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Abstract: Surface plasmon-like (SPL) modes are the electromagnetic 
surface eigenmodes supported by the structured perfectly conducting 
surfaces.  The standard eigenvalue-solving method is adopted to solve these 
SPL modes.  The field patterns of the SPL modes in the square holes for in-
plane wavevectors dkx 2/2π=  and dkx /2π=  are TE10-like and TE11, 
respectively.  However, the field patterns can no longer be identified as any 
particular waveguide mode for other in-plane wavevectors.  The dispersion 
relations of the SPL modes are obtained numerically.  The change in mode 
character with wavevector prevents the dispersion relation from being 
derived by assuming only the fundamental mode in the holes.  On a thin 
perfect conductor perforated with structures, the SPL mode splits into a 
high-frequency anti-symmetric mode and a low-frequency symmetric mode, 
which is caused by the mutual interaction of the electromagnetic evanescent 
fields on both sides. 
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1. Introduction 

Surface plasmon (SP) is the coherent fluctuations of the electron charges at the metal-air (or 
dielectric) interface [1].  These charge fluctuations represent electromagnetic surface modes 
with the fields highest at the interface and decaying exponentially into both media.  On a flat 
metal surface, the SP cannot be directly excited by incident radiation, because the dispersion 
curve of the SP lies to the right of the light line.  A periodic metallic structure can, however, 
provide the additional in-plane momentum required by the incident light in an appropriate 
polarization state to excite the SP, causing strong optical absorption [1].  Surface plasmons are 
also present on the thin metal films.  However, since the electromagnetic fields on both 
surfaces interact with each other, the SP splits into a high-frequency anti-symmetric mode and 
a low-frequency symmetric mode [1, 2].  Given these interesting and useful interactions 
between the light and the SP, plasmonics have drawn much attention because of their potential 
application in nano-scale optics [3, 4]. 

SP can not exist on perfectly conducting planar surfaces because the incident field is 
screened out completely by the perfect conductor.  However, the surface plasmon-like (SPL) 
behavior has also been found in almost plasmon-free good conductor films with periodic 
holes’ array at microwave and THz frequencies [5-8].  In these experiments, the surface 
plasmon-like behavior is provided mainly by the periodic structure instead of the metal’s real 
surface plasmon because the incident wave frequency is far below the plasma frequency of the 
metal.  Recently, Pendry et al. proposed the formation of perfect conductor support surface 
modes by drilling an array of holes in the surface, associated with the behavior of the SP [9-
11].  Subsequently, Hibbins et al. experimentally confirmed this SPL mode at the microwave 
region [12, 13].  In Pendry’s scheme, only the TE10 waveguide mode is assumed to be present 
in the square holes because it is the fundamental mode with the most weakly decaying 
behavior [9, 10].  The frequency of the incident wave for simulating the exponential decay of 
the electromagnetic field in the metal must be below the cutoff frequency of the TE10 mode.  
After the electromagnetic fields are matched across the surface, the canonical plasmon 
frequency and dispersion relation of the SPL mode are derived.  García de Abajo et al. applied 
the plane wave expansion approach to yield the surface-bound modes by matching the 
electromagnetic fields in terms of the diffracted plane waves outside the surface and the 
waveguide modes inside the holes [14].  They demonstrated that these surface-bound modes 
cannot be generally represented by local, frequency-dependent optical constants.  However, in 
the literature, the field patterns of the SPL modes on the structured conductor surfaces, the 
size effect of the holes on the SPL modes and the SPL modes on a thin structured perfect 
conductor have rarely been discussed.  (Like the SP on a thin metal film, it is also possible for 
SPL mode to split into two modes on a thin structured perfect conductor.) 
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In this work, a new perspective is taken to study the SPL modes on a structured perfectly 
conducting surface.  Like the SP on a metal surface, the SPL modes are supposed to be the 
electromagnetic surface eigenmodes supported by the structured conductors.  Therefore, the 
standard eigenvalue-solving approach can be used to solve Maxwell’s equations with suitable 
boundary conditions [15]. 

