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We have obtained a set of coupled differential equations from the continuous limit of
the transfer matrix method. Decoupling such a set of equations yields an extension to
the Wentzel-Kramers-Brillouin (WKB) approximation for the Schrödinger equation with a
position-dependent effective mass (PDEM). In the classically allowed region, the decoupling
is to ignore the reflection resulting from the variations of both the potential and effective
mass. By considering an infinite-well example with a PDEM, it is shown that the extended
WKB approximation can provide not only an estimation of the eigenenergies, but also an
analytic form for the approximate wavefunctions.

PACS numbers: 03.65.Ge

I. INTRODUCTION

The one-dimensional Schrödinger equation with a position-dependent effective mass
(PDEM) has been introduced for many microstructures of current interest [1–4]. To un-
derstand such an equation analytically, exactly solvable examples have been discussed in
the literature [5–7]. On the other hand the transfer matrix method [8–12] is a powerful
numerical way to calculate the eigenvalues and eigenfunctions of the Schrödinger equation
with a PDEM. To perform this numerical method, the space is divided into a series of
slabs so that the effective mass and potential can be approximated as constants in a slab.
By considering the conservation of the flux, it has been suggested that we should use the
BenDaniel condition to match an eigenfunction at each boundary between two adjacent
slabs [8–10, 13]. In Ref. [1], Ou, Cao, and Shen derived a dispersion relation for the one-
dimensional Schrödinger equation with a PDEM by considering the analytic transfer matrix
method. Such a dispersion relation contains an integral term of the Wentzel-Kramers-
Brillouin (WKB) type. It is well-known that the WKB approximation [1, 14–17] provides
important classical interpretations in the developement of quantum mechanics. Hence it is
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interesting to probe the validity of the WKB approxmation after incorporating the variation
of the effective mass.

In this paper, a set of coupled differential equations is obtained by considering the
continuous limit of the transfer matrix method. Decoupling such a set of equations, the
approximate wavefunction of the analytic form

ψ(x) =

√

m∗(x)

k(x)
exp[±iS(x)/h̄] (1)

with

S(x) ≡

∫ x

k(x′)dx′ (2)

is derived in Section II when the effective mass m∗(x) depends on the position x. Here V (x)
is the potential, h̄ is the Planck constant divided by 2π, k(x) ≡

√

2m∗(x)(E − V (x))/h̄,
and E is the eigenenergy. The phase S(x) is of the same form as that in the well-known
WKB approximation except that m∗(x) is position-dependent. Therefore, we can extend
such an approximation for the one-dimensional Schrödinger equation with a PDEM from
the transfer matrix method. When the effective mass becomes constant in space, the
approximate solution given by Eq. (1) reduces to the conventional WKB-type function.
As discussed in Section III, decoupling in the classically allowed region is to ignore the
reflection due to the variations on the effective mass and/or potential. From our study,
it becomes clear how to relate the numerical solution obtained from the transfer matrix
method to the analytic WKB approximation. By considering an infinite-well example, it is
shown that the extended WKB approximation can provide not only an estimation of the
eigenenergies, but also an analytic way to understand the eigenfunctions when the effective
mass is position-dependent. The conclusion is made in Section IV.

II. TRANSFER MATRIX METHOD AND THE APPROXIMATE WAVEFUNC-

TION OF THE WKB-TYPE

When the effective mass m∗ depends on the position x, it has been shown that the
one-dimensional Schrödinger equation should be modified as [1–4]

−
d

dx

h̄2

2m∗(x)

d

dx
ψ(x) + V (x)ψ(x) = Eψ(x) . (3)

In this paper we assume that m∗(x) > 0. In addition, let m∗(x) and V (x) be analytic
functions. For convenience, in this section we only consider the classically allowed region
where

E − V (x) > 0 (4)
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at any point x. To extend the WKB approximation, the equation

d

dx

[

t(x)
r(x)

]

= Γ(x)

[

t(x)
r(x)

]

(5)

will be derived in this section by considering the continuous limit of the transfer matrix
method. Here the position-dependent matrix is

Γ(x) ≡





−ixk′(x) − m∗(x)
2k(x)

(

k(x)
m∗(x)

)′ m∗(x)
2k(x)

(

k(x)
m∗(x)

)′

e−2ixk(x)

m∗(x)
2k(x)

(

k(x)
m∗(x)

)′

e2ixk(x) ixk′(x) − m∗(x)
2k(x)

(

k(x)
m∗(x)

)′



 , (6)

where t(x) and r(x) are two complex functions. In this paper the notation f ′(x) represents
the derivative of any function f(x). With some calculation, we can see that Eq. (5) is
equivalent to Eq. (3) if we set

ψ(x) = t(x)eik(x)x + r(x)e−ik(x)x . (7)

Then approximate solutions of the WKB type are obtained by decoupling Eq. (5). There-
fore, we can relate the WKB-type solution to the transfer matrix method.

