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In this study, we continue with a recursive renormaliza-
tion group (RG) analysis of incompressible turbulence, aim-
ing at investigating various turbulent properties of three-
dimensional magneto-hydrodynamics (MHD). In particular,
we are able to locate the fixed point (i.e. the invariant ef-
fective eddy viscosity) of the RG transformation under the
following conditions. (i) The mean magnetic induction is
relatively weak compared to the mean flow velocity. (ii)
The Alfvén effect holds, that is, the fluctuating velocity and
magnetic induction are nearly parallel and are approximately
equal in magnitude. It is found under these conditions that
re-normalization does not incur an increment of the magnetic
resistivity, while the coupling effect tends to reduce the invari-
ant effective eddy viscosity. Both the velocity and magnetic
energy spectra are shown to follow the Kolmogorov k~5/3
in the inertial subrange; this is consistent with some labora-
tory measurements and observations in astronomical physics.
By assuming further that the velocity and magnetic induc-
tion share the same specified form of energy spectrum, we
are able to determine the dependence of the (magnetic) Kol-
mogorov constant Cx (Car) and the model constant C's of the
Smagorinsky model for large-eddy simulation on some char-
acteristic wavenumbers.
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I. INTRODUCTION

Recently, the authors [1],[2] carried out a recursive
renormalization group (RG) analysis of incompressible
turbulence for flow turbulence and thermal turbulent

transport. In this study, we continue with this previous
RG analysis for magneto-hydrodynamic (MHD) turbu-
lence, aiming at investigating various transport proper-
ties, in particular, the coupling effects between the flow
and magnetic induction fields on the kinetic energy spec-
trum and the effective eddy viscosity.

The plasma science is widely applied to many areas
from laser skill, thin film produce, nuclear rocket, even
to astronomical physics (for example, solar wind, solar
flares and coronal structure). Like in ordinary Newtonian
fluids, MHD turbulence is expected to arise in plasma or
magnetized fluids as the Reynolds number is increased
beyond some critical value. In spite of the already scarce
literature, the interest of MHD turbulence may further be
divided into two-dimensional and three-dimensional tur-
bulence. Kim and Yang [3] studied the scaling behavior
of the randomly stirred MHD plasma in two dimensions
and were able to show existence of the scaling solution at
the fixed point of the RG transformation and derive the
dependence of the power exponent of the energy spec-
trum on the driving Gaussian noise. Liang and Diamond
[4] also presented their study for two-dimensional MHD
turbulence by introducing the velocity stream function
and the magnetic flux function in MHD equations. How-
ever, the latter authors showed no existence of a fixed
point of the RG transformation and especially suggested
that the applicability of RG method to turbulent system
is intrinsically limited, especially in the case of systems
with dual-direction energy transfer.

In contrast to flow in two dimensions, the effect of dual-
direction energy transfer becomes weak in three dimen-
sions (cf. McComb [5]). It would therefore be legitimate
to employ the RG analysis for MHD turbulence in three
dimensions. In the literature, there are some measured
evidences about the validity of the Kolmogorov spectrum
for the three-dimensional MHD turbulence. Alemany et
al. [6] designed an equipment in the laboratory which pro-
duced turbulence by passing magnetized fluid to a mesh
under an additional magnetic induction. In the area of
astronomical physics, Matthaeus et al. [7] measured the
magnetic energy spectrum of the solar wind, while Lea-
mon et al. [8] measured the MHD turbulence within the
coronal mass ejection. Both of their results suggested the
Kolmogorov power law for the energy spectrum. Besides,



Biskamp [9] mentioned that the Kolmogorov constant de-
pends on the precise definition of the average magnetic
induction, and hence on the geometry of the large scale
eddies. On the theoretical side, Hatori [10] obtained the
Kolmogorov spectrum for the three-dimensional MHD
turbulence, but suggested that the Kolmogorov constant
is universal. Verma [11] constructed a recursive renor-
malization group procedure for MHD turbulence and also
found that the energy spectrum for the velocity obeys the
Kolmogorov spectrum. It is the purpose of the present
study to provide a recursive renormalization group anal-
ysis for MHD turbulence in three dimensions with the
specific points of interest as follows. We will obtain the
energy spectra for both of the velocity and magnetic in-
duction fields, look for the invariant effective eddy vis-
cosity and determine the dependence of the (magnetic)
Kolmogorov constant Cx (Cps) and the model constant
Cyg for the Smagorinsky model for large-eddy simulation
(LES).

