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In response to the preceding Comment, we present the intermediate steps skipped in our mathematical
derivation of the Keldysh integral using the residue integration method in the complex domain. We describe in
detail the pole structures and the closed contour for performing the residue calculation. We analyze and discuss
the implications of the analytic formula together with representative numerical calculations. The present analy-
sis completes and validates our mathematical analysis of the Keldysh integral.
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With the availability of intense lasers of high repetition
rate, there have been considerable activities in the study of
the nonlinear response of atoms and molecules subjected to
strong electromagnetic radiation �1�. Nonperturbative theo-
retical studies based on the strong field approximation have
been traditionally employed to understand the fundamental
multiphoton processes involved in the matter-radiation inter-
actions. Among them Keldysh theory �2� plays an important
role and is still being used to interpret many experimental
observations. Keldysh has derived an analytical expression
for the photoionization rate of a hydrogen atom in the lin-
early polarized strong laser field using the length gauge �2�.
Faisal and also Reiss have introduced the S-matrix formalism
using the velocity gauge �3�. In particular Reiss has devel-
oped an efficient method to calculate the ionization rate us-
ing generalized Bessel functions �3�. A generalized strong
field approximation using semiclassical complex saddle
point methods has also been employed to study the
tunneling-rescattering processes such as high harmonic gen-
eration �HHG� �4� and above-threshold ionization �ATI� �5�.
Recently, generalizations of Keldysh theory beyond the
original range of applicability have been proposed �6–8�.

In this Reply to the preceding Comment �9� we complete
our derivation of Keldysh’s integral using the residue inte-
gration method by explicitly showing the closed contour and
the pole structure. Keldysh’s original theory �2� adopted the
length gauge, and the ionized electron is described by the
Volkov wave function. The photoionization rate W0 of the
electron in the ground state of a hydrogen atom in the pres-

ence of a linearly polarized strong laser field F� cos �t is
given by

W0 =
2�

�
�

n���I0+Up�/�����
� d3p

�2���3 �L�p���2

��� p2

2me
+ I0 + U − n��	 , �1�

where I0=�2 / �2mea0
2� is the ionization potential and

U= �eF�2 / �4me�
2� is the pondermotive energy. The Keldysh

integral L�p�� is given by the integral over �=�t,

L�p�� =
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with V0�p��=K1sepF cos �pF�I0+ p2 / �2me��−3, K1s

=−32i
�a7I0
3�−1, and �=epF cos �pF / �me��, where �pF is

the angle between p� and F� , and n��= I0+U+ p2 /2me. We
compute Eq. �2� by first transforming it into a contour inte-
gral form in u=sin � domain. This transformation has to be
done with care concerning the multivalued functional rela-
tion. Following Keldysh �2�, the integral with respect to u is
taken along a closed contour enclosing the segment �−1,1�,
which forms a branch cut to make the integrand single val-
ued. For multiphoton ionizations, the integrand is highly os-
cillating and this is the theoretical background for using the
saddle point method to approximate the integral. However,
because the poles and the saddle points coincide in the
Keldysh integral, we argue that the residue integration
method should be more appropriate in dealing with the sin-
gularities. To compute Eq. �2�, we consider the contour inte-
gral

LC�p�� =
1

2�
�

C

duV0�p� +
e

�
F� u	exp� i

��
j�u�	 , �3�

where

j�u� = n��
1

i
ln�iu + �− i
u − 1
u + 1�� − ��− i
u − 1
u + 1�

− Uu�− i
u − 1
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and C stands for a contour consisting of the contours C	, C±,
L±, and CR shown in Fig. 1. In addition, j�u� stands for an
analytically continued expression of the function j�u� on C±

and is defined in the whole u plane so that the residue theo-
rem can be properly applied. By considering that the contri-
butions from C	 and L± are zero, we find that the Keldysh
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integral L�p�� in Eq. �2� can be given, in terms of LC�p�� and
LR�p��, by

L�p�� = LC�p�� − LR�p�� = �
k=+,−

LC�p� ,k� − LR�p�� , �5�

where

LC�p� ,k� = 2�i Res
u=uk

1
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��
j�u�	 �6�

and

LR�p�� =
1

2�
�
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duV0�p� +
e

�
F� u	exp� i

��
j�u�	 . �7�

The poles at u=u± in LC�p� ,k� are rank-3 poles and given by
u±= �

eF �−p cos �pF± i
2meI0+ p2sin2�pF�. We note that the
residue on the upper half plane gives the same result reported
by Mishima et al. �6�. However, the residue on the lower half
plane was not taken into account in the original Keldysh
theory �2� and that by Mishima et al. �6�. Gribakin and
Kuchiev included these two poles and dropped off the other
two poles which will not appear in u=sin � domain but ap-
pear in � domain �7,8�.