The transfer matrix method is a powerful numerical approach for solving Eq. (3) [8–
10]. To perform such a method, as shown in Fig. 1, we can divide the space into a series of
thin slabs, so that both the effective mass and potential can be approximated as constants
in each slab. For convenience, each slab is labeled by an integer j sequentially from left to
right. In the classically allowed region, the wavefunction ψ(x) in a slab can be approximated
as the linear superposition of two plane waves. Let xj be the center point of the j-th slab and
approximate the effective mass, potential, and wave number as m∗

j = m∗(xj), Vj = V (xj),
and kj = k(xj) in such a lab, respectively. Then the wave function is taken as

ψ(x) = tje
ikjx + rje

−ikjx (8)

in the j-th slab. The coefficients tj and rj are the traveling components for two different
directions. We shall consider the BenDaniel condition [13] to relate the coefficients of
adjacent slabs [18, 19]. Based on such a condition, as shown in the Appendix, the coefficients
tj+1 and rj+1 are related to tj and rj by

[

tj+1

rj+1

]

= Tj

[

tj
rj

]

(9)

with the transfer matrix

Tj =





1
2(1 +

kj

m∗

j

m∗

j+1

kj+1
)ei(kj−kj+1)yj 1

2(1 −
kj

m∗

j

m∗

j+1

kj+1
)e−i(kj+kj+1)yj

1
2 (1 −

kj

m∗

j

m∗

j+1

kj+1
)ei(kj+kj+1)yj 1

2(1 +
kj

m∗

j

m∗

j+1

kj+1
)e−i(kj−kj+1)yj



 . (10)

Here yj is the point separating the j-th and (j + 1)-th slabs, so xj+1 = (yj + yj+1)/2. It is
shown in the Appendix that we can relate the transfer matrix Tj to Γ(x) by

Tj = I + Γ(yj)∆xj + o(∆x2
j) , (11)
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FIG. 1: To perform the transfer matrix method, the space is divided into a series of slabs, in each
of which both the potential and effective mass are approximated as constants. The points xj and
xj+1 represent the centers of the j-th and (j + 1)-th slabs, and yj is the point separating these two
slabs.

with ∆xj ≡ xj+1 − xj and

I ≡

[

1 0
0 1

]

. (12)

Let ∆tj ≡ tj+1 − tj and ∆rj ≡ rj+1 − rj . From Eqs. (9) and (11), we have the following
set of equations:

1

∆xj

[

∆tj
∆rj

]

= Γ(yj)

[

txj

rxj

]

+ o(∆xj) . (13)

By shrinking the widths of the slabs so that ∆xj approaches zero, the above equation can
be reduced to Eq. (5) with the following correspondence:

[

tj
rj

]

↔

[

t(xj)
r(xj)

]

. (14)
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Thus we can obtain Eq. (5) by considering the continuous limit of the transfer matrix
method. From Eqs. (8) and (14), we can see why the wave function is determined by
Eq. (7) after obtaining r(x) and t(x).

In Eq. (5), the coefficients t(x) and r(x) are coupled to each other by the off-diagonal
terms of Γ(x). With some calculation, we can see from Eq. (11) that these terms come
from the off-diagonal terms of Tj, which correspond to the reflection due to the variations
of the potential and/or effective mass [8–10]. If we ignore the reflection by neglecting the
coupling between t(x) and r(x), we have the following decoupled equations:

d

dx
t(x) ∼

[

−ixk′(x) −
m∗(x)

2k(x)

(

k(x)

m∗(x)

)′ ]

t(x) , (15)

d

dx
r(x) ∼

[

ixk′(x) −
m∗(x)

2k(x)

(

k(x)

m∗(x)

)′ ]

r(x) . (16)

Solving the above two first-order differential equations, we have

t(x)eik(x)x ∼ c1

√

m∗(x)

k(x)
exp(iS(x)/h̄) , (17)

r(x)e−ik(x)x ∼ c2

√

m∗(x)

k(x)
exp(−iS(x)/h̄) . (18)

