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In this study, we investigate the band structures of phononic crystals with particular emphasis on the effects
of the mass density ratio and of the contrast of elastic constants. The phononic crystals consist of arrays of
different media embedded in a rubber or epoxy. It is shown that the density ratio rather than the contrast of
elastic constants is the dominant factor that opens up phononic band gaps. The physical background of this
observation is explained by applying the theory of homogenization to investigate the group velocities of the
low-frequency bands at the center of symmetry �.
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I. INTRODUCTION

Phononic crystals for elastic waves are an analog of pho-
tonic crystals for electromagnetic waves. Phononic crystals
are periodic arrays of two or more elastic materials with
distinct densities and elastic constants. The most distin-
guished feature of phononic crystals is their band gaps, and
therefore phononic crystals are also called phononic band-
gap materials. In the past years, we have seen steadily in-
creasing interest in phononic crystals because of their inter-
esting physical properties1–6 and possible engineering
applications.7–11

However, there are major differences between phononic
and photonic crystals that make the study of phononic crys-
tals a separate subject from photonic crystals. First of all,
dielectric materials usually support transverse electromag-
netic waves, while elastic materials support both transverse
as well as longitudinal elastic waves. Second, photonic ma-
terials have the largest speed of propagation in air, while
elastic materials have a small �longitudinal� speed of propa-
gation in air. Moreover, the physical properties of photonic
crystals are determined by the contrast of dielectric con-
stants, while those of phononic crystals are determined by
both the contrast of elastic constants and the mass density
ratio of the composed materials. In this study, we are con-
cerned with the effects of the mass density ratio and contrast
of elastic constants on major phononic band gaps and de-
velop a theory of homogenization to examine the mechanism
of the effects.

The computation of band structures is demanding, as an
eigenvalue problem needs to be solved for each individual
wave number in the first Brillouin zone. A fast and accurate
method for computing band structures is very helpful in de-
signing phononic band-gap materials. In the present study,
we apply a method of inverse iteration with multigrid accel-
eration to compute the band structures of phononic crystals.
This method was originally developed by the present authors
to compute band structures for photonic crystals made of
dielectric materials.12,13

Regarding the effects of material constants, it is natural to
consider that a large contrast of elastic constants is necessary
for the existence of a major band gap. This is not necessarily

true as we shall show that the mass density ratio is the key
factor in determining the location and size of the band gap. If
the contrast of elastic constants is large, the higher-frequency
bands are not very sensitive to the change of the mass den-
sity ratio, while the lower bands are heavily dependent on
this change. In general, the frequency bands of the transverse
modes are relatively flat compared to those of the longitudi-
nal modes. This indicates that it is easier to open up a band
gap between the bands of the transverse modes, but which is
often fully blocked by the frequency bands of the longitudi-
nal modes. As the mass density ratio is increased, the lower-
frequency bands, in particular of the longitudinal modes,
shift downward in frequency and shrink significantly in size,
resulting in an opening up of a major band gap. Those results
could be put to a solid physical background by the theory of
homogenization, which provides a good guideline for open-
ing up band gaps. In order to indicate the underlying thought,
we first develop the theory of homogenization in one dimen-
sion, then followed by the theory in two dimensions. In par-
ticular, two distinguished classes of phononic crystals are
considered: media embedded in a rubber have elastic con-
stants larger than rubbers by four or five orders in magni-
tude, and media embedded in an epoxy have elastic constants
comparable to epoxies in magnitude.

II. BASIC EQUATIONS

In the present study, we consider the time-harmonic wave
equation for linear, anisotropic, and elastic materials

1

�
� j�Cijmn�num�r�� + �2ui�r� = 0, �1�

where ui �i=1,2 ,3� are the displacements, and �=��r� and
Cijmn=Cijmn�r� are the mass density and elastic stiffness ten-
sor, respectively. For a two-dimensional problem in the xy
plane with out-of-plane propagation in the z direction, Eq.
�1� can be written for cubic crystals as

−
1

��Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz
��ux

uy

uz
� = �2�ux

uy

uz
� , �2�

where Lij �i , j=1,2 ,3� are detailed in the Appendix. For pe-
riodic structures, it is sufficient to solve the problem in one
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unit cell, along with the Bloch condition satisfied at the cell
boundary,

uj�r + ai� = eik·aiuj�r� , �3�

where k is the wave vector and ai �i=1,2� are the lattice
translation vectors. A central finite-difference scheme14 is
used to discretize Eq. �2�. The positions of ux and uy are
offset by a half grid size in their own directions, respectively,
as shown in Fig. 1. There are two points we want to mention.
First, we separate the components of the displacement half
mesh in its own direction. Second, the elastic constants and
the mass density are arranged into different areas. In our
study, the mass density and elastic constants C11 and C12 are
assigned to the mesh points but C44 is assigned to the center
of the mesh zone, as shown in the figure. This arrangement is
helpful for the convergence of numerical results. Then we
obtain the discretized eigenvalue problem

Au = �u , �4�

where we have applied condition �3�. The eigensystem is
solved by the method of inverse iteration with multigrid ac-
celeration as mentioned in the Introduction.

