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Abstract

This paper investigates the Lagrangian-to-Eulerian transformation approach to the construction of noncanonical Pois-
son brackets for the conservative part of elastic solids and micromorphic elastic solids. The Dirac delta function links
Lagrangian canonical variables and Eulerian state variables, producing noncanonical Poisson brackets from the corre-
sponding canonical brackets. Specifying the Hamiltonian functionals generates the evolution equations for these state vari-
ables from the Poisson brackets. Different elastic strain tensors, such as the Green deformation tensor, the Cauchy
deformation tensor, and the higher-order deformation tensor, are appropriate state variables in Poisson bracket formalism
since they are quantities composed of the deformation gradient. This paper also considers deformable directors to com-
prise the three elastic strain density measures for micromorphic solids. Furthermore, the technique of variable transforma-
tion is also discussed when a state variable is not conserved along with the motion of the body.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Poisson bracket formulation of Hamilton’s mechanics was originally developed for discrete particle
systems. The application of Poisson bracket formalism to continuous systems began with Arnold (1966),
Arnold (1978), Morrison (1980), and Marsden and Weinstein (1982). Later, Kaufman (1984), Morrison
(1984), and Grmela (1984) almost simultaneously made a more general extension to nonconservative contin-
uum systems by introducing a dissipative bracket into the time evolution equation for a system functional F as

dr

dt
where {-,-} and [-,"] represent the Poisson bracket and the dissipative bracket, respectively. E and S in (1) are
the total energy and the total entropy of a system. In this framework, the Poisson bracket characterizes the
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conservative dynamics of the system. On the other hand, the dissipative bracket represents the dissipative
dynamics of the system (Beris and Edwards, 1994; Edwards, 1998; Ottinger, 1999; Beris, 2001).

Through Poisson bracket formalism, the equations of motion for a system can be directly derived from the
general equation (1). The only difficulty of this derivation is constructing the two brackets. Even for a conser-
vative continuous system, in which the dissipative bracket can be discarded, the explicit form of its Poisson
bracket is noncanonical since a continuous system is usually described by field variables (Eulerian variables)
rather than canonical variables (Lagrangian variables) such as the positions and momenta of particles. The
difference between the adoptions of the two types of variables lies in the different descriptions for a system,
i.e., the Lagrangian description and the Eulerian description. In several studies such as the immersed bound-
ary method (Peskin, 2002), Lagrangian hydrodynamics (Grmela, 2002, 2003) and mesoscopic dynamics
(Grmela, 2004), both Eulerian and Lagrangian variables are simultaneously involved. The two descriptions
can be linked by the Dirac delta function so that the noncanonical Eulerian Poisson bracket can be con-
structed by its corresponding canonical Lagrangian form. Using the Dirac delta function, Abarbanel et al.
(1988) propose the Lagrangian-to-Eulerian (LE) transformation of state variables to derive the noncanonical
Poisson bracket for inviscid flows. Using the same transformation, Edwards and Beris (1991) develop the Pois-
son bracket for nonlinear elasticity. Another approach to deriving the noncanonical Poisson bracket is to
identify the underlying Lie algebraic structure of the state space expressed by the state variables of a system
(Marsden and Ratiu, 1994).

Despite the mathematical complexities of LE transformation, which might draw researcher’s attention
away from development of this method, this approach clearly shows that the noncanonical Poisson bracket
can be directly constructed from its canonical counterpart in the Lagrangian description. Successful exam-
ples of LE transformation are elastic fluids (Edwards and Beris, 1991), and anisotropic fluids (Edwards and
Beris, 1998). This paper extends LE transformation to the study of noncanonical Poisson brackets for elas-
tic solids and micromorphic elastic solids. After a preliminary review of the Poisson bracket for a discrete
system in Section 2, Section 3 studies the LE transformation of a set of suitable state variables in the case of
an elastic solid. We use this same method in Section 4 to obtain noncanonical Poisson bracket for a micro-
morphic solid. No previous study has used this method for this task. Section 5 presents Poisson brackets for
an elastic system with three different types of state variables: the Cauchy deformation tensor, the gradient of
deformation tensor, and the nonconservative state variable. Finally, the paper closes with a summary and
concluding remarks.

2. Brief review of the Poisson bracket for a discrete system

The equations of motion for an N-particle discrete system are expressed by the Hamilton’s canonical
equations:

., A% oH ., dp  oH
dr Op dr ox
where H(x',x2, ..., X", p',p?, ..., p") is the Hamiltonian of the system, and X*(¢) and p*(¢) are the coordinate

and the momentum of particle «. The Hamilton’s equations can be derived under the framework of Poisson
bracket formalism:

dFr K /oF dx*  OF dp*
- = _ = = 2T \V=I{FH
dt ; <6x“ & oy dt) {FHy, G)
with the introduction of the Poisson bracket of the system as
N (0F oG 0G OF
F,G}, = = . 4
{ 9 }L ; <axo€ al—)a ai“ al—)“> ( )

Here F and G are arbitrary functions with arguments (x',x?, ..., X", p',p%, ..., p"). The subscript “L” in the
Poisson bracket indicates the Lagrangian description, by which the motion of a definite particle can be de-
picted. Note that the Poisson bracket is bilinear and antisymmetric in F and G.
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The Lagrangian-to-Eulerian transformation enables extension of Poisson bracket formalism in a discrete
system, described by the Lagrangian description, to that in a continuous system, usually characterized by
the Eulerian description. Consider a material point in a continuous system. Let vector X be its position vector
at time 7 = 0 and function X(X, ¢) be its position function at time 7. The function X(X, ¢) with the initial con-
dition X(X,0) = X specifies the motion of the continuum. The continuum occupies the region Q with the
boundary 0Q at time ¢ = 0, and due to the motion of the continuum, this region changes to Q' with the bound-
ary 0Q’ at time ¢. The dynamical variables of a continuum in the Lagrangian description are the position
X(X,#) and the momentum per unit volume u(X,?) = po(X)(0xX(X, #)/0¢), where po(X) is the mass density at
time ¢ = 0.