Let us give a brief description of the present work.
MHD is governed by a coupling set of equations, mean-
while, the MHD turbulence considered is further assumed
to be isotropic, homogeneous and stationary. It is found
convenient to introduce the Elsdsser variables to write
the equations for the velocity and magnetic induction
fields in a symmetric form. In Section 3, a recursive
RG analysis is carried out for the MHD equations in
the wavenumber domain and a recursive relationship for
the effective eddy viscosity v, (k) between two successive
steps is established. The resulting expression is com-
plicated enough and is apparently not amenable to fur-
ther RG analysis. Instead, we restrict ourselves to the
case when the following conditions hold. (i) The mean
magnetic induction is relatively weak compared to the
mean flow velocity. (ii) The Alfvén effect holds, that
is, the fluctuating velocity and magnetic induction are
nearly parallel and approximately equal in magnitude.
As a matter of fact, the two conditions imply a negligible
effect of the subgrid cross helicity between the velocity
and magnetic fields. In spite of these restrictions, the
present RG analysis still warrants a sufficient interest as
we investigate several observations in the area of astro-
nomical physics. In Section 4, the energy spectra of the
velocity and the magnetic fields are determined through
use of the RG transformation, i.e. the recursive rela-
tion. Both spectra are found to follow the Kolmogorov
k~5/3 law in the inertial subrange. The results are con-
sistent with the experimental results of Alemany et al.
[6], and the observational results of Matthaeus et al. [7].
From a different approach, Chen and Montgomery [12]
obtained the same power law in the inertial subrange
by using some multiple-scale self-consistent calculations
of turbulent MHD transport coefficients. In Section 5,
the fixed point of the RG equation is located to give the
invariant effective eddy viscosity v(k) and magnetic re-
sistivity 7(k). By assuming further a combination form
of the energy spectra proposed respectively by Pao [13]
and Quarini and Leslie [14], the invariant effective eddy
viscosity is then employed in Section 6 to determine the

dependence of the (magnetic) Kolmogorov constant Ck
(Cy) and the Smagorinsky constant Cs on the cutoff
wavenumber k., the wavenumber kg of the largest eddies
and the wavenumber k, that peaks in the energy spec-
trum.

II. RENORMALIZATION GROUP ANALYSIS
FOR MHD TURBULENCE

The basic idea of recursive RG analysis is to divide
the wavenumber space (0, ko), where k¢ is Kolmogorov’s
scale, to a supergrid region (0, k.) and a subgrid region
(kc, ko). The subgrid modes are then removed shell by
shell by taking the subgrid average over a spherical shell
(knJrlv kn)

The purpose of this study is to look for the invariant
effective eddy viscosity by pursuing a differential version
of the recursive relationship. Recall that the basic idea
underlining the recursive RG analysis is to divide the
wavenumber space (0,kg) to a supergrid region (0, k.)
and a subgrid region (k.,ko); the subgrid modes are
then removed piece by piece by taking subgrid averag-
ing over a spherical shell (k,t1,ky). The result will cer-
tainly depend on the cutoff ratio A = ky,41/kn; and thus
the invariant (limiting) effective eddy viscosity should be
sought by taking the limiting operation A — 1. By ap-
plying the energy disspation equation
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where ks denotes the wavenumber of the largest eddy
existing in the flow. Canceling out € on both sides, we
obtain the Kolmogorov constant C'x in terms of the three
characteristic wavenumbers k., k, and kq:
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So far, we have not given a precise form for ¢ and
. Let us assume further that both the velocity and
magnetic induction fields share the same form of the en-
ergy spectrum which is a combination form of the scaling
laws proposed respectively by Pao [13], Leslie and Quar-
ini [14], that is,
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In these formulas, we have the factor

(E8+5/3
where
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to take care of energy-containing eddies, where s is a
parameter for flow. We may rewrite Eq. (1) in a more
precise form as follows:
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As a matter of fact, Biskamp [9] indicated that the
Kolmogorov constant depends on the precise definition
of the averge magnetic induction, and hence on the ge-
ometry of the large scale eddies. Here, we have provided
two relationships which show how the large-scale eddies
can influence not only the Kolmogorov constant Cx but
also the magnetic Kolmogorov constant Cs, as shown in
(5) and (6). The large-scale eddies with the wavenum-
bers k, and ks indeed play an important role in deciding
both of Cx and C);. Here we recall that, k, denotes the
1/(geometric size) of the energy-containing eddies and
ks denotes the 1/(geometric size) of the largest eddies
in fluid.