This paper is organized as follows.  The simulation model and method are described in 
Section 2.  In Section 3, the simulation results and discussions are presented.  Finally, the 
conclusions are given in Section 4. 

2. Simulation methods 

The finite-difference time-domain (FDTD) method with a pulsed driving source is first 
adopted to obtain the spectrum of the eigenmodes [16].  Then, the eigenmode solver based on 
the same FDTD grids is employed to elucidate the electromagnetic field patterns.  An electron 
beam above the conductor surface is introduced to excite these modes, similar to that in the 
SP, to confirm that these SPL modes are the real surface eigenmodes.  The particle-in-cell 
(PIC) method is utilized to simulate the electron beam’s passing through the surface and the 
interaction between the electron beam and the SPL modes [17, 18].  The PIC method uses a 
finite-size macroparticle to represent a group of real electrons.  The motion of the 
macroparticles is explicated by integrating the equations of motion.  The FDTD scheme based 
on the “Yee grid” [16] is used to determine self-consistently the interaction between the 
electromagnetic fields and the plasma particles. 

Figure 1 presents the simulated structure of repeated units of a square perfect conductor 
with a square hole.  The period of the unit d is 10 mm.  The width of the square holes w is 
changed from 1 mm to 9 mm to explore the effect of the hole-size on the field patterns and the 
dispersion relations of the SPL modes.  The depth of the holes t is 30 mm, which is deep 
enough to avoid any significant change in the field patterns and frequencies of the SPL 
modes.  The three-dimensional Cartesian coordinate system is used in the simulation.  The 
boundaries in the x- and y-directions are set as the periodic boundaries to represent the infinite 
repeated units.  The boundaries in the z-direction are the wave absorption boundaries. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Schematic simulated structure.  The period of the repeated units d and the depth 
of the square holes t are 10 mm and 30 mm, respectively.  The width of the holes w is 
changed from 1 mm to 9 mm. 

 
 

3. Results and discussions 

The space variations of the electromagnetic fields of the SPL modes on the holey perfect-
conductor surface are initially studied.  Figures 2(a) and 2(b) plot the electric field vectors on 
the conductor surface for in-plane (x-component) wavevectors dkx 2/2π=  and dkx /2π= , 

respectively, with a hole width of 7 mm.  The in-plane wavevectors dkx 2/2π=  
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Fig. 2. Electric field vectors of SPL modes on holey perfect-conductor surfaces and variations of 
equivalent charges Q with x-position: (a) dk x 2/2π=  and (b) dk x /2π= , for the holes of width 7 mm 

and depth 30 mm. 
 

 
and dkx /2π=  mean the wavelengths of the SPL mode are 2d and d, respectively.  Figures 2 
also present the variations of the equivalent charges Q with the x-position.  Figure 2 clearly 
demonstrates that the dominant field pattern in the square hole for dkx 2/2π=  is a TE10-like 

mode (although it is not really a TE10 mode pattern) [9, 19].  However, for dkx /2π= , the 
dominant field pattern in the square hole is the TE11 mode rather than the TE10 mode [19].  
Even in a much smaller hole, such as one of width 1 mm, the field patterns (which are not 
displayed here) remain like those in the hole with a width of 7 mm.  The dkx /2π=  mode 
has the TE11 pattern because the translation symmetry in the x-direction and the electric field 
must be normal to the perfectly conducting surface, requiring the directions of the electric 
fields on the left and right sides of the hole to be opposed (as shown in Fig. 2(b)).  
Accordingly, only the TE11 modes are allowable in the hole.  This field pattern can be viewed 
as an effective electric quadrupole on the perfectly conducting surface, consisting of one pair 
of positive charges on one pair of opposite sides of the hole and another pair of negative 
charges on the other pair of opposite sides of the hole.  If the TE10 mode is present in the hole, 
then the symmetry will require the opposite equivalent charges to appear simultaneously on 
the conductor surface between the two adjacent holes.  This result is unreasonable so the TE10 
mode is not allowable.  In the case of dkx 2/2π= , as shown in Fig. 2(a), the electromagnetic 
fields of the surface modes on the two neighboring holes will interact with each other, causing 
the field pattern to be similar to that of the TE10 mode, and with equivalent opposite charges 
alternately distributed on the conductor surface.  For other values of kx, the field coupling 
between neighboring holes becomes very complicated and the field patterns can no longer be 
identified as a particular mode pattern.  Figure 3 plots the amplitudes of the xE  field (x 
component of the electric field) against z position (along the line through the center of the 
square hole), for dkx 2/2π=  and dkx /2π= , with a hole width of 7 mm.  In Fig. 3, the 