III. RESULTS AND DISCUSSION

Let us consider a square lattice of square cylinders of
materials embedded in a rubber. The physical constants of
the embedded materials are listed in Table I �Refs. 15 and
16�; all the embedded materials have elastic constants larger
than the rubber by four or five orders in magnitude.

First, we consider the band structure of the C/rubber sys-
tem with the filling fraction f =0.36 �Fig. 2�. Although the

contrast of the elastic constant between carbon and rubber is
quite large, no full band gaps are observed in this structure
�Fig. 3�. In fact, a band gap exists between the first few
transverse modes of shear horizontal �SH1� and shear vertical
�SV1� branches. However, this band gap is blocked by the
first longitudinal mode of pressure �L� branch. If carbon cyl-
inders are replaced by heavier Pb cylinders,16 then large full
band gaps can be opened up. Figure 4 shows the band struc-
tures of Pb cylinders embedded in a rubber background for
the same filling fraction. In this case, there is a large contrast
in the mass density between the embedded material and the
background. The frequencies of the first L, the first SV, and
the first two SH branches are significantly reduced to lower
values, while the frequency of the second SV branches re-
mains little changed and becomes flattened. It is also ob-
served that the higher-frequency bands are much less sensi-
tive to the change of the physical constants of the embedded
material. As a result, two large full band gaps, denoted by
Ba and Bb, respectively, are opened up and separated by a
nearly straight band. The question is why the difference in
the mass density ratio is more effective in opening up a band
gap than a large contrast of elastic constants. We now at-
tempt to answer this question by developing a theory of
homogenization.

FIG. 1. �Color online� The stagger mesh is widely applied with
a finite-difference time domain algorithm. First, we split the com-
ponents of the displacement onto different mesh points—i.e., mov-
ing forward the x component of the displacement half of mesh
length in the x direction—and treat the same way for the y compo-
nent of the displacement in the y direction. Second, we put the
physical properties of the material in different mesh points. For
example, in the cubic system, the mass densities C11 and C12 are
assigned to circle mesh points and C44 is assigned to rectangular
points.

TABLE I. The unit of the mass density is g /cm3 and the elastic
constants are in 109 N/m2. These physical constants are used for
investigating two-dimensional phononic crystals.

Medium � C11 C44

Ice 0.94 13.79 3.18

C 1.75 310 88.5

AlAs 3.76 120.2 58.9

GaAs 5.36 118.8 59.4

Ni 8.97 311.61 92.93

Ag 10.64 152.68 40.44

Pb 11.6 72.1 14.9

W 19.3 500.03 151.31

Rubber 1.3 6.8�10−4 4.0�10−5

Epoxy 1.20 9.61 1.61

FIG. 2. �a� The medium/rubber square lattice. The filling frac-
tion is 0.36. The first simulated case is the C/rubber system and the
second is the Pb/rubber system. �b� The first Brillouin zone and the
special points of symmetry.
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A. One-dimensional homogenization

In order to open up a band gap, one possibility is to lower
the first few frequency bands. It is plausible that if we can
reduce the slopes of the low-frequency bands at the point �,
then these bands may entirely shift downward. The slopes
are actually the group velocities. The group velocity of the
composite material at the low-frequency limit for periodic
structures can be determined by applying the theory of ho-
mogenization �see, e.g., Ref. 17�. For this purpose, we con-
sider the model problem of one-dimensional elasticity:

�

�x
�E

�

�x
u� = �

�2u

�t2 , �5�

where � denotes the mass density and E is Young’s modulus,
both of which vary with a period a of which material 1
occupies a proportion fa, while material 2 occupies �1− f�a.