For an analogous manner in a discrete system, the Poisson bracket for a continuous system without dissi-
pation can be expressed as

OF 6G OF oG
F = — d? X, 5
{F.Gh /Q(éx ou  on 5x> )
for arbitrary functionals F'= F[X,u] and G = G[x,u]. In Eq. (5), the notation of the Volterra functional
derivative
oF A Y »
da’ da d(Va)’

has been used (Beris, 2001), and the derivatives are defined through the following variation on a functional
F(= [yf(a, Va) d*x ):

5F=/Q((%—v.aga))éa)dwz/g(iia >d3X. (7)

in which fis a scalar density function. Here and henceforth, the boundary terms in the variational operation
are not considered because it is assumed that the system is free from the boundary. A boundary usually causes
disturbances in a system, forcing it into thermodynamic nonequilibrium states. This issue is beyond the scope
of the present study and is an important topic for future research.

3. Poisson bracket for an elastic solid

Lagrangian description traces a moving particle, but Eulerian description focuses on a spatial point x,
through which different particles flow at different times. The two descriptions can be linked to each other
by introducing the relation of motion x = X(X, ¢) and the 3-dimensional delta function §°. Hence, the trans-
formation relations for the mass density p(X, 7), the momentum density u(x, 7), and the entropy density s(x, ) of
a continuous system are

pixt) = [ P00 05K =T = [ PR XX, ®)
u(x, 1) = p(x(X, 1), DX(X, 1) = / a(X, )5 K (X, 1) — x|d°X, )
s(,1) = / 5o (X)FR(X, 1) — XX, (10)

using the relation of conservation of mass d*x = Jd*X or p(X, ) = J ' p,(X), with the Jacobian of the motion
J(= det(d%;/0X,)). Note that the isentropic process is assumed here so that the relation s(, t) d’x = 50(X)d’X
is held.

In order to delineate the behavior of an elastic solid, an extra state variable to characterize the elastic defor-
mation of the body should be included. A second order symmetric tensor C(x t), which is the density of the
Green deformation tensor C(x,¢), is adopted and its index form is expressed as Cxr = pCxr = pX; gX; . Simi-
larly, the transformation relation for C is
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C(X»¢)=/on(X)C( (X,1),)0°[X(X, 1) - x]d"X. (11)

Now all the state variables for an elastic solid, i.e., (p,u, s, C), have been determined and note that all of them
are quantities per unit volume. The transformation relations for these variables (8)—(11) are essential to the
following derivations. Their fundamental significance lies in the correlation of these field variables and the
Lagrangian variables.

In order to produce the noncanonical Poisson bracket in the Eulerian description, use the chain rule of dif-
ferentiation and arrive at

5_F_/ OF 5p(x,t)+ OF  Suj(x,t) OF o5 OF 0Cxs &
7 Jor \Op(X,0) 02,(X. 1) ous(x,1) 07,(X,1) | 05 0z,  0Cx Oz, )

(12)

for the functional F= F[p,u,s, C fg, (p,u,s, C d®x, where z, stands for X, or i,. Notably, when the func-
tional F is expressed in terms of the integration of its field density f over the space Q, the Volterra functional
derivative 6F/dp is referred to as 9ffdp — V - (0f/0(Vp)). Now insert (12) into (5) and form

=, [ (es s o X S P [ LCWRIC
/, /, (5s (x,1) 5uj z,1) 5sfo7;) 5:(1; t)) {s(x,1),u;(z,t)},d’zd’x
/g/ /g/ Suy (X, 1) (314] z z){ ue(x,1),u;(z, 1)}, d*zd’x,

oG oG oF . Y
Cu(x,1), u(z,1)},d’zd
/, /’ <5CU X t 5uk(z t) 5C1J(X t) 5uk(Z t)>{ U(X ) uk(z )}L zd ' x

G 3_43
/, / 5CU (x,1) 6Cxs(z, t){ Cu(x,1), Cra(z,1)}, d’zd’x (13)

where the subscript “E” in the Poisson Bracket indicates the Eulerian description and z is the spatial coordi-
nate, playing the same role as x. To find the five Poisson brackets {e,e}; in (13), the functional derivatives of
p(x,1), u(x, 1), s(x, 1) and C(x, ) with respect to X(X, #) and u(X, ¢), which can be derived from the transforma-
tion relations (8)—(11), are required:

S = po(X) R, él’f,&’,) 0,

iy =X UL g = o

R = X )RR, R = 0,0 KX 1) =X, (14)
—H p<X>CKL%i”<‘ 3= st (o(X)0°[x —x] £,

Thus

{p(x,1), u)(z,0)}, = plz,1) L,
{ue(x,0),1(2,0)}, = (2 0) Ly (x,0) T
{s(x,1),u,(z,1)}, = s(z, I)M, {Cu(x,), Cxu(z,1)}, =0, (15)
{Crr(x, ), ue(2,1)},
= G, )2~ 2 (p(z, 00— ¥ (& 4 S &),