curves of xE  against z position are also fitted into the exponential functions.  Figure 3 
indicates that the fields of the SPL modes are highest at the surface of the structured 
conductor (z = 0) and decay exponentially into both the air and the hole with different decay 
constants.  These results confirm the characteristics of the surface eigenmodes, which are very 
like the SP excited at the metal-air interface. 

Next, the dispersion relations of the SPL modes are investigated.  Figure 4 plots the 
dispersion relations for three widths of holes – 5 mm, 7 mm and 9 mm.  Figure 4 also presents 
the light line for comparison.  As shown in Fig. 4, the dispersion relations of the SPL modes 
asymptotically approach the light line from the right at low frequencies (like the SP).  Figure 4 
also exhibits that the dispersion relations of the SPL mode approach the light line as the width 

#74634 - $15.00 USD Received 5 September 2006; revised 28 October 2006; accepted 30 October 2006

(C) 2006 OSA 13 November 2006 / Vol. 14,  No. 23 / OPTICS EXPRESS  11342



  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3. Amplitudes of 
xE  field against z position for SPL modes with the holes of 

width 7 mm, a depth of 30 mm and in-plane wavevectors of dk x 2/2π=  and 

dk x /2π= .  The decays of the field on both sides of the peak are fitted to the 

exponential functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Dispersion relations of SPL modes on holey perfect-conductor surfaces with 
holes of three widths – 5 mm, 7 mm and 9 mm.  The light line is also presented for 
comparison. 

 
 
of the holes decreases from 9 mm to 5 mm.  As the wavelength increases (the frequency and 

xk  decline) or the hole width decreases, the ratio of the hole width to the wavelength 
decreases (such that the hole can be regarded as a small perturbation to the wave on the 
surface), and the surface mode is therefore more like the light.  Furthermore, the dispersion 
relations divide into two branches is observed in Fig. 4.  In the first branch, the in-plane 
wavevector kx ranges from 0 to d2/2π  and the dispersion relations are bent when kx 
approximates to d2/2π .  The frequency depression close to dkx 2/2π=  is typical of a one-
dimensional photonic crystal with the in-plane periodicity, which results from the mixing of 
modes with dkx 2/2π≈  and dkx 2/2π−≈  in the presence of the periodic boundaries (i.e. 
the Bragg diffraction at the first Brillouin zone boundary) [20].  On the other hand, the in-
plane wavevector kx in the second branch ranges from d2/2π  to d/2π .  However, except 
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for dkx /2π=  or smaller hole widths (such as 5 mm), the quality factors of the second branch 
of the SPL modes are very small and those modes are very difficult to be excited by the 
electron beams.  And except for dkx /2π= , the xE  fields of the surface modes decay 
exponentially into the holes but oscillate in the air.  These phenomena come from the fact that 
this branch of the surface modes is coupled to the radiation modes, which have been pointed 
out by Barnes et al. in Ref. [11].  Therefore, the surface modes in the second branch are not 
truly the SPL modes.  Only the dkx /2π=  mode is the real SPL mode with the TE11 mode 
pattern.  In fact, the dispersion relations obtained here are very similar to those in García de 
Abajo’s work [14, 21].  And the second branch in Fig. 4 is correspondent with their first 
diffraction order branch in Ref. [21].  The dispersion relations of the SPL modes obtained in 
this study are also compared with Pendry’s analytical equation derived in Ref. [9].  Figure 5 
plots the first branch of the dispersion relations in Fig. 4 and the analytical dispersion relations 
in Ref. [9] for three widths of holes – 5 mm, 7 mm and 9 mm.  (Here only the first branch is 
drawn because the field pattern in the hole is the TE10-like mode for dkx 2/2π= .)  Figure 5 
shows that the dispersion relations obtained here agree with Pendry’s predictions well at 
smaller frequencies (longer wavelength) and smaller holes’ sizes.  And this result is expected 
because the long-wavelength limit ( 0λ<<< da ) is assumed when the analytical dispersion 
relation is derived [9, 10].  Besides, the interhole interaction, discussed above, causes the field 
pattern in the hole to change with xk  and not to belong generally to any standard waveguide 
mode.  Hence, the dispersion relation of the SPL mode on the holey perfect conductor cannot 
be generally derived by assuming only the fundamental mode in the holes [9, 14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. First branch of dispersion relations of SPL modes in Fig. 4.  The analytical 
dispersion relations derived in Ref. [9] are also presented by dashed lines for 
comparison. 