Let us consider a wave propagating with a large wave-
length l—i.e., �=a / l�1. It is convenient to do nondimen-
sional analysis by scaling; we introduce x→ax, E→EcE, �
→�c�, and t→2	t /�c where Ec, �c, and �c are characteris-
tic values of Young’s modulus, mass density, and frequency.
Then we obtain

�

�x
�E

�

�x
u� =

a2

4	2Ec/��c�c
2�

�
�2u

�t2 , �6�

where we identify l2=4	2Ec / ��c�c
2�, and the scaled Eq. �5�

becomes

�

�x
�E

�

�x
u� = �2�

�2u

�t2 . �7�

Now we introduce two scales, x=x �fine scale� and x�=�x
�coarse-grained�, for further analysis. The displacement is
considered as a function of x and x�—i.e., u=u�x ,x��; then,

�

�x
→

�

�x
+ �

�

�x�
. �8�

Expanding u in powers of �,

u = u0 + �u1 + �2u2 + ¯ , �9�

we obtain

� �

�x
+ �

�

�x�
�	E� �

�x
+ �

�

�x�
��u0 + �u1 + �2u2 + ¯ �


= �2�
�2u0

�t2 + ¯ . �10�

Next we collect terms of the same power in �. For the order
O��0�, we get

�

�x
�E

�u0

�x
� = 0, �11�

where u0 denotes the coarse-grained displacement, and it is
evident that it depends on x� only. For the order O��1�, we
obtain

�

�x
	E� �u1

�x
+

�u0

�x�
�
 = 0. �12�

A general solution of u1 is given by

u1 = Q�x,x��
�u0

�x�
+ ū1�x�� , �13�

where Q�x ,x�� is a periodic function in x of period a and
ū1�x�� is independent of x. Substituting u1 of Eq. �13� into
Eq. �12�, we obtain

FIG. 3. �Color online� The band structure of the array of carbon
squares embedded in a rubber background. The filling fraction f of
the carbon is 0.36. The frequency is normalized by V /a where V is
the transverse velocity of the rubber.

FIG. 4. �Color online� The band structure of an array of Pb
squares embedded in a rubber background. The filling fraction f of
Pb is 0.36. The frequency is normalized by V /a where V is the
transverse velocity of rubber. Ba and Bb denote first and second
band gaps.
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�

�x
	E�1 +

�Q

�x
�
 = 0. �14�

A simple integration gives

Q = − x + D1�
x0

x0+x dx̃

E
+ D2, �15�

where D1 and D2 are functions of x� only and x0 is a refer-
ence point. Since Q must be a periodic function of x with
period a, D1 needs to satisfy

D1 = �1

a
�

x0

x0+a dx̃

E �−1

�16�

and D2 can simply be taken to be zero. The results suggest
that we define the effective Young’s modulus

Ee = D1 = � 1

E

−1

=
E1E2

fE2 + �1 − f�E1
, �17�

where E1 and E2 are Young’s moduli of embedded and host
materials, respectively. Finally, gathering terms for the
O��2�, we have

�

�x�
	E� �u1

�x
+

�u0

�x�
�
 +

�

�x
	E� �u2

�x
+

�u1

�x�
�
 = �

�2u0

�t2 .

�18�

In order to see the behavior on a macroscale, we average Eq.
�18� in the unit cell. The second term after being averaged
with respect to x becomes zero because of the periodic
boundary conditions. Then the resulting averaged equation
with using Eqs. �13�, �15�, and �17� becomes

�

�x�
�Ee

�u0

�x�
� = ���

�2u0

�t2 , �19�

where ��� is the mean mass density,

��� = f�1 + �1 − f��2. �20�

Equation �19� only depends on x� and describes the macro-
scale elastic waves propagating along the composite material
under the long-wave approximation. This explains why Ee is
called effective Young’s modulus. The effective velocity is
given by

ve =� Ee

���
=� E1E2

fE2 + �1 − f�E1

1

f�1 + �1 − f��2
. �21�

The results �17� and �20� indicate that the effective
Young’s modulus Ee is mainly determined by the less rigid
material, Ee=E2 / �1− f� if E1�E2, while the mean density is
determined by the heavier material, ���= f�1 if �1��2. In
our simulation, E1 and E2 stand for the elastic constants of
the embedded materials and the host �rubber�, respectively,
with E1�E2. Therefore,

ve �� E2

1 − f

1

f�1 + �1 − f��2
. �22�

The simple theory is particularly accurate for one-
dimensional crystal �Table II�, and is less satisfactory for
two-dimensional crystals �Table III�. In both C/rubber and
Pb/rubber systems, C and Pb have a much larger Young’s
modulus than rubber. Thus both composite systems have the
same effect by increasing the Young’s modulus from rubber’s
E2 to E2 / �1− f�=E2 /0.64. The effective group velocity of the
two composite systems, differing from that of rubber, is
mainly determined by the difference in density between the
host and embedded materials.