Here c1 and c2 are two constants. From Eq. (7), the approximate solution is of the form

ψ(x) ∼ c1

√

m∗(x)

k(x)
exp(iS(x)/h̄) + c2

√

m∗(x)

k(x)
exp(−iS(x)/h̄). (19)

We shall set c1=0 (c2=0) such that t(x)=0 (r(x)=0) for the traveling wave moving to
the right (left), and obtain the WKB-type function given by Eq. (1). Therefore, analytic
functions of the WKB-type can be related to the numerical transfer matrix method by
ignoring the reflection in the continuous limit.

III. DISCUSSION

In the last section, the approximate solution of the WKB-type is derived for the
classically allowed region by ignoring the off-diagonal terms of Γ(x) to thereby decouple
Eq. (5). With increasing eigenenergy E, this is reasonable for k(x) >> 1, because the
off-diagonal terms contain the factor e±2ik(x)x, which oscillates quickly under large k(x).
On the other hand, the diagonal terms of Γ(x) do not contain such an oscillating factor.
Hence Eq. (1) provides a good approximation for the states with high energies, as in the
conventional WKB approximation. Because the transfer matrix Tj can be related to Γ(x)
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by Eq. (11), we can expect that the numerical solution obtained by the transfer matrix
method can be reduced to the WKB-type function as k(x) >> 1.

It has been shown that a dispersion relation of the WKB-type can be used to estimate
the eigenenergies of the Schrödinger equation with a PDEM [1]. To further probe the
extension of the WKB approximation to systems with a PDEM we consider the infinite
quantum well, where

m∗(x) =
m1 −m2

2a
x+

m1 +m2

2
(20)

and V (x) = 0 if |x| < a, while V (x) = ∞ if |x| ≥ a. We do not need to consider
how the phase changes at the turning points in this case [1, 14], and just need to set the
eigenfunctions to be zero at x = ±a. Hence we shall take c1 = −c2 ≡ c in Eq. (19) to
obtain the approximate eigenfunctions of WKB type:

ψ(x) ∼ c

√

m∗(x)

k(x)
sin(iS(x)/h̄) , (21)

if we set S(x) =
∫ x
−a

√

2m∗(x′)(E − V (x′))dx′ and require S(a) = nπ. Here n is a nonneg-
ative integer. Then we can obtain the WKB dispersion relation

En =
9n2(m1 −m2)

2h2

128(m
3/2
1 −m

3/2
2 )2a2

with n = 1, 2, 3, ... . (22)

On the other hand, we can reduce Eq. (3) as

d2

dy2
u(y) = yu(y) (23)

in such an example, if we set

y = −

(

(m1 −m2)E

h̄2a

)1/3 (

x+
m1 +m2

m1 −m2
a

)

and u(y) = ψ′(x)/m∗(x). The solution of the above equation is a linear combination of Airy
functions [17, 20], and thus it is easy to obtain the exact eigenvalues and wavefunctions.
In Table 1, we compare the exact and approximate eigenenergies when m1 = 0.1 m0,
m2 = 0.2 m0, and a = 5 nm. Here m0 is the rest mass of the electron. We can see from
Table 1 that the errors of the WKB approximation are reduced with increasing n. The
error for the n=4 excited eigenlevel is only about 0.14%, and we can see from Fig. 2(a)
that the corresponding WKB wavefunction is very close to the exact one. (In Fig. 2, both
the approximate and exact wavefunctions are normalized such that

∫ a
−a |ψ(x)|2dx = 1.)

Therefore, the extended WKB approximation provides not only a good estimation for the
eigenenergies, but also a good way to understand the wavefunctions. Figure 2(b) shows the
square of the n = 4 wavefunction. The oscillating amplitudes, in fact, are proportional to
the factor

√

m∗(x)/k(x), as expected from Eq. (21).
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FIG. 2: (a) The red dashed line and the black dotted line correspond to the exact wavefunction and
the WKB approximate one. (b) The solid line is the square of the wavefunction and the dotted line
is the envelope function proportional to m∗(x)1/2.
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TABLE I: The comparison of the WKB and exact eigenvalues for the solvable example discussed in
the text.