 
 

Finally, the characteristics of the SPL modes on a thin structured perfect conductor are 
examined.  The simulated structure is presented in Fig. 6.  The perfect conductor is 4 mm 
thick and perforated with square holes of width 7 mm (the period is still 10 mm).  Figure 7 
displays the amplitudes of the xE  field as a function of the z position for two surface 

eigenmodes with the same in-plane wavevector dkx 2/2π=  (the origin of the z-axis at the 
mid depth in the hole).  As presented in Fig. 7, the SPL mode on the thin conductor splits into 
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Fig. 6. Schematic simulated structure for SPL modes on a thin structured perfect conductor.  
The period of the repeated units, the width of the hole and the thickness of the conductor are 
10 mm, 7 mm and 4 mm, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Amplitudes of 
xE  field as a function of z position for SPL modes on a 4 mm-

thick, holey perfect conductor with holes of width 7 mm and in-plane wavevector 
dkx 2/2π= .  The origin of the z-axis is located at the mid depth in the hole. 

 
 
one symmetrical mode ( −L  mode, with the field symmetrical to z = 0) and one anti-
symmetrical mode ( +L  mode, with the field anti-symmetrical to z = 0).  The frequencies of 

the −L  mode, the +L  mode and the SPL mode on the 30 mm-thick perfect conductor, −ω , 
+ω  and ω , respectively, follow the order +− << ωωω , which corresponds to the SP on a 

thin metal surface [2].  Also like that of the SP, the mode splitting is caused by the interaction 
of electromagnetic evanescent fields on both surfaces [22].  Figure 8 plots the dispersion 
relations of the symmetrical and anti-symmetrical SPL modes on a thin perfect conductor with 
the geometry and dimensions shown in Fig. 6.  For comparison, the light line and dispersion 
relations of the SPL modes on the 30 mm-thick holey perfect conductor are also plotted in 

Fig. 8.  Figure 8 displays clearly the frequency order +− << ωωω  discussed above in each 
branch of the dispersion relations.  And the mode splitting becomes more obvious as the in-
plane wavevector xk  increases for both the first and second branches of the dispersion 
relations. These frequency relations are also very similar to those of the SP on a thin metal 
film.  As stated above, the SPL modes should be excited by an electron beam.  For verifying 
the SPL mode splitting on a thin structured perfect conductor further, a numerical experiment 
that introduce an electron sheet into a simulation structure with only two repeated units is 
carried out.  The electron sheet that moves in the x-direction is launched from the lower x 
boundary and absorbed by the upper x boundary.  The electron sheet is located 2 mm above 
the conductor surface with a width of 4 mm and an incident energy and current of 10 eV and 1 
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Fig. 8. Dispersion relations of SPL modes on a thin perfect conductor perforated with square holes.  
The structure and dimensions are given in Fig. 6.  The light line and the dispersion relation of the 
SPL modes on holey perfect-conductor surfaces with the holes of width 7 mm and depth 30 mm 
shown in Fig. 4 are also presented for comparison. 