For the longitudinal waves, we have

ve,long
C/rub =� C11

1 − f

1

f�1 + �1 − f��2
� 1.26vlong

rub , �23�

ve,long
Pb/rub =� C11

1 − f

1

f�1 + �1 − f��2
� 0.672vlong

rub . �24�

The same results apply to the effective transverse velocity by
simply replacing C11 with C44. The results �23� and �24�
explain why the Pb/rubber systems compared to the C/rubber
system lower the first few bands very effectively, especially
in longitudinal modes, which covers some band gaps pro-
duced by shear modes, thus opening up a band gap. On the
other hand, we may embed a less rigid material in rubber
�but with comparable density� to reduce the group velocity,
at the point � and thus lower the lower-frequency bands.

To see a closer comparison between numerical and theo-
retical results, we elaborate below on the theory of two-
dimensional homogenization.

TABLE II. Group velocities of the lowest-frequency bands at
the point � for a one-dimensional crystal. The unit of velocity is
km/s. Vn,1D

L and Vn,1D
S are the velocities of longitudinal waves and

shear waves, respectively, obtained from the numerical results.
Vh,1D

L and Vh,1D
S are obtained from the theory of one-dimensional

homogenization.

Composite Vn,1D
L Vn,1D

S Vh,1D
L Vh,1D

S

C/rubber 0.0271 0.00655 0.0270 0.0065

Pb/rubber 0.0145 0.0035 0.0145 0.0035

TABLE III. Group velocities of the lowest-frequency bands at
the point � for a two-dimensional crystal. The unit of velocity is
km/s. Vn,2D

L and Vn,2D
SV are the velocities of longitudinal waves and

shear vertical waves, respectively, obtained from the numerical re-
sults. Vh,1D

L and Vh,1D
S are obtained from the theory of one-

dimensional homogenization.

Composite Vn,2D
L Vn,2D

SV Vh,1D
L Vh,1D

S

C/rubber 0.0289 0.0078 0.0270 0.0065

Pb/rubber 0.0154 0.0042 0.0145 0.0035

LIU et al. PHYSICAL REVIEW B 75, 054104 �2007�

054104-4



B. Two-dimensional homogenization

Let us start with the time-dependent form of the wave
equation

�

�xj
	Cijmn

�um

�xn

 = �

�2ui

�t2 . �25�

The same procedure as the one-dimensional problem leads to

� �

�xj
+ �

�

�xj�
�	Cijmn� �

�xn
+ �

�

�xn�
��um

0 + �um
1 + �2um

2 + ¯ �

= �2�

�2ui
0

�t2 + ¯ , �26�

where i, m=1,2 ,3 and j, n=1,2. Then we collect terms in
different powers of �. At the order O��0�, we have

�

�xj
�Cijmn

�um
0

�xn
� = 0. �27�

From the discussion of the previous suggestion, we know
that um

0 =um
0 �x�� depends on x� only. At the order O��1�, we

get

�

�xj
	Cijmn� �um

0

�xn�
+

�um
1

�xn
�
 = 0. �28�

The key step is to solve Eq. �28� for um
1 . In analog with Eq.

�13�, we assume the form of solution

um
1 = bk

�m��um
0

�xk�
+ ūm

1 �x�� , �29�

where ūm
1 �x�� is independent of x and bk

�m� has no summation
in the index m. The solution form connects the perturbed
solutions at the zeroth order and the first order. Substituting
um

1 of Eq. �29� into Eq. �28�, we obtain

�

�xj
	Cijmn�
nk +

�bk
�m�

�xn
�
 �um

0

�xk�
= 0. �30�

At the order O��2�, we have

�

�xj�
	Cijmn� �um

0

�xn�
+

�um
1

�xn
�
 +

�

�xj
	Cijmn� �um

1

�xn�
+

�um
2

�xn
�


= �
�2ui

0

�t2 . �31�

Now Eq. �31� is averaged with respect to x over the unit cell.
The second term is immediately averaged to give zero be-
cause of periodic boundary conditions. Then we have

�

�xj�
�Cijmn�
nk +

�bk
�m�

�xn
�
 �um

0

�xk�
= ���

�2ui
0

�t2 . �32�

In analog with Eq. �25�, this motivates us to define the ef-
fective elastic constants as