Substituting (15) into (13) yields {F, G}, = {F, G}, + {F,G}; + {F, G}y + {F, G}g, where
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“”hnéf@p>Mfo&$o%§QW”%%J&&
-/, (-5(92—5),%(5( ?Z) )d 19
{F,G}}:/Q/ (—i—f(sg—g)-f' 5% ) (17)
(o (w0) 22 (s 5—)) 19
= (-2 (6032) 02 (59) o+ 2 (e )

5CKL 5uk 5C](L KL 5uk N
0G [ OF
—p——— | — | Crepxix +xexx d’x, 19
p5CKL <5uk)‘1< kLXK kK 1,L)> ( )

where the subscript ““;” stands for 0/0x;. Rearranging Eqs.(16)—(19) produces the final expression of the gen-
eralized Poisson bracket in Eulerian description

(.G} _/ OF (3G \ |, 9G (oF OF (3G \ |, 9G (oF
= oy \ o0 \ow” ), T \ouw”) T s \ouw ™) Suc \ou, ™) |
OF (3G +5G OF \ _ OF (3G
T \ou,” ), e \ou,” )T 6Ck \ow, )

oG 5F . oF [(0G
+——— Cx | +p——) Corrxix +xexxis)
J !

0Cxk \Ou; 0Cxy, \Ouk
0G [ OF
—p 5@[@ (5—’/%) J(xux;‘,( + xk_’le"L)> d3x. (20)

Obviously, this noncanonical Poisson bracket has the properties of bilinearity and antisymmetricity. Choosing
the Hamiltonian functional H [p,u,s,C] in the form of the composition of the kinetic energy |u2|/2p and the
internal energy &(p, s, C) as

o u(x, 1)’ > 3
Hip,u,s,€] = /Q <2p(x,t) +e(px1).s(x.0).€(x.0) ) ', (21)
then the independence of 6F/dp, 6F/du, 5F/ds, and SF/5C in the evolution equation of the system
dr
— =A{F,H
df { ’ }E
leads to the evolution equations for the dynamical state variables of an elastic solid:
op oH
v =-(500) =-n, 22)
J J
au,
o —(pvevi) . + Thiks (23)
t
Os
Fri _(Ujs),ja (24)
aC .
K —(0kChke) y + PV (XkLX1 K + Xk KX1L), (25)

ot
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in which Cauchy stress tensor 7; are defined as

Oe
Ty o= —p5k,- +p—= (szkaK + xIZka,L)v (26)
0Cky,
with the pressure
O¢ Og . O¢
=— — 45—+ Cxp——. 27
p s—i—pap—i—sas-i- KL@CKL ( )

Eqgs. (22)—(24) are standard forms for the equations of mass, linear momentum, and entropy, respectively. Eq.
(25) is the evolution equation for the state variable Cx; and it can be checked by taking the material time
derivative of the deformation gradient 0x,;/0X.

Note that standard continuum mechanics usually adopts the internal energy per unit mass, denoted by
Y, rather than the internal energy per unit volume ¢. The energy i for an elastic solid is usually a function
of the set (5, C), where y = s/p is the entropy per unit mass. If we set &(p,s, C) = py(5,C), then it is easy
to find

0 Oy Oe Y

— and

¢ O O O .. Oy
os on’ oCc  oC’

P&*S S&— KL@-

= (28)
Eq. (28)% implies that the pressure p in Eq. (27) is equal to zero and the Cauchy stress will purely come from
the deformation tensor C.

With the above evolution equations for the state variables, the internal energy equation can be determined
by taking the time derivative of the internal energy density, ¢(x, ¢) = &(p(x, ), s(x, ), C(x,?)), at a fixed spatial
position,

% 0Edp OEds O 0Ck

— = _ 2

Ot O0p Ot 0sOt QJCy Ot (29)
Inserting the evolution Egs. (22), (24), and (25) into Eq. (29) generates

O

Pl —(evk)_’k + Tk (30)

4. Poisson bracket for a micromorphic solid

In the microcontinuum field theory (Eringen, 1999; Chen et al., 2004; Lee et al., 2004), the kinematics of a
volume element can be divided into two parts. The first part is the motion of a macroelement, described by the
macromotion X — x = X(X, #), where x and X are the position vectors of the center of mass for the macroel-
ement in the current and reference configurations. A macroelement is comprised of many microelements. The
relative position vector of a microelement to the center of mass of the macroelement is represented by the vec-
tor £ in the current configuration, or its counterpart Z in the reference configuration. The second part of kine-
matics is associated with the motion of the microelements, characterized by the micromotion
E — &=¢(X,E,t). The two motions are mathematically expressed by the deformation gradient F and the
deformable directors y, which are

dx =F-dX, &=y E (31)
Note that both the deformation gradient and the deformable directors are two-point tensors, and their in-
verses are denoted by V,X and X, i.e., F ,’0: = Xk, and X;_(kl = X. The two motions allow the definition of
the following three independent strain tensors as

YA‘KL = pXk Xrk, éKL = Pk kL fKLM = pX &k Lir s (32)

where Y, C, and I are the deformation density tensor, the microdeformation density tensor, and the wryness
density tensor, respectively. These variables are also the density counterparts for the deformation tensor Y, the
microdeformation tensor C, and the wryness tensor I'.
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A complete description of the motion of a micromorphic solid in the Hamilton’s approach should include
these strain measures as the state variables in addition to the mass density p, the momentum density u, the
entropy density s, the microinertia density i, and the micromomentum density m. The latter two densities
are given as

p/(xaéa t)ékéldl);m (33)

iy = piy =

1
Av

R 1 V ’ 2 ’
Mg = pmyg = Av / p'(x, & 1)&&du, G34)
AB,

where i and m are the microinertia tensor and the micromomentum tensor. The microgyration tensor v is re-
lated to the material time rate of the vector £ through the relation

& = vl (35)

In Egs. (33) and (34), AB, is the macroelement at position x with volume Av. The macroelement is composed
of many microelements, distinguished by vector &, with volume elements dv, and mass density 0.