 
 
A, respectively.  The simulation structure (with the same dimensions as in Fig. 6) and the 
snapshot of the electron sheet are presented in Fig. 9.  (As in Fig. 1, the boundaries in the x- 
and y-directions are also set as the periodic boundaries.)  Figure 10 plots the spectrum of the 

xE  field measured at the center of the hole near the lower interface.  Figure 10 displays 
clearly that the SPL mode splits into two modes on a thin structured perfect conductor for 
both in-plane wavevectors dkx 2/2π=  and dkx /2π= .  The electron sheet provides 
sufficient in-plane momentum and energy to excite the SPL modes, but the symmetry of the 
two repeated units is such that only the SPL modes with dkx 2/2π=  and d/2π  are 
supported. 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Simulation structure and snapshot of electron sheet for the numerical 
experiment of SPL modes excited by the electron sheet.  The dimensions of the 
structure are given in Fig. 6. 

 
 

If the conductor has a finite conductivity or the hole is filled with a dielectric (which cases 
are not discussed here), then the frequencies of the SPL modes will shift, but the proposed 
scheme is still applicable.  The SPL mode also exists on a real metal (such as silver) with 
nano-scale holes at visible light frequencies.  For example, if the period of the unit and the 
width of the square hole are reduced to 100 nm and 70 nm, respectively, the frequency of the 

SPL mode corresponding to dkx 2/2π=  increases to 14104.14 ×  Hz.  In such a case, 
distinguishing the SP from the SPL mode becomes difficult since their effects are coupled 
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Fig. 10. Spectrum of the 
xE  field measured at the center of the hole near the lower interface for the 

SPL modes excited by the electron sheet.  The simulation structure and dimensions are given in Fig. 9. 
 
 
together.  The results herein not only provide insight into the characteristics of the SPL mode 
on a structured perfectly conducting surface, but also demonstrate a new and valuable 
approach to designing electromagnetic metamaterials with particular SPL mode 
characteristics. 

4. Conclusions 

In this paper, the SPL modes on a structured perfectly conducting surface are reported and 
investigated.  Such SPL modes are electromagnetic surface eigenmodes supported by the 
structured conductors and can be excited by an electron beam that provides sufficient in-plane 
moment and energy, like the SP on a metal surface.  The standard eigenvalue-solving method 
based on the finite-difference grid is adopted to solve the SPL modes.  The field patterns of 
the SPL modes in the square holes for in-plane wavevectors dkx 2/2π=  and dkx /2π=  are 
TE10-like and TE11, respectively.  However, due to the field coupling between neighboring 
holes, the field patterns can no longer be identified as any particular waveguide mode for 
other in-plane wavevectors.  The electromagnetic fields of the SPL modes are maximal at the 
surface of the structured conductor and decay exponentially into both the air and the 
conductor.  The dispersion relations of the SPL modes asymptotically approach the light line 
from the right at low frequencies, which is like the SP.  But except for dkx /2π= , the modes 
of the second branch are not truly the SPL modes.  The dispersion relations of the SPL modes 
in this work agree with the analytical equation derived by Pendry well in the long-wavelength 
limit.  However, the change in mode character with wavevector prevents the dispersion 
relation from being derived by assuming only the fundamental mode in the holes.  On a thin 
perfect conductor perforated with structures, the SPL mode splits into a high-frequency anti-
symmetric mode and a low-frequency symmetric mode, which is caused by the mutual 
interaction of the electromagnetic evanescent fields on both sides. 
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