For the tunneling through a classically forbidden region where E − V (x) < 0, it
is known that we can obtain an estimation for the tunneling probability from the WKB
approximation if the (effective) mass is constant. With some calculation, we can obtain
Eq. (5) with the same Γ(x) for the classically forbidden region from the continuous limit of
the transfer matrix method. (It should be noted that k(x) becomes imaginary.) In addition,
the WKB-type approximate solution given by Eq. (1) can still be obtained by decoupling
Eq. (5). In fact, it is shown in Ref. [6] that Eq. (3) can be transformed to the conventional
Schrödinger equation,

[

d2

dy2
−

2

h̄2 (V(y) − E)

]

φ(y) = 0 , (24)

if we set y =
∫

√

m∗(x)dx, φ(y) = ψ(x)/m∗1/4(x), and V(y) = V (x) + F (x). Here

F (x) = −
h̄2

8m∗(x)

[

d2

dx2m
∗(x)

m∗(x)
−

7

4
(

d
dxm

∗(x)

m∗(x)
)2

]

.

With some calculation, in fact, we can see that Eq. (1) can also be obtained from the con-
ventional WKB-type function by considering such a transform after ignoring F (x). This
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FIG. 3: A finite-well problem where both the effective mass and he potential have sharp jumps
at the interfaces A1 and A2. The regions denoted by (I), (II), and (III) are divided by these two
interfaces.

approximation is reasonable when m∗(x) varies so slowly that its derivatives are small.
Because the WKB approximation may provide a suitable approximation to the above equa-
tion in the classically forbidden region, Eq. (1) also provides an extension of the WKB
approximation when E − V (x) < 0.

Just as in the conventional WKB approximation, reflection is neglected if we use
Eq. (1) to approximate the wavefunction. If the effective mass or potential has sharp
jumps at some interfaces, we cannot ignore the reflection, and Eq. (1) does not give us
a good approximate solution in the whole space. But we may apply Eq. (19) piecewisely
to approximate the wavefunction. For example, consider a finite-well problem where the
potential and effective mass have sharp jumps at two interfaces A1 and A2, as shown
in Fig. 3. We can divide the space into three regions denoted by (I), (II), and (III),
respectively, and approximate the wavefunction by Eq. (19) in each region. Then we just
need to consider the BenDaniel condition at A1 and A2 to obtain the approximate solution
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in the whole space.

IV. CONCLUSION

In this paper, we derived a set of first-order differential equations corresponding to the
continuous limit of the transfer matrix method. Decoupling such a set of equations, an ap-
proximate wavefunction of the WKB-type is obtained for the one-dimensional Schrödinger
equation with a position-dependent effective mass. In a classically allowed region, the de-
coupling is to ignore the reflections induced by the variations of the effective mass and
potential. This is reasonable in the high-energy limit. From our derivation, it is clear how
to relate the WKB approximation to the numerical solution obtained by the transfer ma-
trix method when the effective mass is position-dependent. By considering an infinite-well
example, it is shown that such an approximation can provide not only a simple estimation
to eigenenergies, but also an analytic form which approximates the eigenfunctions.
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Appendix

In the transfer matrix method, the BenDaniel condition is taken into account to
match ψ and ψ′/m∗, the wavefunction and its derivative divided by the effective mass, at
the boundary of each slab. At the boundary yj separating the j-th and (j +1)-th slabs, we
have

tj+1e
ikj+1yj + rj+1e

−ikj+1yj = tje
ikjyj + rje

ikjyj (25)

by matching ψ, and

i
kj+1

m∗
j+1

tj+1e
ikj+1yj − i

kj+1

m∗
j+1

rj+1e
−ikj+1yj = i

kj

m∗
j

tje
ikjyj − i

kj

m∗
j

rje
ikjyj (26)

by matching ψ′/m∗, if ψ is approximated by Eq. (8). We can obtain Eqs. (9) and (10) by
relating tj+1 and rj+1 to tj and rj from the above two equations.

By introducing the function h(x) ≡ k(x)/m∗(x), the factor

kj

m∗
j

m∗
j+1

kj+1
=

h(xj)

h(xj+1)
= 1 −

h′(yj)

h(yj)
∆x+ o(∆x2). (27)
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Based on the above equation, we can obtain Eq. (11) as the first-order approximation with
respect to ∆x since e±i(kj+1−kj)yj ∼ 1 ± iyjk

′(yj)∆x and e±i(kj+1+kj)yj ∼ e±2ik(yj)yj .
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