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Abstract: We investigate the characteristics of higher-lying band gaps for
two-dimensional photonic crystals with large dielectric contrast. An optimal
common band gap is attained on a hexagonal lattice of circular dielectric
cylinders at relatively higher bands. The corresponding TMand TE modes
exhibit simultaneous band edges, around which the frequency branches
tend to be dispersionless. Unlike the fundamental band gap which usually
appears between the dielectric and air bands, the optimal higher-lying gap
in the present study occurs between two consecutive dielectric-like bands
with high energy fill factors. The underlying mechanism is illustrated with
the apparent change of eigenmode patterns inside the dielectric regions for
both polarizations. In particular, the common gap region isbounded by
two successive orders of Mie resonance frequencies on a single dielectric
cylinder with the same geometry and material, where the Mie resonance
modes show similar internal fields with the respective eigenmodes for the
photonic crystal.
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1. Introduction

Photonic crystals have been the subject of intensive research in the past two decades [1, 2, 3].
One of the most distinguished features is the existence of photonic band gap. Formation of
band gap is considered as a result of hybridization of individual Mie resonance due to single
scatterers and the Bragg-like multiple scattering due to periodicity [4]. The former corresponds
to a strongly localized photon state, and the latter to a nearly free photon state [5]. Nature of
photonic band gap was elucidated with the variation of electrical energy inside the dielectric
regions, through the use of a fill factor [6]. As two consecutive bands exhibit markedly different
fill factors, the discrepancy in frequency will be large and the band gap would be significant.

Due to the vector nature of electromagnetic fields, band gapsfor two-dimensional structures
behave in different manners for different polarizations. The common band gap for TM and
TE modes (with respect to the normal of lattice plane) is an important issue for confining the
light from arbitrary orientation. A general rule of thumb was proposed to characterize the band
gap features for two-dimensional crystals: TM band gaps arefavoured in a lattice of isolated
high dielectric region, and TE gaps are favoured in a connected lattice [7]. This rule is useful for
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describing the basic features of a fundamental band gap. A compromise between an isolated and
a connected lattice then leads to a common band gap for both polarizations. One typical example
is the triangular lattice of air columns [8, 9]. By incorporating two geometric parameters, the
band gap size can be enlarged. The connected hexagonal lattice has an optimal common band
gap (over 24%) for the silicon-air structure (with the dielectric contrast 13) [10, 11]. As the
optimal condition is reached, the corresponding TM and TE modes exhibitsimultaneous band
edges. Accordingly, the common gap width is not trimmed off for either polarization [10, 12].

The higher-lying band gap (which occurs at relatively higher frequency branches) shows a
different characteristic. It is not necessary for the structure to be connected [13, 14, 15]. As the
mid-gap frequency is higher, the minimum feature size is larger. This can be a very important
issue in fabrication [7]. However, higher-lying band gaps are more difficult to appear [16] and
receive much less attention in the past [17]. This may be attributed to a more complicated
behavior at higher-order Bragg scattering. Although a genetic algorithm based on the selection
of dielectric pixels can be utilized to obtain a large higher-lying band gap [18], the rule or
mechanism for opening optimal gaps at higher bands still demands a further study.

In this article, we investigate the features of higher-lying band gaps for two-dimensional pho-
tonic crystals. The hexagonal lattice of circular cylinders, consisting of two dielectricatoms in
one unit cell, is used to seek for a large higher-lying band gap. Experimental and numerical
studies of the hexagonal structures fabricated in silicon have demonstrated the pronounced
band gap effect [19, 20]. In the present study, an optimal gapratio is attained at a large di-
electric contrast. The corresponding TM and TE modes exhibit simultaneous band edges, as
in the case of fundamental optimal band gap. Two features associated with the higher-lying
band gaps are different from the low-order ones. First, the band gap does not appear between
the dielectric and air bands; instead, it occurs between twoconsecutive dielectric-like bands,
where the field energy is strongly concentrated in the dielectric regions. Second, the frequency
branches around the band edges become dispersionless or insensitive to the change of wave
vectors. The corresponding modes are represented as flattened bands within small band widths
for both polarizations in the whole wave vector space. The underlying mechanism for opening
large higher-lying band gaps can be understood by the apparent change of eigenmode patterns
between the upper and lower band edges. This feature is closely related to Mie resonances and
waveguide modes on a single cylinder with the same geometry and material. In particular, the
common band gap is bounded by two successive orders of Mie resonance frequencies, and the
Mie resonance modes show similar internal field patterns with the respective eigenmodes for
the photonic crystal.