In order to carry out large eddy simulation (LES) for
MHD turbulence, we need to evaluate the Smagorinsky
constant for MHD turbulence. First of all, we suppose
no matter whenever we perform the RG analysis, the
cutoff k. is always very close to the Kolmogorov scale
ko. In doing so, we evaluate the effective eddy viscosity
at k = k. which is far from ky. We express &, in the
resolvable velocity,
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Solving the above algebraic equation for v(k.) and re-
placing k. by 27/A where A denotes the cutoff size, we
obtain
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This is the Smagorinsky constant, where we have left two
undetermined parameters H; and Haz which require two
additional conditions to be fully determined.

In summary, the closed-form solutions for v(k) and
7(k) have enabled derivation of the functional depen-
dence of Cx, Cpr and C's. In other words, these numbers
Ck, Cp and Cg are not genuine constants but dependent
upon the characteristic wavenumbers k, and ks of the
energy-containing eddies. Namely, the theory requires
an input of the large-eddy wavenumbers k, and ks from
observations and/or experiments. The value of ks is ap-
proximately that of k,. This was done in our early study
for incompressible flow turbulence as well as in thermal-
fluid turbulence; the range of variation of the relevant
Kolmogorov’s and Batchelor’s constants were found in
close agreement with experiments (cf. Chang et al. [1]
and Lin et al. [2]).

III. CONCLUDING REMARKS

In this study, we have extended our previous RG analysis
of incompressible flow turbulence to incompressible MHD
turbulence.

The Elsasser variables are introduced to write the
MHD equations for the velocity and magnetic induction
fields in a symmetric form. RG analysis is then per-
formed in the wavenumber domain. Taking subgrid av-
eraging of the equation governing the supergrid modes
yields a renormalizable form of the MHD equations. To
proceed further with the RG transformation, we have to
the following two assumptions. (i) The mean magnetic
induction is relatively weak compared to the mean flow
velocity. (ii) The Alfvén effect holds, that is, the fluctu-
ating velocity and magnetic induction are nearly parallel
and approximately equal in magnitude. That these con-
ditions still warrant sufficient interest are illustrated by
some available data from observations in astronomical
physics. Under these conditions, renormalization does
not incur an increment of the magnetic resistivity 7, while
the coupling effect tends to reduce the invariant effective
eddy viscosity v(k). Both the velocity and magnetic en-
ergy spectra are shown to follow the Kolmogorov k~/3 in
the inertial subrange; this is consistent with some avail-
able laboratory measurements and observations in astro-
nomical physics. Furthermore, by assuming that the ve-



locity and magnetic induction fields share the same com-
bined form of the energy spectra proposed respectively by
Pao and by Leslie and Quarini, we are able to determine
the dependence of the Kolmogorov constant C'x and the
magnetic Kolmogorov constant C'y; on the characteristic
wavenumbers k., k, and ks. The results are applied to
obtain the dependence of the Smagorinsky constant Cg
for large-eddy simulation, which however contains two
undetermined constants to be resolved.

In spite of the present success, it must be stressed upon
that the imposed conditions (i) and (ii) imply a negligible
effect of the subgrid cross helicity between the velocity
and magnetic fields. There are cases where the effect
is important and which may lead to quite different en-
ergy spectrum. In an early study, Kraichnan [22] derived
a k~3/2 energy spectrum of the inertial subrange when
the magnetic energy in the sub-inertial wavenumbers ex-
ceeds the total energy in the inertial subrange. Pouquet
et al. [23] had an intensive study on strong MHD helical
turbulence and the nonlinear dynamo effect. Recently,
Nakayama [24], [25] obtained also the k~3/2 energy spec-
trum in the inertial subrange by constructing a spectral
theory of strong shear Alfvén turbulence anisotropized
by the presence of a uniform mean magnetic field. Of
particular interest, we refer to Yoshizawa et al. [26] for
reviewing the importance of the cross-helicity effect, and
more generally for an extensive review of turbulence the-
ories and modeling of fluids and plasmas.
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