The set of state variables for a micromorphic solid is now represented by (p,u,s,i,m, Y,C, F) and the
Lagrangian-to-Eulerian transformation relations for this set can be written as

p(x,1) = Jo po(X)&° [X(X, 1) — x]d’X,

u(x,7) = Jou( Xtmxx)—xwx

(x, 1) b%()[(xn—ﬂ3x 36)
i(X,0) = [o( g, SoX E)E @ EAVY ) py (X, )0 [X(X, 1) — x]d’X,

m(x, 1) = [ fABXfO E)¢ @ p-dVy )53[ (X, ) — x]d’x,

N

[=n

and
Y(x,0) = [o po(X)Y (X, )5 [X(X, 2) — x]d*X,
C(x,1) = [ po(X)C(X, 1) [X(X,#) — x]d°X, (37)
(x,1) = Jo poX)T(X, )5 [x(X, 1) — x]d*X,

-

where ® denotes the tensor product In the sets of Eqgs. (36) and (37), ABy, AV, dV'’,, and pj, are the counter-
parts of AB,, dv, Av, and p in the reference configuration, respectively. Moreover, f; and /' are defined as
P4/ oAV and p /pAv and they are satisfied by the relation of the mass conservation for a microelement:

! /o L/ / — ,0() / — / i
fldv, = <pAv) dv, <p0AV>dVX SodV,. (38)

Eq. (3) shows the generalized equation of motion for an arbitrary functional F in the Poisson bracket formu-
lation. Consider the expression of the Poisson bracket for a multi-particle system. In the center-of-mass coor-
dinate system, the Poisson bracket of this system can be shown to be

OF 0G ©OoF 0G N /O0F 3G OF oG
F - - _ — . - .
{F. oL <6rc op, Op. ar) + ; (asm op®  op@ asu))

N m@ oF oG OF N o™ G
+<<;;ﬂ4@w” or, or. Z;ﬁféﬁﬁ ! (39)

where M is the total mass of the system, r. and p, are the position and the momentum of the center of mass,
and s and p' represent the position and momentum of particle « relative to the center of mass. Analogous
to the Poisson bracket in (39), the Poisson bracket for a microcontinuum is proposed to be




7722 K.-C. Chen | International Journal of Solids and Structures 44 (2007) 7715-7730

OF 0G OF oG 3y
F = [ [=.=_= .=
{F,GL /Q(éx ou  du 5x>d
Ny (L 6G)dyfdaX
ABy fo £1(X,E)(AV,)? \O& 0p°  op° o

OF 0G OF G
e e e dV’d 40
+/Q/ABX AV <6ﬁ< oX  0X Op é) (40)

Here p(= py€) is the micromomentum density. This bracket contains the information of the Volterra func-
tional derivatives, which can be generated from

SF [ (SF dp  OF du; OF ds  OF Siy _ OF diny _ OF Yy OF 0Cu | OF T\
— — — t =t - = —+— —+— — d'x,
(32,, 5,0 5zn 5u/ 0z, 08 0z, iy 0z, Omy 0z, 6Yy, 0Zn  OCxs 9Zn Ok 9Zn

(41)
where z, stands for one of the components in the set (x,, % Uy €y p:). In Eq. (41), the eight derivatives dp/dz,,

ou;/0z,, 0s/0z,, Olxt | 62, Oty OZ, 5YKL/5Z,1, 5CKL/5Z,,, and 5FKLM/5Z are determined from the Lagrangian-to-
Eulerian transformation relations for the eight state variables in Egs. (36) and (37):

0 A5 (x—x)  p Sp Sp
Nax, =X, — =0 52=0 5:=0 )
( ){(m S 5&, 0 ops (42)
ou(x1) _ 5 20 [X(X1)—x] Suy __
any) o = BTG5 =0 (43)
Ry = PR = Xd,, =0,
ds 0} (X —x)  ds Ss Ss
(IH){&_C” - SO(X) T; o, =0, S5, =0, 5—}_7; =0, (44)

B3

&
s

=

i (45)

T 35’ (x=x) ; iy _ Sy __
X _p(X) % lkl(X t) 7—j_07
(Iv) ne o
= po(X)0* (X — X) (31 + OuC) foAV Y,

=g |

(3mk1 ( )mk[(x f) % — 0’ (46)
G = 53 (X - x)aknplfow;, M = 5 (X — X)&OnfiAV Y,
()(}x[,iL - pO 6(5)(7 )Y L(X7 t) aX, p05 (X - X) (a);‘nkf)a (47)
6 = (% — Xy, S =,
3 (x—x - 5C 50
(VID) = p (X Clxn), = =0, (48)
ofg'? Eu = poo (X — X) (Lux OnOrrt + Yz OnOkrr ),
ok 30% (x— km — Olkm
st = po(X) =% FKLM(X 1), S — SKM — (),
(vind oo o (49)

OI;IZLW E = =00 (X = X) 1y Xkn X — 50 (090 (X = X) XaO1r).

