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Abstract

In this study, we continue with a recursive
renormdization group (RG) andyss of
incompressible turbulence, aming a investigating
various turbulent properties of three-dimensond
magneto- hydrodynamics (MHD). In particular,
we are able to locate the fixed point (i.e. the
invariant effective eddy viscodty) of the RG
trandformation under the following conditions. (i)
The mean magnetic induction is rdativey wesk
compared to the mean flow velocity. (ii) The
Alfvén effect holds tha is the fluctuaing
veocity and meagnetic induction ae nearly
padld and ae agproximatdy equd in
magnitude. It isfound under these conditions that
re-normdization does not incur an increment of
the magnetic resdivity, while the coupling effect
tends to reduce the invariant effective eddy
viscogity. Both the velocity and magnetic energy
Spectra are shown to follow the Kolmogorov
k®2 in the inertid subrange; this is consstent
with some laboratory measurements and
observationsin astronomica physics.
Keywords: Renormdization group andyss,
magnetohydrodynamic turbulence, Alfven effect,
effective eddy viscosty, magnetic resdivity.
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1. Introduction

Recently, the authors caried out a
recursve renormdization group (RG) andysis of
incompressible turbulence for flow turbulence
and thermd turbulent trangport. In this study, we
continue with this previous RG andyss for
magneto-  hydrodynamic  (MHD) turbulence,
amng & invedigating various trangort
properties, in paticular, the coupling effects
between the flow and magnetic induction fields
on the kinetic energy spectrum and the effective
eddy viscosity.

The plasma science is widdy agpplied to
many aress from laser ill, thin film produce,
nuclear rocket, even to astronomica physics (for
example, solar wind, solar flares and corond
gructure). Like in ordinary Newtonian fluids,
MHD turbulence is expected to arise in plasma
or magnetized fluids as the Reynolds number is
increased beyond some critical vaue. In spite of
the dready scarce literature, the interest of
MHD turbulence may further be divided into
two-dimendgond and three-dimensond
turbulence. Kim and Yang sudied the scaling
behavior of the randomly stirred MHD plasmain
two dimensons and were able to show existence
of the scding solution at the fixed point of the
RG transformation and derive the dependence of
the power exponent of the energy spectrum on
the driving Gaussan noise. Liang and Diamond
also pesented their study for two-dimensond
MHD turbulence by introducing the veocity
gream function and the magnetic flux function in
MHD equations. However, the latter authors
showed no exigtence of afixed point of the RG
transformation and especidly suggested that the
goplicability of RG method to turbulent system is
intringcdly limited, especidly in the case of
systems with dud-direction energy transfer.

In contragt to flow in two dimensions, the



effect of dua-direction energy transfer becomes
wesk in three dimensons (cf. McComb ). It
would therefore be legitimate to employ the RG
andyss for MHD turbulence in three dimensions.
There are some measured evidences about the
vdidity of the Kolmogorov spectrum for the
three-dimensiond MHD turbulence. Alemany et
d. dedgned an equipment in the laboratory
which  produced turbulence by passng
magnetized fluid to a mesh under an additiond
magnetic induction. In the area of astronomica
physcs, Mattheeus e d. measured the
magnetic energy spectrum of the solar wind,
while Leamon & d. messured the MHD
turbulence within the corond mass gection.
Both of ther results suggested the Kolmogorov
power law for the energy spectrum. On the
theoreticd dde, Hatori obtaned the
Kolmogorov spectrum for the three-dimensond
MHD turbulence, but suggested that the
Kolmogorov congtant is universal.

The purpose of the present study is
providing a recursve renormdization group
andyss for MHD turbulence in three dimensons
with the specific points of interest as follows.
We will obtain the energy spectrafor both of the
velocity and magnetic induction fields, look for
the invariant effective eddy viscosty.

