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行政院國家科學委員會專題研究計畫成果報告 
以重整群分析耦合場紊流模式 

計畫編號：NSC 92-2212-E-002-045 
執行期限：92年 8月 1日至 93年 7月 31日 
主持人：張建成    臺灣大學應用力學所 

 
一、中文摘要 
本研究旨在以重整群分析方法研究不
可壓縮之耦合磁流場紊流模式，在(1)平均
磁導相較於平均流速為可忽略及(2)Alfvén
效應成立的假設下，我們可以建立一個遞
迴重整群的程序，而建構出重整群轉換，
在此轉換下得到一具有換尺不變性的耦合
磁流場方程組，此轉換的固定點在數學上
可被等價成渦漩黏滯力在 Fourier空間中的
積微分方程組，藉由此積微分方程組的求
解，發現流場能量光譜與波數的-5/3 次方
呈正比關係。 
關鍵詞：重整群分析、磁流紊流場、Alfvén
效應、等效渦漩黏滯係數、磁阻係數 
 
Abstract 

In this study, we continue with a recursive 
renormalization group (RG) analysis of 
incompressible turbulence, aiming at investigating 
various turbulent properties of three-dimensional 
magneto- hydrodynamics (MHD). In particular, 
we are able to locate the fixed point (i.e. the 
invariant effective eddy viscosity) of the RG 
transformation under the following conditions. (i) 
The mean magnetic induction is relatively weak 
compared to the mean flow velocity.  (ii) The 
Alfvén effect holds, that is, the fluctuating 
velocity and magnetic induction are nearly 
parallel and are approximately equal in 
magnitude. It is found under these conditions that 
re-normalization does not incur an increment of 
the magnetic resistivity, while the coupling effect 
tends to reduce the invariant effective eddy 
viscosity. Both the velocity and magnetic energy 
spectra are shown to follow the Kolmogorov 
k-5/3 in the inertial subrange; this is consistent 
with some laboratory measurements and 
observations in astronomical physics.  
Keywords : Renormalization group analysis, 
magnetohydrodynamic turbulence, Alfvén effect, 
effective eddy viscosity, magnetic resistivity. 

 
1. Introduction 

Recently, the authors carried out a 
recursive renormalization group (RG) analysis of 
incompressible turbulence for flow turbulence 
and thermal turbulent transport. In this study, we 
continue with this previous RG analysis for 
magneto- hydrodynamic (MHD) turbulence, 
aiming at investigating various transport 
properties, in particular, the coupling effects 
between the flow and magnetic induction fields 
on the kinetic energy spectrum and the effective 
eddy viscosity. 

The plasma science is widely applied to 
many areas from laser skill, thin film produce, 
nuclear rocket, even to astronomical physics (for 
example, solar wind, solar flares and coronal 
structure). Like in ordinary Newtonian fluids, 
MHD turbulence is expected to arise in plasma 
or magnetized fluids as the Reynolds number is 
increased beyond some critical value. In spite of 
the already scarce literature, the interest of 
MHD turbulence may further be divided into 
two-dimensional and three-dimensional 
turbulence. Kim and Yang  studied the scaling 
behavior of the randomly stirred MHD plasma in 
two dimensions and were able to show existence 
of the scaling solution at the fixed point of the 
RG transformation and derive the dependence of 
the power exponent of the energy spectrum on 
the driving Gaussian noise. Liang and Diamond 
also presented their study for two-dimensional 
MHD turbulence by introducing the velocity 
stream function and the magnetic flux function in 
MHD equations. However, the latter authors 
showed no existence of a fixed point of the RG 
transformation and especially suggested that the 
applicability of RG method to turbulent system is 
intrinsically limited, especially in the case of 
systems with dual-direction energy transfer.  

In contrast to flow in two dimensions, the 
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effect of dual-direction energy transfer becomes 
weak in three dimensions (cf. McComb ). It 
would therefore be legitimate to employ the RG 
analysis for MHD turbulence in three dimensions.  
There are some measured evidences about the 
validity of the Kolmogorov spectrum for the 
three-dimensional MHD turbulence. Alemany et 
al. designed an equipment in the laboratory 
which produced turbulence by passing 
magnetized fluid to a mesh under an additional 
magnetic induction. In the area of astronomical 
physics, Matthaeus et al.  measured the 
magnetic energy spectrum of the solar wind, 
while Leamon et al. measured the  MHD 
turbulence within the coronal mass ejection. 
Both of their results suggested the Kolmogorov 
power law for the energy spectrum. On the 
theoretical side, Hatori obtained the 
Kolmogorov spectrum for the three-dimensional 
MHD turbulence, but suggested that the 
Kolmogorov constant is universal.  

The purpose of the present study is  
providing a recursive renormalization group 
analysis for MHD turbulence in three dimensions 
with the specific points of interest as follows.  
We will obtain the energy spectra for both of the 
velocity and magnetic induction fields, look for 
the invariant effective eddy viscosity.  

