been optimized for best convergence in each case. Figure 15
shows the effect of these preconditioners on the convergence
of the three-dimensional Laplace equation. Likewise, the
relaxation parameters have been optimized for best con-
vergence. The results show that the SSOR preconditioner
accelerates convergence while the other three do not

accelerate convergence. In spite of the two successful
examples, none of the well-known preconditioners are
effective in accelerating convergence of the conjugate
gradient method as an eigenvalue solver for three-dimen-
sional photonic crystals. Figure 16 shows the effect of these
preconditioners on the first band at point X for the modified
simple cubic lattice. The results show that these precondi-
tioners do not accelerate and even slow down the con-
vergence. There might be some other preconditioners which
are suitable for the three-dimensional photonic crystals, but
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they would be very much problem-dependent. On the other
hand, the presently developed method are applicable to
compute band structures of three-dimensional photonic
crystals of arbitrary configuration with strong dielectric
interfaces.

5. Conclusions

In the present study, an efficient method in finite differ-
ence formulation was developed for computing band
structures of three-dimensional photonic crystals. The
method is a substantial extension of our two-dimensional
version. (i) First, we have shown how the transversality
condition can be satisfied for the vector eigenvalue problem
in the finite difference formulation. (ii) Second, fulfillment
of the transversality condition results in a large number of
unwanted zero-frequency modes. The number of zero
frequencies is exactly equal to the number of the internal
nodes. The method of inverse iteration has been applied to
obtain the first few nontrivial eigenmodes. Projection by the
matrix itself, or conjugate gradient method has been
employed to avoid the necessity of deflating a large number
of zero eigenmodes. (iii) Third, fast computation of photonic
band structures is achieved by embedding inverse iteration
in the full multigrid algorithm with use of the method of
projection. The present method was shown to have a
computational cost of order N1:18, which is slightly larger
than the linear order N for the two-dimensional problems.24)

This is due to the more expensive part of the conjugate
gradient projection. Nevertheless, the method is much faster
than the most commonly used method of plane wave
expansions, which has been demonstrated to be of order
N2:87.

The accuracy of the present method has been tested
against various grid sizes from N ¼ 24� 24� 24 to 96�
96� 96� 96, and basically the results agree to each other to
three significant digits. Examples of applications include (i)
the modified simple cubic lattice, (ii) the tetragonal square
spiral structure (direct and inverse structure), and (iii) the
diamond structure with sp3-like configuration. The first two
examples were previously studied by other authors.25,27,28)

Our numerical results are in close agreement with those
obtained by previous authors. However, with the fast
algorithm the band structures presented in this study can
be easily computed with the grid of size N ¼ 48� 48� 48,
compared to the relatively small N ¼ 140028) used in plane
wave expansions. Both the second and third examples may
be considered as modifications of the diamond structure. The
second example is amenable to the successful fabrication
technique: GLAD (GLancing Angle Deposition). The third
example with sp3-like configuration made of silicon and air
proposed by the present authors has a large band gap with
gap–midgap ratio 0:3139, which is larger than ever reported
in the literature. The latter result is of particular interest in
view of recently successful production of diamond-lattice
photonic crystals by two-photon laser nanofabrication
(photopolymerization).32) In general, our numerical experi-
ence indicates that the diamond-like structures and their
modifications are the ideal three-dimensional configurations
to produce large photonic band gaps. As a matter of fact, if
square spirals are replaced by triangular or hexagonal
spirals, we do not find any significant band gaps for these

configurations. These examples have demonstrated that the
presently developed method is capable of resolving the
multieigenvalue band structures of three-dimensional pho-
tonic crystals of arbitrary configuration with strong dielectric
interfaces. The method is currently being extended to be
applicable to metallic and metallodielectric photonic crys-
tals; the results will be reported elsewhere.
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Appendix A: Proof of the Discrete Transversality
Condition

Recall that we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ
by b=2 and ði; j; k þ 1=2Þ by c=2. The complete discretized
finite difference formulation of eq. (7) can be written as

X6
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Summing these terms together shows that all the 96 elements
exactly cancel out to zero. The discrete transversality
condition of the present formulation is thus proved.

Appendix B: Discretized Equations for the Eigenvalue
Problem

The complete finite difference formulation of the discre-
tization matrix A in eq. (12) is presented as follows:
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