2. Basic equations

Consider a periodic lattice of dielectric cylinders whose geometry is constant along the cylinder
axis. For propagation of waves parallel to the lattice plane, the time-harmonic electromagnetic
modes (with time dependencee−iωt) are described as

−∇2E = ε
(ω

c

)2
E, (1)

−∇ ·
(

1
ε

∇H

)

=
(ω

c

)2
H, (2)

for transverse magnetic (TM) and transverse electric (TE) polarizations, respectively, whereE
andH are field components along the cylinder axis. For periodic structures with infinite extent,
it is sufficient to solve the problem in one unit cell, along with the Bloch condition

φ(r+ai) = eik·aiφ(r), (3)
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applying at the unit cell boundary, whereφ is eitherE or H field, k is the Bloch wave vector,
andai (i = 1,2) is the lattice translation vector. For convenience in computation, the primitive
unit cell (a hexagon) is replaced by a rectangle with the samearea (cf. the right of Fig. 2).
Accordingly, the lattice vectors are changed toa1 = (a,0) anda2 = (a/2,

√
3a/2), wherea is

the lattice period.
The eigensystems (1) and (2) are solved by the inverse iteration method [10, 21], in which the

Hermitian property of the differential operators is of full use. An arbitrary distribution of fields
over the unit cell is given as the initial guess of the eigenfunction, and the Rayleigh quotients

QE =

∫ |∇E|2 dτ
∫

ε |E|2 dτ
, QH =

∫ 1
ε |∇H|2 dτ
∫ |H|2 dτ

, (4)

are employed to calculate the eigenfrequencies for TM and TEmodes, respectively. By repeat-
edly solving a matrix inversion, the solution is refined through iterations until it is converged.
The Rayleigh quotients (4) are utilized not only for obtaining the solutions, but also in the anal-
ysis of band gap features for different polarizations [22].Details of the inverse iteration method
can be found in Ref. [10].
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Fig. 1. Contours of the higher-lying common gap ratio for a hexagonal lattice of circular
cylinders with varying the dielectric constantεd and cylinder radiusr/a.

3. Results and discussion

3.1. Band gap features and localized modes

The hexagonal lattice of circular cylinders, where there are two dielectricatoms in one unit
cell, is useful for studying higher-lying band gaps [7]. In order to seek for an optimal condition,
two parameters have been incorporated to arrange the structures [10]. In the present study, the
optimal structure is attained by increasing the dielectriccontrast on one hand, and varying the
cylinder radius on the other. Let the dielectric constant ofthe cylinder beεd , and that of the
surrounding medium be unity. Figure 1 shows the contours of higher-lying common gap ratio
with respect toεd and the cylinder radiusr/a. The optimal condition is reached atr/a = 0.19
andεd = 26, and the corresponding band structure is plotted in Fig. 2. A common band gap
is opened between the third and fourth bands for TE polarization, and between the sixth and
seventh bands for TM polarization. The lower and upper band edges occur atω = 0.446(2πc/a)
and 0.575(2πc/a), respectively, with a band gap width 0.129(2πc/a) and the gap to mid-gap
ratio 25.3%.
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Fig. 2. Band structure for a hexagonal lattice of circular cylinders with radius r/a = 0.19
and dielectric constantεd = 26. Shaded area is the common band gap for both polarizations;
the band gap width is 0.129(2πc/a) and the gap to mid-gap ratio is 25.3%. The unit cell
and geometric parameters are shown on the right.