Let us give a brief description of the 
present work. MHD is governed by a coupling 
set of equations, meanwhile, the MHD 
turbulence considered is further assumed to be 
isotropic, homogeneous and stationary. It is 
found convenient to introduce the Elsasser 
variables to write the equations for the velocity 
and magnetic induction fields in a symmetric 
form. A recursive RG analysis is carried out for 
the MHD equations in the wavenumber domain 
and a recursive relationship for the effective 
eddy viscosity )(knν between two successive 
steps is established. The resulting expression is 
complicated enough and is apparently not 
amenable to further RG analysis. Instead, we 
restrict ourselves to the case when the following 
conditions hold.  (i) The mean magnetic 
induction is relatively weak compared to the 
mean flow velocity. (ii) The Alfvén effect holds, 
that is, the fluctuating velocity and magnetic 

induction are nearly parallel and approximately 
equal in magnitude.  In spite of these 
restrictions, the present RG analysis still warrants 
a sufficient interest as we investigate several 
observations in the area of astronomical physics. 
In addition, the energy spectrum of the velocity 
is determined self-consistently through the use of 
the RG transformation, i.e. the recursive relation. 
And, the fixed point of the RG equation is 
located to give the invariant effective eddy 
viscosity )(kν .  
 
2. RG Procedure for MHD equations  
In considering magnetohydrodynamic(MHD) 
turbulence, the SI units are introduced and we 
can write down the following MHD equations. 

∂v/∂t + v ⋅ ∇v = −∇p + ∇ × B × B + ν0∇2v;
∂B/∂t = ∇ × v × B + τ0∇2B,

with the solenoidal equations 

∇ ⋅ v = 0;
∇ ⋅ B = 0,

 
where the gravitation is incorporated into p . It 
is convenient to introduce the Elsässer variables 
for Eq. (1), defined by  

Φ = v + B;
Ψ = v − B.

 
Eq. (1) can then be transformed to  

∂Φ/∂t + Ψ ⋅ ∇Φ = −∇p∗ + α0∇2Φ + β0∇2Ψ;
∂Ψ/∂t + Φ ⋅ ∇Ψ = −∇p∗ + α0∇2Ψ + β0∇2Φ,

where 2/)( BB ⋅+=∗ pp , and we have set  

α0 = ν0 + τ0/2;
β0 = ν0 − τ0/2,

 
It is obvious from the definitions of Φ , Ψ  that 
they are also solenoidal, i.e.  
∇ ⋅ Φ = ∇ ⋅ Ψ = 0.

 
The basic idea of recursive RG analysis is to 
divide the wavenumber space ),0( 0k , where 

0k  is Kolmogorov's scale, to a supergrid region 
),0( ck  and a subgrid region ),( 0kkc . The 

subgrid modes are then removed shell by shell 
by taking the subgrid average over a spherical 
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shell ),( 1 nn kk + . At the present stage, the cutoff 
ratio, defined by nn kk /1+=Λ  is maintained a 
constant, and will be later set to tend to 1 as the 
differential version of the RG analysis leading to 
the invariant effective eddy viscosity is sought. 
For the renormalization group analysis, first of all, 
in order to distinguish the supergrid and subgrid 
modes, we introduce the following notations: 
(i) for Φ  field,  

Φk, t =
Φ<k, t for |k | < k 1 ;
Φ>k, t for |k | > k 1 ,

 
(ii) for Ψ  field,  

Ψαk, t =
Ψα

<k, t for |k | < k 1 ;
Ψα

>k, t for |k | > k 1 .
 

The momentum equations for the supergrid 
modes can be written  

L<k, t
Φα<k, t
Ψα<k,t

= Mαβγ k∫ d 3j

Ψβ
<j, tΦγ<k − j, t + 2Ψβ

<j,tΦγ>k − j, t + Ψβ
> j,tΦγ>k − j, t

Φβ
<j, tΨ γ

<k − j, t + 2Φβ
<j, tΨ γ

>k − j, t + Φβ
>j, tΨ γ

>k − j, t
,   #   

and the momentum equation for the subgrid 
modes equation could be written 

L>j
Φβ

>j, t

Ψβ
>j, t

= Mββ ′γ′j ∫ d3 j ′

Ψ
β

′
< j′, tΦ

γ ′
< j − j′, t + 2Ψ

β
′

< j′ , tΦ
γ′
> j− j′ , t + Ψ

β
′

> j′ , tΦ
γ ′
> j − j′ , t

Φ
β ′
< j

′
, tΨ

γ ′
< j − j

′
, t + 2Φ

β ′
< j

′
, tΨ

γ′
> j− j

′
, t + Φ

β ′
> j

′
, tΨ

γ ′
> j − j

′
, t

,   #   

and we have assumed that Markovian 
approximation holds for the subgrid modes. The 
matrix L>j  is defined by  

L>j =
α0 β0

β0 α0
j2 .

 
 Before substantial progress can be made with 
the RG analysis, we shall make the following 
statistical hypotheses. 
(i) The MHD fields have ensemble- mean-zero 
fluctuation,  
〈Φα

>k, t〉 = 〈Ψα
>k, t〉 = 0.