Inserting the relations (42) to (49) into Eq. (41), and then substituting Eq. (41) into the Poisson bracket (40)
easily produces the noncanonical Poisson bracket for a micromorphic elastic solid
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T Y O . . .
R Qo op pé“j J 5“} 5uk ds Sé“j J 5;1(1 lkléu./' J

OF (. OH OF OH . 5F OoH . OF OH
— < M
5mk1 511_,‘

oF (.. OH oF (O0H (3F oH
S (Y ) + = (_> ka,KXLj px/KXLk

o sa WA s T s My
Sty 0Ny Oty 0Nty Ony O

oYk 5”1 O g, \Ou; k 5YKL O
L OF OF oOH o . )+ 5_F ( oH ) Yoy s
5Cas S P\Wie ik T Xik XiL ST cpny \ ity ,mP KXk XmM
oF (. OH OF (. OH
—— (CKL > _—— <FKLM > — (F < H) d3x, (50)
0Ck; ou; ; Ok ou; J
where (F <= H) represents the above corresponding terms with the interchange of F' and H. Since
dr
—=1{F,H
d[ { ’ }E

B / OF 0p | OF du; OF ds  OF diy | OF iy , OF Yy | OF Cx , OF Olxuy &
“ Jo\Op o Tou; ot " 5s 0t sy O iy Of | oV O 00 O | ofgy O )

the independence of the eight state variables yields the following eight evolution equations:

op OH
“r_ - 2
i (p 5%_) I (52)

Ou; ( oH N e OH ) <5H> (5H> <5H> . <5H> R <5H>
— = —pl— —u —sl—] —iul=—] —m -
ot 5 PRKL 5TKL & P 5p g Oy, os J M Ol J M Oy J
. o0H . oH . OH
YKL< = > CKL< = ) FKLM(‘A ) ; (53)
0/ 6Cki/ ; olkm/
Os 0 H
—s—— 54
or < 5u,> ’ (54
61 OH oH
hal e (lkl 5uj> lllék/ + lkz5z/) oy (55)
am"’ ( —+ Xi X 5H> +<fn 5H>—(rh (SH)— i, 45 o
S ol kin/ 7 i Y iy Yoi, Y iy
5H
+ ——prpx X + 56
5Y P kKLl — 5CKL Ptk + Xax xe) (56)
M (< OH OH OH
o <YKL 5_14/> ; + (5—%> ﬁkpxk,KXLj Sty ~— Xk X1k, (57)
Ca [, OH OH
o —< KL 5_u,> ; + mﬂ(lu%m + Laxc i) (58)
M (o OH oH
o (FKLM 5—%> ; + <5ﬁ1k1) YmPXKHCkam,M- (59)

The explicit forms of all of the eight evolution equations are determined by the Hamiltonian H. For a micro-
morphic solid, it is appropriate to assume that H is composed of kinetic energy and internal energy. The
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expression of kinetic energy is clearly established, and it includes the kinetic energy of the center of mass and
the kinetic energy relative to the center of mass. Internal energy is usually denoted by fQ, ed’x, where ¢ is the
internal energy density and can be assumed to be a function of mass density p, entropy density s, and the three
strain densities: YKL, CKL, and Cy;. Hence, from

1 1 A N .
hd’x = / (5 POV + Epiklvmkvml +&(p, s, iz, Cke, rKLM))d3x
Q/ /

U, 1,
= /Q, < ;pk 2 pq mpkmqk + (c(p7S YKL, CKL7 FKLM)>d3X, (60)
it follows that
% - 72uflfk Jr 66 % =% %{ - % :3):1; 2l ml”mtﬂ pkl qll’ 61
OH —_ (ZH — ?s (EH — :ds fﬁH — A@s ( )
Oy Ik g, oYk’ 0Ck  OCky’ ok gam *
Substituting the set (61) into Eqgs. (52) to (56) results in
dp
r__ , 62
dr PUrk (62)
dl)k
- = 63
1Y dr Tik,s ( )
ds
= _ 64
dz SUk iy ( )
di . .
d_];] = ligVij + ijVig, (65)
PO = Vit Tkl — Skis (66)

where stress tensor t;;, microstress tensor sy;, couple stress tensor Vjiks and spin inertia per unit mass ag;; are
defined and written as

Oe
Th = —pop + P —— T Xk kXL, (67)
Oe
Spp =2 , 68
K =L = aCKL LiLXik (68)
D = P X (69)
/jlk . pala,KLM MUK kL
. - i a’/h A~ i
POk = Vimlmk + Vi Vonlnk = FH + (Ujmkl)j — VimlmnVin, (70)
with the pressure
O¢ Oe Oe Oe . Oe
=—e+p—+s—+17 ~ +C +TI - . 71
4 P op i T K S KL o KLM S (71)

In the same manner as the previous section, let the energy per unit mass ¢ be a function of the set
(1’]7 Y[(L, C[(L, FKLM) and assume that plp(ﬂ, Y](L, C](L, FKLM) = 8(p,S7 Y](L, C](L, FKLM), then it is casy to find