It is noticed that the corresponding TM and TE modes exhibitsimultaneous band edges, as
has been observed in the fundamental (low-order) optimal band gap for a connected hexagonal
structure [10]. The common gap width is therefore not trimmed off for either polarization.
Around the band edges, the frequency branches becomes flattened over the whole wave vector
space, which means that the resonant modes are dispersionless or insensitive to the change of
Bloch wave vector. This is a typical feature of strong resonance and has been termed as the
heavy photon state [23]. In the present study, the band flattening is a consequence of large
dielectric contrast, as the energy has been strongly confined within the dielectric material and
the frequency becomes insensitive to the change of wave vector. This phenomenon appears
in other structures as well, such as the textured metallic microcavities [24], bi-dimensional
metallic mesa gratings [25], and periodic arrays of plasmonic cylinders [26].

(a) (b)

Fig. 3. Magnetic field contours of the TE eigenmodes at the pointΓ for the photonic crystal
in Fig. 2. (a) eigenmode near the lower edge withω = 0.429(2πc/a), (b) eigenmode near
the upper edge withω = 0.593(2πc/a).
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Figure 3 shows the TE eigenmode patterns near the band edges at the pointΓ. The fields are
strongly localized within the dielectric regions, where a lump of inphase oscillation is associ-
ated with the lower band edge [Fig. 3(a)], and a pair ofantiphase oscillations is with the upper
band edge [Fig. 3(b)]. Unlike the fundamental band gap whichare likely to appear between the
dielectric and air bands, the higher-lying gap in the present problem occurs between two con-
secutive dielectric-like bands with high energy fill factors. The fill factor f ≡ ∫

ε=εd
uda/

∫

uda

(u = εε0E2 + µ0H2) for measuring the energy concentration within the dielectric regions [6]
does not exhibit a marked difference. In Figs. 3(a) and 3(b),f = 0.9 and 0.88, respectively.

(a) (b)

Fig. 4. Electric field contours of the TM eigenmodes at the pointΓ for the photonic crystal
in Fig. 2. (a) eigenmode near the lower edge withω = 0.425(2πc/a), (b) eigenmode near
the upper edge withω = 0.618(2πc/a).

Similar localized field patterns of the respective eigenmodes are observed for TM polariza-
tion as well, as shown in Fig. 4. The fill factors are still large for both modes;f = 0.79 and 0.87
for Figs. 4(a) and 4(b), respectively. However, the field localization within the dielectric regions
are not so strong. This is due to the boundary condition for tangentialE field, which is required
to be smooth across the boundary( ∂E

∂n = 0). In contrast, the tangentialH field is constrained

in a different manner( 1
ε

∂H
∂n = 0). Consequently, theH field could be more localized within

the high dielectric region than theE field. In addition, the respective eigenmodes display one
higher order of oscillations than those in TE polarization;one pair of oscillations is associated
with the lower edge [Fig. 4(a)] and two pairs are with the upper edge [Fig. 4(b)].

The drastic change of field patterns between Figs. 3(a) and 3(b) [or Figs. 4(a) and 4(b)] ac-
companies a notable difference of resonance frequency between the lower and the upper edges,
which makes up the band gap width. This distinction is also identified in terms of multipole-like
fields: the magnetic dipole [Fig. 3(a)] and quadrupole [Fig.3(b)] for TE modes, and the electric
quadrupole [Fig. 4(a)] and octupole [Fig. 4(b)] for TM modes. This will be more realized when
the band gap features are correlated to Mie resonances and waveguide modes, as discussed in
the next two subsections.

3.2. Connection with Mie resonances

The higher-lying band gap features reported in Figs. 2−4 are closely related to Mie resonance
in two aspects. First, the upper and lower band edges are approximatelybounded by the Mie
resonance frequencies of successive two orders. The TE bandedges occur near the first and
second Mie resonances with the same polarization, while theTM band edges locate near the
second and third Mie resonances. Second, the respective eigenmodes exhibit similarinternal
field patterns with the Mie resonance modes. This means that resonances on single scatterers
dominate the dispersion characteristics (around the band edges) in the underlying problem. This
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feature also responds to the dispersionless behavior (insensitive to the change of Bloch’s wave
vector) for the corresponding frequency branches.
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Fig. 5. Amplitude coefficients of the scattered and internal fields for a dielectric circular
cylinder of radiusr = 0.19a and dielectric constantεd = 26. (a) TE polarization, (b) TM
polarization. Shaded areas correspond to the common band gap regionfor the photonic
crystal in Fig. 2. Vertical solid and dashed lines indicate the waveguide mode frequencies
related to Mie resonances.