 
(ii) Supergrid components are considered to be 
statistically independent of subgrid averaging,  

〈Φα
<k,t〉 = Φα

<k, t;
〈Ψα

<k, t〉 = Ψα
<k, t.

 
 This assumption is simple (but not void) though 

its validity may be restrictive. But RG theory 
based on this assumption has not been explored 
to its full strength. Indeed, the RG results based 
on this assumption were found to be in 
remarkably close agreement with 
computed/measured data. 
Under two conditions: (i) the mean magnetic 
induction is relatively weak compared to the 
mean flow velocity, and (ii) the Alfvén effect 
holds. Those two conditions directly imply that 

Qjuα
<k, t ≫ RjBα

<k, t  
and  

Sjuα
<k, t ≫ RjBα

<k, t  
, and then: 

L1k , t
uα<k, t
Bα

<k, t

= Mαβγk ∫
Ω1

d3 j
uβ
<j, tuγ

<k − j, t − Bβ
<j, tBγ

<k − j, t

Bβ
<j, tuγ

<k − j, t − uβ
<j, tBγ

<k − j, t
,   #   

where  

L1k, t =
∂/∂t + ν1kk 2 0

0 ∂/∂t + τ1kk 2
.

 The effective eddy viscosity and magnetic 
resistivity after the first-step renormalization is 
given by )(1 kν  and )(1 kτ  as follows  

ν1k = ν0 + δν0k,  
and  
τ1k = τ0 + δτ0k,  

where  
δν 0k = 2 ∫

Ω0

d3 j Lk, k − j
k2

Qj
ν0 j 2 + ν 0 |k − j| 2

+ Sj
τ0 j2 + τ0 |k − j| 2

,   #   

and  
δτ0k = 2 ∫

Ω0

d 3j Lk,k − j
k 2

Qj − Sj
τ0j 2 + ν0 |k − j|2

− Qj − Sj
ν0 j2 + τ0 |k − j|2

.   #   

For MHD turbulence, we shall consider two 
kinds of energy contribution with wavenumber 
vectors lying within the spherical shell between 
k  and dkk + : 

Evkdk = 4πk2Qkdk
EMkdk = 4πk2Skdk

.

 
With all the exponents determined, the kinetic 
energy spectrum and the magnetic energy 
spectrum take respectively the following 
expressions:  
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En
vj = CKv

2/3j−5/3φnj/k p;

En
Mj = CMM

2/3j−5/3ϕnj/k p,
 

 and the effective eddy viscosity and the 
magnetic resistivity take respectively the 
expressions:  

νnj = CK
1/2v

1/3j−4/3 ν̂nj/k p;

τnj = CM
1/2M

1/3j−4/3 τ̂nj/k p,
 

 Eq. (9) shows that the energy spectrum have 

the dependence of the power law of j−5/3
 

which is exactly the Kolmogorov energy 
spectrum. Compared with laboratory 
experiments, the result is consistent with 
Alemany's measurement in passing a magnetized 
fluid to a grid mesh. Part of their experimental 
results provided a energy spectrum of the type: 

Evk, t ≈ v
2/3k −5/3

1 + Nt2/3
.

 
 Except the time dependence, our RG result is 
in good agreement with their experimental results. 
There are some other evidences from 
observations in astronomical physics that also 
support this Kolmogorov spectrum law. 
Matthaeus et al. discovered that the magnetic 
energy spectrum measured in the solar wind is 

often found to be close to j−5/3
. Velli et al. 

investigated a new phenomenology which 
involves the solar wind fluctuations near the sun 
and leads to a kinetic power spectrum scaling as 

α−k  where 1≈α  for the largest scales, and 
7.15.1 −≈α  for the small scales. Moreover, 

the recent observations by Leamon et al. (the 
January 1997 event which involves the solar 
coronal mass ejections), also showed a power 
law, scaled as 67.1−k . 
 
3. Concluding remarks 

In this study, we have extended our 
previous RG analysis of incompressible to MHD 
turbulence. The Elsasser variables are 
introduced to write the MHD equations for the 
velocity and magnetic induction fields in a 
symmetric form. RG analysis is then performed 
in the wavenumber domain. Taking subgrid 
averaging of the equation governing the 

supergrid modes yields a renormalizable form of 
the MHD equations. To proceed further with the 
RG transformation, we have to the following two 
assumptions. (i) The mean magnetic induction is 
relatively weak compared to the mean flow 
velocity. (ii) The Alfvén effect holds, that is, the 
fluctuating velocity and magnetic induction are 
nearly parallel and approximately equal in 
magnitude. That these conditions still warrant 
sufficient interest are illustrated by some 
available data from observations in astronomical 
physics. Under these conditions, renormalization 
does not incur an increment of the magnetic 
resistivity τ , while the coupling effect tends to 
reduce the invariant effective eddy viscosity 

)(kν . Both the velocity and magnetic energy 
spectra are shown to follow the Kolmogorov 
k-5/3 in the inertial subrange; this is consistent 
with some available laboratory measurements 
and observations in astronomical physics. 
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