% __ Oy % _ Oy % _ Oy % _ _OY

s~ o’ Yk RV oCk1. Cyy ? Ol kru RV

e — ) — _o

Wl A e ¥ ’7 — Y 55 61 XL — Crr g ac — Dkon kv (72)
Ykr.CxeoUkim

_ o 0e - Qe _ % __ f‘ Qe
(8 S o KL 5Yxt KL 3¢k, KLM 6FKLM) ’

The last relation in (72) shows from Eq. (71) that pressure p should be equal to zero. Hence, the four evolution
equations (62) to (66) will be reduced to the sourceless balance equations of mass, linear momentum, micro-
inertia, and momentum moment in the field theory of micromorphic elastic solids (Eringen, 1999).
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Moreover, because of the relations in (72), the last three evolution equations (57) to (59) can be written as

oY .

a;{L = —(Yxevy) ; + pUjuXiex Xy — pyigxjx Xk, (73)
aC A

afL = —(Cxev)) ; + Vi (Laa Lk + T i)+ (74)
ar .

aKtLM = —(Tkenv)) ; + 0Vikem X k1 Yor Xom (75)

which are exactly the same as those obtained by taking the material time derivatives of the three strain den-
sities YKL» éKL, and fKLM in (32)

The field equation for the internal energy density can also be determined by taking its partial time deriv-
ative, &(x, 1) = &(p(x, 1), Yxr (X, 1), Cxr (X, 1), Txiar (X, 1)),

d¢ 08 dp 08 OYy 08 0Cx , 0F Olkw

—=— - = - 76

0t Op Ot QdYy, Ot  9Cx Ot  Ol'gy, Of (76)
Inserting the evolution Egs. (52), (57), (58), and (59) into Eq. (76) gives

Oe

= () T (0 = Vi) + Su e+ P Vi (77)

5. State variable selection for LE transformation

The previous two sections show that for nondissipative systems, the evolution of the state variables can be
determined purely by the LE transformation while the suitable state variables of the system have been selected.
The number of state variables amounts to the number of evolution equations for a system. However, the
choice of the state variables is not unique and could depend on the perception of the system. This section dis-
cusses three types of state variables: the Cauchy deformation tensor ¢, the gradient of deformation tensor
Fjx, and the internal energy density .

5.1. Other elastic strain measures

The Green deformation tensor Cjy; is not the only variable to describe the elastic deformation of an elastic
solid discussed in Section 3. The Cauchy deformation tensor ¢; = (0Xx/0x;)(0Xx/0x;) could replace the Green
deformation tensor as a suitable strain measure. If the density é;(= pc;;) is the state variable for an elastic
solid, then the Poisson bracket associated with ¢;; can be derived by performing the same manipulation used

in previous sections:
LR (, 06\ 06 (, OF\ O (0G\ , 9G (9F) . oF (G
5&” U(Suk N 56’11 l'/éuk & jkéél‘j (SMA K '/kéél'j 5uk i lké&[j 5uk J

(ro- |

_|_A 5£ 5i
Clkéeii 5uk J

The full Poisson bracket should be the sum of {F, G}/ in (16), {F, G}}. in (17), {F,G}% in (18), and {F, G} in
(78). If the Hamiltonian functional H[p,u,s,¢] is expressed as

d’x. (78)

Hlpusd = [ (%* oo (1) 5(%, 1), (x, r)))dsx, (79)

with internal energy &(p, s, ¢), then accounting for the equation dF/th: {F, H} ¢ reveals the evolution equa-
tions, which resemble those in Section 3 except that the equation for Cy; is replaced by
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0¢;; . . .
3 t’ = —(n¢y) 4 — (riChj + vk Cii), (80)
and Cauchy stress tensor t;; are defined by
O¢ 68 O¢ . 0O¢
Ty = (e - p$ PR — &y % >5k, (cjk aq}) (81)

In addition to the aforementioned two strain measures, CKL and c;;, other strain versions can describe the

deformatlon of a material body: the Piola strain tensor C, = (6)( x/x;)(0X/0x;), the Finger strain tensor

= (Ox;/0Xx)(0x;/0Xk), the Lagrangian strain tensor Ey;, = (CKL — 0gz), the Eulerian strain tensor

e,-/- = %(5,—, —¢y), etc. These strains are all clearly expressed in terms of the deformation gradient Figx and,
hence, the constructions of the LE transformation relations for these strains are straightforward.

5.2. Higher strain gradient tensor

Poisson bracket formalism can be generalized to the case of a second-gradient theory (Mindlin, 1964; For-
est and Sievert, 2006) where the higher gradient of strain is incorporated into the set of state variables. Assume
that the whole set of variables is (p, u, s, F T F K )» With F.and Fx being the densities of the deformation gra-
dient and the second-gradient of the deformation gradient. The LE transformation relations for the two vari-
ables are given as

Fulx.t) = p = [ puX)Fu(x(X. 0,05 K(X.0) - XX, (52)
Fux(x,1) = p a}g;{}( / po(X)Fux (X(X, 1), 1)°[R(X, 1) — x]d’°X, (83)

which lead to

s = po X0y G — o (Bup(X)8[x = X)),

W 3%, (X,0)

iJK (X, 00°[X—x 3r—
og;c:’((xt[ = po(X)Fuk al,,[x[} +:5 ax, axK (8:po(X)O°[X — X]).

