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ABSTRACT

In this study, we continue with a recursive renormalization group (RG) analysis
of incompressible turbulence, aiming at investigating various turbulent
properties of three-dimensional magneto-hydrodynamics (MHD). In particular,
we are able to locate the fixed point (i.e. the invariant effective eddy viscosity)
of the RG transformation under the following conditions. (i) The mean magnetic
induction is relatively weak compared to the mean flow velocity. (ii) The
Alfv’en effect holds, that is, the fluctuating velocity and magnetic induction are
nearly parallel and approximately equal in magnitude. It is found under these
conditions that re-normalization does not incur an increment of the magnetic
resistivity, while the coupling effect tends to reduce the invariant effective eddy
viscosity. Both the velocity and magnetic energy spectra are shown to follow the
Kolmogorov k" in the inertial subrange; this is consistent with some laboratory
measurements and observations in astronomical physics. By assuming further
that the velocity and magnetic induction share the same specified form of energy
spectrum, we are able to determine the dependence of the (magnetic)
Kolmogorov constant CK (CM) and the model constant CS of the Smagorinsky
model for large-eddy simulation on some characteristic wavenumbers.

Keywords: Renormalization group analysis, magnetohydrodynamic turbulence,
effective eddy viscosity, magnetic resistivity



I. INTRODUCTION

Recently, the authors [1],[2] carried out a recursive renormalization group (RG) analysis of incompressible
turbulence for flow turbulence and thermal turbulent transport. In this study, we continue with this pre-
vious RG analysis for magneto-hydrodynamic (MHD) turbulence, aiming at investigating various transport
properties, in particular, the coupling effects between the flow and magnetic induction fields on the kinetic
energy spectrum and the effective eddy viscosity.

The plasma science is widely applied to many areas from laser skill, thin film produce, nuclear rocket,
even to astronomical physics (for example, solar wind, solar flares and coronal structures). Like in ordinary
Newtonian fluids, MHD turbulence is expected to arise in plasma or magnetized fluids as the Reynolds
number is increased beyond some critical value. In spite of the already scarce literature, the interest of MHD
turbulence may further be divided into two-dimensional and three-dimensional turbulence. Kim and Yang
[3] studied the scaling behavior of the randomly stirred MHD plasma in two dimensions and were able to
show existence of the scaling solution at the fixed point of the RG transformation and derive the dependence
of the power exponent of the energy spectrum on the driving Gaussian noise. Liang and Diamond [4] also
presented their study for two-dimensional MHD turbulence by introducing the velocity stream function and
the magnetic flux function in MHD equations. However, the latter authors showed no existence of a fixed
point of the RG transformation and especially suggested that the applicability of RG method to turbulent
system is intrinsically limited, especially in the case of systems with dual-direction energy transfer.

II. EQUATION OF THE INVARIANT EFFECTIVE EDDY VISCOSITY

The purpose of this section is to look for the invariant effective eddy viscosity by pursuing a differential
version of the recursive relationship. Recall that the basic idea underlining the recursive RG analysis is to
divide the wavenumber space (0, ko) to a supergrid region (0, k.) and a subgrid region (k., ko); the subgrid
modes are then removed piece by piece by taking subgrid averaging over a spherical shell (ky+1,k,). The
result will certainly depend on the cutoff ratio A = kj,41/ky; and thus the invariant (limiting) effective eddy
viscosity should be sought by taking the limiting operation A — 1.

First of all, we rescale the wavenumber by setting k¥ = k/k,1 and have the increment of jv and 67 in the
form:
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According to Eq. (2.1) and Eq. (2.2), we may assume that v, (k) = k%0, (l;), and 7, (k) = kL7, (I;) where

t is an undetermined parameter. With this scaling law, combining the recursive relationship of viscosity and



Eq. (2.1) gives
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For consistency of the dimenbion on both sides of Eq. (2.3), we must have t = —8/3 — ¢, and thus ¢t = —4/3.
It follows by dividing by kn +1 on both sides of Eq. (2.3),

ni1 (k) — AT D, (l%A) — AT 60, (]}A) :
P () = A% 7 (BA) = 4507, (RA). (2:3)

Now we write A = 1 — A, and let n — oo, equivalently, we have A — 0, 7, — v and 7,, — 7. Therefore in
the limit of A — 0, we have
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Notice that the right hand side of the second equation of (2.4) vanishes, since the two integrands in Eq. (2.2)
will cancel out each other exactly in the limit of n — oo. The two equations in (2.4) can be readily solved
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and

where k. denotes the cutoff wavenumber. It is appropriate to term v(k) and 7(k) the invariant effective eddy
viscosity and the invariant effective magnetic resistivity, respectively. It is notable that the RG procedure
does not incur an increment of the magnetic resistivity 7(k), which obeys the second equation of (48) and

must scale as in Eq. (2.5) being proportional to E}V/IBk_“/ 3. On the other hand, because of the minus sign
in front of the terms containing Cp; (or €j7) in the expression (49), the effect of the magnetic effect on the
effective eddy viscosity is to reduce the latter in magnitude, but not to change its basic behavior.