Mie resonance is the scattering excitation of a single scatterer [27], which occurs when the
wavelength matches the size of scatterer. At resonance, thescattered and internal fields may be
strongly enhanced. For a dielectric circular cylinder of radius r and dielectric constantεd , the
scattered and internal fields subject to an incident plane wave are given as [28]

Hscat=
∞

∑
n=−∞

anHn(kρ)e−inφ , an = in
Jn(x)J′n (x1)−

√
εdJ′n(x)Jn (x1)√

εdH ′
n(x)Jn (x1)−Hn(x)J′n (x1)

, (5)

H int =
∞

∑
n=−∞

bnJn (
√

εdkρ)e−inφ , bn = in
2i/πx√

εdH ′
n(x)Jn(x1)−Hn(x)J′n(x1)

, (6)

for TE polarization, whereρ andφ are cylindrical coordinates with the origin at the cylinder
center,x ≡ kr = ωr/c, x1 ≡

√
εdx, Jn(x) andHn(x) are thenth order Bessel function and Hankel

function of the first kind, respectively, the prime denotes derivative with respect to the argument,
and the dielectric constant of surrounding medium is assumed to be unity. Mie resonance cor-
responds to divergence of the amplitude coefficients for thescattered and internal fields; that
is, the vanishing denominator ofan or bn [29]. Let r = 0.19a andεd = 26 be the same as the
photonic structure in Fig. 2. The first two orders ofan andbn for TE polarization are plotted in
Fig. 5(a), where the Mie resonances (located at the peak positions) occur atω = 0.382(2πc/a)
andω = 0.607(2πc/a). For comparison, the common gap region for the photonic crystal in
Fig. 2 is overlaid in the same plot (shaded area), showing that the common gap region is ap-
proximately bounded by the two Mie resonance frequencies. The corresponding internal field
is given byH int

nm = Jn(
√

εdxnmρ/r)cos(nφ), wherexnm is themth zero of the denominator of
an or bn. The field patterns forH int

01 andH int
11 are shown in Figs. 6(a) and 6(b), respectively. A

notable similarity is observed with the respective eigenmodes (in the dielectric region) for the
photonic crystal [cf. Figs. 3(a) and 3(b)]. This feature further confirms the correlation of Mie
resonances to the higher-lying band gaps in the present problem.

For TM polarization, similar expressions are given for the scattered and internal fields as [28]

Escat=
∞

∑
n=−∞

anHn(kρ)e−inφ , an = in
√

εdJn(x)J′n(x1)− J′n(x)Jn(x1)

H ′
n(x)Jn(x1)−

√
εdHn(x)J′n(x1)

, (7)
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(a) (b) (c) (d)

Fig. 6. Internal field patterns of Mie resonances for a dielectric circularcylinder of radius
r = 0.19a and dielectric constantεd = 26. (a)H int

01 field with ω = 0.382(2πc/a), (b) H int
11

field with ω = 0.607(2πc/a), (c) E int
11 field with ω = 0.382(2πc/a), (d) E int

21 field with
ω = 0.617(2πc/a).

E int =
∞

∑
n=−∞

bnJn (
√

εdkρ)e−inφ , bn = in
2i/πx

H ′
n(x)Jn(x1)−

√
εdHn(x)J′n(x1)

, (8)

where the amplitude coefficients are plotted in Fig. 5(b) forthe samer andεd . The peaks of the
second and third orders ofan andbn occur atω = 0.382(2πc/a) and 0.617(2πc/a), respec-
tively. As in the case of TE polarization, the common gap region is approximately bounded by
the two Mie resonance frequencies. Note that the peak ofa1 (b1) in TM modes coincides with
that ofa0 (b0) in TE modes, which can be realized by the relations:J′0 = −J1 andH ′

0 = −H1.
In addition, the connection with the zeroth order coefficients a0 andb0 is not obvious. This is
in accordance with the observation that the band gap locatesat relatively higher bands for TM
polarization (cf. Fig. 2). The internal field is given byE int

nm = Jn(
√

εdxnmρ/r)cos(nφ), as shown
in Figs. 6(c) and 6(d) forE int

11 andE int
21, respectively. As expected, the Mie resonance modes

display similar field patterns with the respective eigenmodes (in the dielectric region) for the
photonic crystal [cf. Figs. 4(a) and 4(b)].