(84)

After applying the same procedure used in the previous sections, the Poisson bracket for this case should be
expressed as

{F,G}y = {F,GYp + {F.G}; + {F,G}; + {F.G}p, (85)
where the first, second, and third brackets on the right hand side have been defined in Eqgs. (16)—(18), and the

last one is
oF (. oG oG (. OF . OF [0G
F,GF:/ —T(F,- ) +— (F,«—) +F —( )
{ }E Q 5F,'_] Jé (SF,_] Jéuk N kJéFL] 5”[ k

. 0G [OF oF (. oG oG (. OF
_F‘kjT < T FzJK +A— FiJK_
5F[] 5ui & 5F[JK 5”/( 5F,'_]K 5”1{ k

OF . [0G 0G . [(OF
+—F ———Fu | —x; d’x. 86
OF * (5”1 ) g OFiyk * (5“1' xj‘J> .,,/‘k‘| ’ )

On account of the equation dF/dt = {F, H} ; and the functional expression for the Hamiltonian functional H,

~ ~ U;U; ~
Hlp,u;,s,Fi, Fix] = / (g +e(p,s, Fi, zJK))d X, (87)
Q/
with the internal energy (p, s, Fy, F'yx ), the independence of the five quantities, 5F/5p, OF/du;, OF/ds, OF |OF,
and 0F/ OF ik, generates the evolution equations for the state variables (p, u;, s, F, 7, Fim). The first three equa-

tions are identical to Egs. (22)—(24), whereas, Cauchy stress tensor t;; should be changed to
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( G (G p, 0 g O 8)5 + % p ( 0z F) (88)
T = — S=2 i i - i T iy~ = i .
k Pap T T ok, T R Y oEy Y R V)«

The second part of the stress tensor is related to the first Piola-Kirchhoff tensor and the third part can be con-
sidered the Piola-Kirchhoff hyperstress. Moreover, the evolution equations for the variables (F; J7F k) are
written as

oFy

P _(UkFiJ)Jc +ﬁkJUi,ka (89)
aF, “
a;K (UszJK) + Fic (0ix7) i (90)

which are exactly the forms obtained by taking the material time derivatives of F,; and F .

5.3. Nonconservative state variable

Not all state variables share the LE transformation relations as thosediscussed above. Section 3 uses an
elastic solid as an example. The internal energy density ¢ is not conserved along with the motion of a material
element, even in an isentropic process. However, the Poisson bracket for the system, in which the nonconser-
vative quantity is introduced as a state variable, can be constructed by the direct mappings (Edwards and
Beris, 1998)

| _oF | | ) _oF

ouf, & ou p,s,é’ 05 |, ué e pucés 0t |, ¢
S| oF & o) ok o &
5p su,C 5p &u,C ¢ p,u,Cap s,C’ (Sé pus 56 P ¢ p‘u,C5C p,s’

which transform the Poisson bracket with variable (p,u, s, C) and functional F' = F'[p,u,s, C] into a Poisson
bracket with variable (p,u, ¢, C) and functional F= F [p,u e, CJ.

The LE transformation can also be used to construct a Poisson bracket for an elastic solid with the state
variables (p, u, &, C) For the arbitrary functionals F[p, u, 876] and G[p,u,&é],

OF OF dp OF du; OF de  OF 3Ck ) 3
= — — — A d 91
5 / (5,) 5z, ou; 0z, | ¢ 07y oG, Oa ) * Oy
in which z, stands for X, or #,. Inserting (91) into (5) yields the Poisson bracket as
{F,GY; = {F,G}Y; + {F.G}; + {F.G}; + {F,G};. (92)

The first three brackets are described in Section 3 and the final bracket is

oG oG oF 3_13
/, / <5 o(x,1) ouy(z,1)  0e(x, 1) 5u_,-(z,t)>{8(x’t)’uj(z’ Ohdzdx 3)

The energy of a material element is not conserved with the movement of the element. Hence, the LE transfor-
mation relation for the energy density does not exist, impeding calculation for {e(x,?),ufz,t)} ;. However, the
reversible processes can indirectly produce de/dx, and de/du, by transforming the energy density ¢ to the en-
tropy density s through the equilibrium relations s = 3(¢, p, C), which implies

os _%50e & dp & 9Cy os % oe B p & 0Ca
0%, 0edx, Opdx, 0Cy ©Ox%, ' ou, ¢ i, Op S, 0OCy Oty

In view of ds/0%,, 0p/0%,, 0Cx, /0%, Os/t,, Op/du,, and 6Cx; /Ow, in (14), it can be shown that
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de 1 05 35 X — x
= T A AN ((So — = Po— —PoCKL) g

ox, (05/0¢) dp 0Cx1 ox,
O 0
t—— ——(po(Fn 1Oxrr + XnxOrar )0 [X — X ) 94
o aXM(pO(x‘L ko + Xk Orar) 0" | 1) (94)
L (b S i), 55
ou, (05/0¢) \ou, Op ou, 9Cy, Oy

Using the following calculation of

{8(X7 t)auj(z7t)}1, _/g; (5_3@, 5_12,’ - 5_)?” 5_1/{’1)(1 X

1 %5 5 . 06°[z — X]
= Z’t —_ Z,t — = C Z,t I —
@/e9) K( S o )) o,

os
o0l =X Pl + zmA,sz,K»} 7

the fourth bracket {F, G}} in Eq. (92) can be derived in the form of

/ L oFf (oG [ &5 (0G \ | & (3G
o \(@5/0) e\ \ow" ), " op\ou,”) 0l \ou, )

05 (5G

- — X1 kXL FX11X —(F < G) |dx. 96
s, 5uk>JP( 1. KXk L I.L k,K)) ( )) ( )