IIT. EVALUATION OF THE KOLMOGOROV CONSTANT AND SMAGORINSKY MODEL

The results of Section 5 will be applied here to evaluate the Kolmogorov and Smagorinsky constants. First
11
of all, we set v(k) = CZed F(k), then (2.4) can be written
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where we used the result of (2.5), and set x = \/CM/CK {’/aM/gv. Let us now consider a cutoff k. and than
can yield

/ ok () E(k)
k

s

ke

- 2C§sv/ F(k)k ¢(k/ky)dk
ks

= Eu,

where ks denotes the wavenumber of the largest eddy existing in the flow. Canceling out € on both sides, we
obtain the Kolmogorov constant Cx in terms of the three characteristic wavenumbers k., k, and k,:

ke 5
Ck = [2/k F(k)kéqs(k/kp)dk] . (3.2)

Similarly, we have

Ot = [ch%%(kc/kp) /:C k_lcp(k/kp)dk] " (3.3)

So far, we have not given a precise form for ¢ and ¢. Let us assume further that both the velocity and
magnetic induction fields share the same form of the energy spectrum which is a combination form of the
scaling laws proposed respectively by Pao [6], and Leslie and Quarini [7], that is,
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It follows immediately from (40) that
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In these formulas, we have the factor
x5+5/ 3

Ap (z) = 1+ 251573’

to take care of energy-containing eddies, where s is a flow parameter. If we consider the leading term of
(3.1) and apply (3.4) to (3.2), we may rewrite (3.2) in a more precise form as follows:
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Following the same calculations as in the above, we may also obtain
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As a matter of fact, Biskamp [5] indicated that the Kolmogorov constant depends on the precise definition
of the averge magnetic induction, and hence on the geometry of the large scale eddies. Here, we have provided
two relationships which show how the large-scale eddies can influence not only the Kolmogorov constant Cx
but also the magnetic Kolmogorov constant Cjy, as shown in (3.6) and (3.7). The large-scale eddies with the
wavenumbers £, and k, indeed play an important role in deciding both of C'x and Cjs. Here we recall that,
k, denotes the 1/(geometric size) of the energy-containing eddies and ks denotes the 1/(geometric size) of
the largest eddies in fluid.

In order to carry out large eddy simulation (LES) for MHD turbulence, we need to evaluate the Smagorin-
sky constant for MHD turbulence by using (2.4). First of all, we suppose no matter whenever we perform
the RG analysis, the cutoff k. is always very close to the Kolmogorov scale kg, that is, we may replace k. by
ko in (2.4). In doing so, we evaluate the effective eddy viscosity at k = k. which is far from kg. Then (2.4)
becomes
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Since k./ko < 1, we can make the following approximation
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where
Hy = CxPe; Puoky”® and Ha = Cy ey Proky”.

Next, we express ¢, in the resolvable velocity,
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Substituting it in Eq. (3.9) yields
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Solving the above algebraic equation for v(k.) and replacing k. by 27/A where A denotes the cutoff size,

we obtain
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where
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This is the Smagorinsky constant, where we have left two undetermined parameters H; and Hs, which
require two additional conditions to be fully determined.

IV. CONCLUDING REMARKS

In this study, we have extended our previous RG analysis of incompressible flow turbulence to incompressible
MHD turbulence.

The Elsdsser variables are introduced to write the MHD equations for the velocity and magnetic induction
fields in a symmetric form. RG analysis is then performed in the wavenumber domain. To proceed further
with the RG transformation, we have to the following two assumptions. (i) The mean magnetic induction
is relatively weak compared to the mean flow velocity. (ii) The Alfvén effect holds, that is, the fluctuating
velocity and magnetic induction are nearly parallel and approximately equal in magnitude. Under these
conditions, renormalization does not incur an increment of the magnetic resistivity 7, while the coupling
effect tends to reduce the invariant effective eddy viscosity v(k). Both the velocity and magnetic energy
spectra are shown to follow the Kolmogorov k~°/3 in the inertial subrange; this is consistent with some
available laboratory measurements and observations in astronomical physics. Furthermore, by assuming that
the velocity and magnetic induction fields share the same combined form of the energy spectra proposed
respectively by Pao, and Leslie and Quarini, we are able to determine the dependence of the Kolmogorov
constant Cx and the magnetic Kolmogorov constant Cs on the characteristic wavenumbers k., k, and k.
The results are applied to obtain the dependence of the Smagorinsky constant Cs for large-eddy simulation,
which however contains two undetermined constants to be resolved.

In spite of the present success, it must be stressed upon that the imposed conditions (i) and (ii) imply a
negligible effect of the subgrid cross helicity between the velocity and magnetic fields. There are cases where
the effect is important and which may lead to quite different energy spectrum. In an early study, Kraichnan
[9] derived a k—3/2 energy spectrum of the inertial subrange when the magnetic energy in the sub-inertial
wavenumbers exceeds the total energy in the inertial subrange. Pouquet et al. [10] had an intensive study
on strong MHD helical turbulence and the nonlinear dynamo effect. Recently, Nakayama [11],[12] obtained
also the k~3/2 energy spectrum in the inertial subrange by constructing a spectral theory of strong shear
Alfvén turbulence anisotropized by the presence of a uniform mean magnetic field. Of particular interest,
we refer to Yoshizawa et al. [13] for reviewing the importance of the cross-helicity effect, and more generally
for an extensive review of turbulence theories and modeling of fluids and plasmas.
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