3.3. Related waveguide modes

It is noticed that the Mie resonances stated above can be closely related to waveguide modes, but
with mutuallyexchanged polarizations. For sufficiently largeεd , Mie resonance condition for
TE polarization is approximated toJn(

√
εdx)≈ 0 [the vanishing denominator of Eq. (5) or (6)],

which is the boundary condition for TM waveguides [30]. The frequency of TMnm waveguide
mode is given asωTE

nm = xnmc/r
√

εd , wherexnm is themth zero ofJn(x). For the same geometry
and material (r = 0.19a andεd = 26), the lowest two modes occur atωTM

01 = 0.395(2πc/a)
andωTM

11 = 0.629(2πc/a) (x01 ≈ 2.405 andx11 ≈ 3.832), which are close to Mie resonance
frequencies at 0.382(2πc/a) and 0.607(2πc/a), respectively [cf. Figs. 6(a) and 6(b)].

Likewise, Mie resonance condition for TM polarization is approximated (but not as good
as the TE case) toJ′n(

√
εdx) ≈ 0 [the vanishing denominator of Eq. (7) or (8)] for largeεd .

This is the boundary condition for TE waveguides [30], and the frequency of TEnm waveguide
mode is given asωTE

nm = x′nmc/r
√

εd , wherex′nm is the mth zero ofJ′n(x). Accordingly, the
second the third modes occur atωTE

11 = 0.302(2πc/a) andωTE
21 = 0.502(2πc/a) (x′11 ≈ 1.841

andx′21 ≈ 3.054), respectively. Note that bothωTE
11 andωTE

21 are not so close to Mie resonances
at 0.382(2πc/a) and 0.617(2πc/a), respectively [cf. Figs. 6(c) and 6(d)]. This is due to the
weaker localization of fields (inside the dielectric) in TM polarization (compare Figs. 3 and 4),
so that TM waveguide modes are not indeed very accurate approximations to Mie resonances.
Nonetheless, they serve as a convenient way for roughly estimating the Mie resonances and
describing the band gap features of the underlying problem.
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4. Concluding remarks

In conclusion, the higher-lying band gaps for two-dimensional photonic crystals are investi-
gated, with emphasis on the resonance features and related mechanism. An optimal common
band gap width [0.129(2πc/a)] with the gap to mid-gap ratio (25.3%) was attained on a hexag-
onal lattice of circular cylinders (r/a = 0.19) with large dielectric contrast(εd = 26). The high
permittivity can be achieved by using the ceramic as the dielectric material, whose dielectric
constant may range from twenties to thirties [31]. The feature of higher band gap holds for
lower index contrast as well, but is not optimal; for instance, the band gap ratio for a silicon-
based structure with the same geometry is 10.4%. In the present problem, an obvious distinct
feature from the fundamental band gap is the opening of gap region between two consecu-
tive dielectric-like bands, where the fill factor for measuring the energy concentration does not
exhibit a marked difference. The apparent change of eigenmode patterns inside the cylinders,
which occurs simultaneously for TM and TE modes, is responsible for a large higher-lying
common band gap. At the optimal condition, the band edges forboth polarizations are nearly
located at the same positions, around which the frequency branches tend to be dispersionless
(flattened) due to the strong localization of fields inside the dielectric regions. It follows that
the eigenmodes at the two band edges are analogous to Mie resonances and related waveg-
uide modes. The field patterns (inside the cylinder) exhibita sudden change from dipole to
quadrupole oscillations (TE polarization), or from quadrupole to octupole ones (TM polar-
ization), between two consecutive eigenmodes for the photonic crystal, which occur as well
between two successive orders of Mie resonances.
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