Now let the Hamiltonian functional H be
Uil
Hlp,u;, e :/ <#+s>d3x, 97
o= [ (%5 57)

where the internal energy density ¢ is treated as a state variable such that the functional H is not explicitly
dependent on the variable Cg;. Substituting the final expression of the Poisson bracket into the equation
dF/dt = {F, H}  produces the evolution equations for (p,u;, &, Cgy):

dp OH
or _<$p> = —(wp),, %)
TN
au,-
ot = *(pvjvi),j + Thik (99)
de  (05\ '/ O R 05
PP (g) (@ ((0,Cxe) j — pori(xixxes + XXk k) — (0;8) ; + % (Ujp),j>7 (100)
aCKL P
oa —(UkCKL)J( + pUk s (X2 Xk + XexXiL), (101)
while stress tensor ty; are
s 0%5/0p ., 05/0Ck, 05/0Cx,
o _ _ _ o . Y 102
T <a§/as Pasjoe O o5 o 8) N o P kK T Xkatis) (102)

Egs. (98), (99), and (101) are the same as Egs. (22), (23), and (25), and Eq. (100) can be further simplified with
the help of the proposition of the relation s =3(¢, p,C). The substitution of the spatial differentiation
s; = p,;(05/0p) + ¢,(05/0¢) + (C‘KL)J(G'&/@C’KL) into Eq. (100) and the definitions of pressure and stress tensor
in Eq. (102) lead to
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- %5/0p . 05/0C 05/0C
> 5/0p C i KL) - 5/0Ck, PV (X 1 X1k + X gXiL), (103)

&
o WUt <a§/ag+p %/06 T X o5/00 %5/0¢

which is identical to the internal energy equation (30).

The reason why Poisson bracket (92), characterizing the kinematics for an elastic solid with state variables
(p,u,¢, C), can be established in this way is founded on the existence of the relation s = 5(p, ¢, C) This relation
is valid only under the local equilibrium hypothesis (cf. Edwards and Beris, 1998; Beris, 2001).

6. Summary and conclusions

This paper discusses the construction of noncanonical Poisson brackets for elastic solids and micromorphic
elastic solids using the LE transformation method. Lagrangian canonical variables and Eulerian state vari-
ables are correlated by the Dirac delta function, and noncanonical Poisson brackets are obtained directly from
the corresponding canonical brackets. The mass density, momentum density, entropy density, and the Green
deformation density tensor are the state variables for elastic solids. The mass density, momentum density,
entropy density, the deformation density tensor, the microdeformation density tensor, and the wryness density
tensor are the state variables for micromorphic elastic solids. Specifying the Hamiltonian functionals in the
Poisson brackets and considering the independence of the states variables allow the construction of the evo-
lution equations for these variables.

Elastic solids use different kinds of elastic strain tensors, such as the Green deformation tensor, the Cauchy
deformation tensor, and the higher-order deformation tensor, as strain variables in the Poisson bracket for-
malism. A common feature of these variables is that they are all composed of the deformation gradient.
For micromorphic solids, the deformable directors and the deformation gradient constitute the basic units
of the three elastic strain density measures. The evolution equations for these strain measures can be checked
by taking the material time derivatives of these strains.

Furthermore, this paper discusses variable transformation technique, taking into account a nonconserva-
tive state variable. This paper also reconsiders elastic solids, in which the internal density ¢ in the set of the
state variables (p, u, ¢, C) is not conserved with the motion of material element. Employing the variable trans-
formation, the functional derivatives associated with ¢ can be transformed into those with the conserved quan-
tities p, s, and C.

There are generally two approaches in standard continuum mechanics to finding the evolution of a system. The
first approach is to give the balance equations, and the constitutive equations are followed by the thermodynam-
ical theory (cf. Muschik et al., 2001). The boundary conditions in this approach can be obtained by applying the
global-form balance equations to the boundary surface. The second approach is the presentation of a variational
principle such as the method of virtual power (Germain, 1973; Maugin, 1980). Using the variational approach,
the balance equations and boundary conditions can be simultaneously obtained in a single energy equation. In
this paper, we adopt Hamilton’s method as a third alternative. The benefit of Poisson bracket formalism is that
the conservative part of a system’s evolution can be obtained from a single equation, dF/ds = {F, H}, as soon as
the Poisson bracket and the Hamiltonian functional H are given. However, it should be noted that there are two
differences between the method of noncanonical Poisson bracket and the other two methods. The first difference
is that boundary conditions cannot be directly generated by this formalism. This is because all of the noncanon-
ical Poisson brackets originate from their discrete counterparts, which are devised to formulate the evolution
equations of a system. The second difference is that the method of noncanonical Poisson bracket mixes balance
and constitutive equations. This is in contrast to the Coleman-Noll continuum thermomechanics approach for
which constitutive functions are introduced after the formulation of the balance equations. The second difference
is due to the fact that the method of noncanonical Poisson bracket first selects the state variables and then intro-
duces the other quantities through constitutive relations. In the case of an elastic solid, the state variables are the
mass density p, momentum density u, entropy density s, and strain measure C. The Hamiltonian helps to deter-
mine the velocity v, pressure p, and stress tensor .

This study makes it clear that the conservative part of the evolution of a system is associated with the
motion of the system and the Poisson brackets of the continuous elastic systems — elastic solids, microcontin-
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uum solids, and higher gradient continuum can be constructed with the help of LE transformation. As for the
dissipative part of a system, which is beyond the scope of this study, the specific material property should be
introduced to construct the dissipative bracket.
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