The term LC�p� ,k� in Eq. �6� is calculated as
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For the calculation of LR�p�� in Eq. �7�, we need to expand

V0
�p� + e

�F� u�exp� i
�� j�u�� in powers of u and u−1, and perform

the � integral by putting u=R exp�i��. We obtain
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where m�=m+5+n+2l+ j1+2j2, b=� / ����, and c
=U / ����. Here C�m�, al�n�, Bm��b ,c�, bj1

�b�, and cj2
�c� are

given as
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with j1�0, j2�0, b0�b�=1, and c0�c�=exp�c /2�. The details
of the derivations of these formulas will be presented subse-
quently elsewhere.

To put the above analysis in a broader perspective, we
discuss some related issues in the literature �2,6–8�. Keldysh
�2� used the saddle point method but only included
LC�p� , + �. His results are different from our results by a factor
of 2—i.e., L�p���LC�p� , + �Keldysh= 1

2LC�p� , + �. This is due to
the fact that the saddle point method is an approximated
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FIG. 1. Contour integral for L�p�� in the u domain is depicted.

The poles of V0�p� + e
�F� u� lie at u=u± and there is a branch cut

between −1�u�1 on the real axis.
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FIG. 2. Photoionization rates for the 1s hydrogen atom with the
wavelength �=248 nm are plotted. The solid line stands for
W0(LC�p��−LR�p��), the dashed line only includes the contribution
from the pole u=u+—i.e., W0(LC�p� , + �)—and the dotted line in-
cludes the contributions from two poles u=u±—i.e., W0(LC�p��).
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method while the residue theorem is the exact calculation.
However, we note that if we take into account the contribu-
tion from LR�p��, this accidental relation L�p��� 1

2LC�p�� will
not in general hold. Mishima et al. �6� adopted the residue
theorem and obtained LC�p� , + �, but they did not include
LC�p� ,−� and LR�p��. Gribakin and Kuchiev �7� adopted the
saddle point method and included LC�p� , + � and LC�p� ,−�.
Similar to Keldysh’s results, their results are also different
from ours by a factor of 2. Recently, Chao �8� has pointed
out that for states of general molecular systems other than
the 1s hydrogenic state, the results obtained using the saddle
point method and the residue integration method are qualita-
tively different.

It is instructive to compute Eqs. �8� and �9� numerically
and compare the photoionization rates W0 in Eq. �1� with and
without LC�p� ,−� and LR�p��. We define W0 for three cases:
i.e., L�p��=LC�p� , + �, L�p��=LC�p� , + �+LC�p� ,−�=LC�p��, and
L�p��=LC�p��−LR�p�� as W0(LC�p� , + �), W0(LC�p��), and
W0(LC�p��−LR�p��), respectively, and plot them in Fig. 2
where the wavelength �=248 nm is used. One can easily see

that compared with the contributions from LC�p� , ± �, the con-
tribution of LR�p�� is almost negligibly small. Making a com-
parison between W0(LC�p� , + �) and W0(LC�p��), we find that
except for the intensity around 2�1014 W/cm2, the contri-
bution of LC�p� ,−� increases the photoionization rate about
twice. The main contribution results from LC�p� , + � while
LC�p� ,−� is almost the same order as LC�p� , + �. Our numerical
results suggest that even if LR�p�� is omitted, the qualitative
feature and the order of magnitudes will not change for the
1s hydrogen atom case. In other words, this fact may not be
applicable to other atomic or even molecular systems. The
contribution from LR�p�� for other atomic and molecule sys-
tems will be examined in our subsequent works. To sum up,
we believe that the present analysis completes and validates
our mathematical analysis of the Keldysh integral and re-
solves the ambiguities mentioned in the preceding Comment.
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