Let us give a brief description of the
present work. MHD is governed by a coupling
st of equations, meawhile, the MHD
turbulence congdered is further assumed to be
isotropic, homogeneous and dationary. It is
found convenient to introduce the Elsasser
variables to write the equations for the velocity
and magnetic induction fidds in a symmetric
form. A recursve RG anadyssis carried out for
the MHD eguations in the wavenumber domain
and a recursve rdaionship for the effective
eddy viscosity n (k) between two successve
deps is established. The resulting expression is
complicated enough and is apparently not
amenadle to further RG andyss. Ingead, we
redtrict oursaves to the case when the following
conditions hold. (i) The mean magnetic
induction is relatively wesk compared to the
mean flow veodity. (i) The Alfvén effect holds,
that is the fluctuating velocity and magnetic

induction are nearly pardld and gpproximately
equa in  magnitude. In gspite of these
redrictions, the present RG andyss fill warrants
a aufficent interet as we invedigate severd
observations in the area of astronomical physics.
In addition, the energy spectrum of the velocity
is determined sdlf-consistently through the use of
the RG transformation, i.e. the recursive relaion.
And, the fixed point of the RG equdion is
located to give the invariant effective eddy
viscogty n (k).

2. RG Procedurefor MHD equations

In conddering magnetohydrodynamic(MHD)
turbulence, the S units are introduced and we
can write down the following MHD equetions.

{

with the solenoida equations

{V-VZO;

V.B =0,
where the gravitation is incorporated into P. It
is convenient to introduce the Elsasser variables
for Eq. (1), defined by

{(D:V+B;

Y =v-B.
Eq. (1) can then be transformed to

{

where p” = p+(B>B)/2, and we have set

{ ﬂo = (VO _TO)/Zy
It isobvious from the definitionsof F, Y that
they are dso solenoiddl, i.e.
Ved=V.¥Y=0.
The badc idea of recursve RG andyss is to
divide the wavenumber space (0, k,), where
k, isKolmogorov's scae, to a supergrid region
(O k) and a subgrid region (k_,k,). The

subgrid modes are then removed shell by shell
by taking the subgrid average over a spherica

oB/ot = V x (v x B) + 14V2B,

ovlot + (v - V)v = -Vp+ (V x B) x B+ v,V?2v;

o0/t + (¥ - V)@ = —Vp* + V2D + B,V Y;
oVIot + (@ - V)V = —-Vp* +a(V2¥ + B,V20,



el (k... k,) . At the present stage, the cutoff
ratio, defined by L =k, /k, is mantaned a
congtant, and will be later st to tend to 1 asthe
differentid verdon of the RG andyss leading to
the invariant effective eddy viscosgty is sought.
For the renormdization group andysis, firg of dl,
in order to distinguish the supergrid and subgrid
modes, we introduce the following notations:

(i) for F fidd,

o - d Pk for k<
o (k,t)  for K| > Ky,

i)for Y fidd,
Yk, for |k Kq:
¥, (k1) = (k,t) o k| < ky
wak,t)  for k| > Ky,

The momentum equations for the supergrid
modes can be written

L<(k,t)( $Et3 ) = My, () [ 5

[5G, 005k — .0 + 295G D7 (k — .0 + ¥; (005 ~ 1]

[®5G,0¥5(k -, 0) + 205G, 0¥k - j,0) + P3G, O3k -j, 0] /'
and the momentum equation for the subgrid
modes equation could be written

NE & e
un( w300 ) =My () [ o

[0 0056 -1, 0+295.6 002 (=10 +77G 007G -1 |
[tb;(j‘,t)w;,(j —j',t)+2@;,0','()‘}’;(]—]',0 +¢D;,(j’,t)~y;(j —j',t)]

and we have assumed that Markovian
gpproximation holds for the subgrid modes. The
matrix 1>0) is defined by

|—>(J) = < >J2

Before substantia progress can be made with
the RG andyss, we shdl make the following
datigtica hypotheses.

(i) The MHD fidds have ensemble- mean-zero
fluctuetion,

(@z(k, 1)) = (Ya(k,1)) = 0.