Cijmk
e = �Cijmn�
nk +

�bk
�m�

�xn
�
 , �33�

and then Eq. �32� becomes

�

�xj�
Cijmk

e �um
0

�xk�
= ���

�2ui
0

�t2 . �34�

In contrast to the one-dimensional problem, we do not have a
closed-form formula of effective elastic constants. Instead,
they have to be obtained by solving

�

�xj
	Cijmn�
nk +

�bk
�m�

�xn
�
 = 0, �35�

as indicated by Eq. �30�, where �um
0 /�xk� could be general

functions of xk�. It is straightforward to see that Eq. �35�
reduces to Eq. �14� if we consider the one-dimensional elas-
tic wave equation �5�.

Equation �35� is the key to the two-dimensional homog-
enization. What we need for the effective Cijmk

e are Cijmn and
bk

�m� as shown in Eq. �33�. This equation also indicates that
the determination of bk

�m� depends on the spatial property of
Cijmn and thus the possibility of improvement of two-
dimensional homogenization over the one-dimensional
theory. Moreover, the above formulation is valid for general
linear elastic materials in both two and three dimensions.

Now we consider the two-dimensional elastic wave equa-
tions of the cubic materials. For shear vertical �SV� modes,
we have

Lzzuz = �
�2uz

�t2 , �36�

and for longitudinal-shear horizontal �L-SH� modes, we have

Lxxux + Lxyuy = �
�2ux

�t2 , �37�

Lyxux + Lyyuy = �
�2uy

�t2 . �38�

SV modes. Consider the SV mode. The coarse-grained
equation is given by

�

�xi�
��C44

ij �
�uz

0

�xj�
� = ���

�2uz
0

�t2 , �39�

where i , j=1,2 and uz
0 denotes the coarse-grained displace-

ment of the z component, and

��� =
1

�
�

�

�d� , �40�

�C44
ij � =

1

�
�

�

C44�
ij +
�bj

�xi
�d� . �41�

Here, � is the domain of the unit cell, C44=C1313 or C2323
and bj satisfying

�

�xi
	C44�
ij +

�bj

�xi
�
 = 0, �42�

and must, in general, be solved numerically. Since Eq. �42� is
supplement by the periodic boundary conditions, we append
the additional condition �bj�=0 to solve Eq. �42� uniquely.
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This effective shear vertical group velocity is given by

Ve,2D
SV =��C44

11�
���

. �43�

L-SH Modes. Consider the wave equations of the mixed
mode. The coarse-grained equation is given by

�

�x�
��C11�

�ux
0

�x�
� +

�

�y�
��C44�

�ux
0

�y�
� +

�

�x�
��C12�

�uy
0

�y�
�

+
�

�y�
��C44� �

�uy
0

�x�
� + Res = ���

�2ux
0

�t2 . �44�

The effective elastic constants are given by

�C11� =
1

�
�

�

C11�1 +
�b1

�1�

�x
�d� , �45�

�C44� =
1

�
�

�

C44�1 +
�b2

�1�

�y
�d� , �46�

�C12� =
1

�
�

�

C12�1 +
�b2

�2�

�y
�d� , �47�

�C44� � =
1

�
�

�

C44�1 +
�b1

�2�

�x
�d� , �48�

where C11=C1111 or C2222, C44=C1212 and C12=C1122, and
Res denotes the residual,

Res =
1

�
�

�

�

�y�
	C44

�b1
�1�

�y

�ux
0

�x�
+ C44

�b2
�2�

�x

�uy
0

�y�



+
�

�x�
	C11

�b2
�1�

�x

�ux
0

�y�
+ C12

�b1
�2�

�y

�uy
0

�x�

d� , �49�

where bi
�m� are functions satisfying

�

�x
	C11

�b1
�1�

�x

 +

�

�y
	C44

�b1
�1�

�y

 = −

�C11

�x
, �50�

�

�x
	C11

�b2
�1�

�x

 +

�

�y
	C44

�b2
�1�

�y

 = −

�C44

�y
, �51�

�

�x
	C12

�b1
�2�

�y

 +

�

�y
	C44

�b1
�2�

�x

 = −

�C44

�y
, �52�

�

�x
	C12

�b2
�2�

�y

 +

�

�y
	C44

�b2
�2�

�x

 = −

�C12

�x
. �53�

The effective shear horizontal and longitudinal group veloci-
ties are given, respectively, by

Ve,2D
SH =��C44�

���
, Ve,2D

L =��C11�
���

. �54�

Table IV shows the comparison of group velocity at point
� between the numerical results and those predicted by two-

dimensional homogenization. The results show significant
improvement over the comparison listed in Table III between
two-dimensional numerical results and the results of one-
dimensional homogenization.