(i) Supergrid components are considered to be
Setigtically independent of subgrid averaging,

<(D§(k1t)> = (Dé(k,t),
(Psk 1)) = Ps(k,t).
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This assumption is smple (but not void) though

its vaidity may be redrictive. But RG theory
based on this assumption has not been explored
to its full strength. Indeed, the RG results based
on this assumption were found to be in
remarkably close agreement with
computed/measured data.
Under two conditions: (i) the mean magnetic
induction is relaively wesk compared to the
mean flow veodty, and (ii) the Alfvén effect
holds. Those two conditions directly imply that
QHuz(k,t) > R()Bi(Kk,1)
and
SHuzk,t) > R()B:(k, 1)
, and then:

oo )
w6 husk —j,t) - BsG, DB (k —j,b)
= 3 B ' ’ §
Magy ) [ J( B3, s (k - 1,0 — 3G, 085 (k —j, 1) )
where

LD = lot + v (K)k2 0
R 0 oot + 7, (k2 )

The effective eddy viscosty and magnetic
resdtivity after the fird-gep renormalization is
givenby n,(k) and t (k) asfolows

vi(K) = vo +0vo(K),
and

71(K) = 70 +670(K),
where
Svo(K) = 2J'QO 3j L(k’kkz_j) ( [90)) . 0 ),

voi2+vok —j|*  Toi2+ Tok =

and

bk = 2[ L(ki("z’j) [

QM) - SO

70j2 + volk - i

Q) - i) }

voi2 + 1ok - jF

For MHD turbulence, we shal consder two
kinds of energy contribution with wavenumber
vectors lying within the sphericd shell between
k and k+dk:

Ev(k)dk = 47k2Q(k)dk
EM(K)dk = 4rk2S(K)dk

With dl the exponents determined, the kinetic
energy spectrum and the magnetic energy
goectrum  teke respectivdy  the following
expressions.



Ex() = Cxed3 B¢ n(ilKp);
EMG) = Cueii Ron(i/kp),

and the effective eddy viscosty and the
magnetic  resdivity teke respectivdy the
expressions.

{ voli) = CY2EH% 453, (i/ko):

(i) = Ciewrl *2n(ilkp),

Eqg. (9) shows that the energy spectrum have

the dependence of the power law of [
which is exactly the Kolmogorov energy
gpectrum. Compared  with  [aboratory
experiments, the result is conggent with
Alemany's measurement in passing a magnetized
fluid to a grid mesh. Part of ther experimentd
results provided a energy spectrum of the type:
85/3k‘5’3

[1+N®)??

Except the time dependence, our RG reault is
in good agreement with their experimenta results.
There ae some other evidences from
obsarvations in astronomicad physics that adso
support  this  Kolmogorov — spectrum  law.
Matthaeus et a. discovered that the magnetic
energy spectrum measured in the solar wind is

often found to be dose to 1. Vdli ¢ 4.
invetigated a new phenomenology which
involves the solar wind fluctuations near the sun
and leads to a kinetic power spectrum scaling as
k® where a »1 for the largest scdes, and
a »15- 17 for the smal scaes. Moreover,
the recent observations by Leamon et d. (the
January 1997 event which involves the solar
corona mass gections), aso showed a power
law, scdled as k™.

EV(k,t) =

3. Concluding remarks

In this sudy, we have extended our
previous RG analyss of incompressible to MHD
turbulence. The Elssssr vaiables ae
introduced to write the MHD equetions for the
veodty and magnetic induction fidds in a
symmetric form. RG andyss is then peformed
in the wavenumber domain. Taking subgrid
averaging of the eguation governing the

supergrid modes yields a renormaizable form of
the MHD equations. To proceed further with the
RG transformation, we have to the following two
assumptions. (i) The mean magnetic induction is
relatively wesk compared to the mean flow
veodity. (i) The Alfvén effect holds, that is, the
fluctuating velocity and magnetic induction are
nearly padld and agpproximatdy equd in
magnitude. That these conditions ill warrant
aufficient interest ae illusrated by some
available data from observations in astronomical
physics. Under these conditions, renormaization
does not incur an increment of the magnetic
resgtivity t , while the coupling effect tends to
reduce the invariant effective eddy viscosty
n(k). Both the velocity and magnetic energy

gpectra are shown to follow the Kolmogorov
k®2 in the inertid subrange; this is consistent
with some avallable |aboratory measurements
and observaionsin astronomica physics.
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