The one-dimensional homogenization indicates that a
large contrast of mass density is necessary for producing full
band gaps in phononic crystals, no matter how large the con-
trast of elastic constants is. In order to illustrate this general
trend for two-dimensional systems, we simulate different
materials �listed in Table I with given physical constants�
embedded in rubber. In Fig. 5, we plot the band-gap ratios of
Ba and Bb �defined in Fig. 4� for different materials embed-
ded in a rubber background. For ice, carbon, and aluminum,
with comparable mass densities of that of rubber, neither
band gap Ba nor Bb is observed. The band gaps are found
easily in heavier Ni, Ag, and Pb/rubber systems. As the mass
density is increased above that of GaAs, band gap Ba opens
up and its size �band-gap–midgap ratio� increases linearly up

TABLE IV. Group velocities of the lowest-frequency bands at
the point � for a two-dimensional crystal. The unit of velocity is
km/s. Vn,2D

L , Vn,2D
SH , and Vn,2D

SV are the velocities of longitudinal
waves, shear horizontal, and vertical waves, respectively, obtained
from the numerical results. Vh,2D

L , Vh,2D
SH , and Vh,2D

SV are obtained
from the theory of two-dimensional homogenization.

Composite Vn,2D
L Vn,2D

SH Vn,2D
SV Vh,2D

L Vh,2D
SH Vh,2D

SV

C/rubber 0.0289 0.0072 0.0078 0.0294 0.0078 0.0078

Pb/rubber 0.0154 0.0040 0.0042 0.0159 0.0042 0.0042

FIG. 5. �Color online� The band-gap size for different medium/
rubber systems. The unit of mass density is g /cm3. The mass den-
sity of rubber is 1.3, lying between carbon and ice. The open tri-
angle symbols and open square symbols denote the gap-midgap
ratios of Ba and Bb. Here, the solid symbols denote artificial em-
bedded materials which have the same elastic constants of carbon,
but with different mass densities. All the cases have fixed filling
fraction f =0.36 for the embedded medium.
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to W. On the other hand, band gap Bb opens up as the den-
sity ratio is increased above that of Al and increases linearly
to GaAs, where we see a saturated size 0.15. It is also inter-
esting to see if the host material rubber is replaced by a more
rigid material like epoxy. Epoxy has Q density about that of
rubber but has elastic constants comparable to other materi-
als in magnitude. Figure 6 shows the results for comparison.
The general trend of the two bands Ba and Bb for medium/
epoxy systems is not too much different from the medium/
rubber systems though the comparable elastic constants of
the medium and host complicated their effects of homogeni-
zation.

IV. CONCLUDING REMARKS

In the present study, we have applied a fast algorithm—
inverse iteration with multigrid acceleration—to compute the
band structures of phononic crystals. A critical issue is ad-
dressed as how to open up a large band gap for phononic
crystals. It is shown, by the theory of homogenization in one
as well as two dimensions, how the mass density ratio and
the contrast of elastic constants affect the size of major
phononic band gaps. In particular, it is quite efficient to open
up a band gap by lowering the group velocities of the low-
frequency bands at the center �. One-dimensional homogeni-
zation shows that the effective mass density is the area-
averaged density of the host and embedded materials, while

this is true for the elastic constants if we consider their in-
verses. In contrast, two-dimensional homogenization does
not exhibit this simple average for the elastic constants. In-
stead, before averaging we have to solve a system of equa-
tions that take care of the detailed spatial properties of the
elastic constants. This explains why the two-dimensional ho-
mogenization shows significantly improved results over the
one-dimensional theory in predicting the group velocities of
the lowest-frequency bands at the center of symmetry �. The
current method of analysis is applied to three-dimensional
problems; the results will be reported elsewhere.
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Appendix

The components of Eq. �2� are
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FIG. 6. �Color online� The band-gap size for different medium/
epoxy systems. The unit of mass density is g /cm3. The mass den-
sity of epoxy is 1.2, lying between carbon and ice. The open tri-
angle symbols and open square symbols denote the gap-midgap
ratios of Ba and Bb. All the cases have fixed filling fraction f
=0.36 for the embedded medium.
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