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Abstract 

Tool portfolio planning is a frequent task in semiconductor wafer fabrication plants, as process, 
machine and product technologies evolve rapidly and the plants go through capacity expansion. 
As wafer fabrication plants are complex integrated factories with conspicuous phenomena of 
queuing effects, portfolio planning must take into consideration machine utilization, factory 
throughput, and total flow time simultaneously. This paper describes a tool portfolio planning 
methodology for wafer fabrication foundry plants. An improved static capacity model is first 
presented. A portfolio planning procedure based on static capacity estimation and queuing 
analysis is next described. A software implementation of the procedure is also used to clarify 
dilemmas of planning. It is shown that empirical formulas can be used to estimate the efficiency 
of batch machines. It is also used to show three types of portfolio adjustment action: flow time 
reduction, cost reduction and effectiveness improvement. 

1. INTRODUCTION 

Tool portfolio refers to the makeup, in quantity and type, of the set of processing tools in a fab. It 
is closely related to capacity planning. In most foundry fabs, tool portfolio planning is an 
ongoing task, as product mix, process and tool technology and factory scale usually change 
continuously. Tool portfolio planning is an essential task that supports business strategy to 
exploit market opportunities and to reduce the risk of tool obsolescence. Furthermore, because 
fabs manifest the behavior of complex queuing networks, their operation performance is difficult 
to analyze and predict. Therefore, soundness of portfolio planning is a crucial capability of 
competitiveness. 

Capacity estimation is a major issue in wafer fab operation. Simulation, queuing models and 
static models are three common methods for capacity analysis, of which static models are usually 
used due to their relatively quick response time and ease of use. However, static models suffer 
from two major drawbacks, namely, inaccuracy of estimation and lack of queuing delay 
information. Many research studies have focused on improving the accuracy of static models. 
Table 1 summarizes the scope of static capacity models described in the literature, with the 
factors of inaccuracy listed down the table. 

The first four factors are relative straightforward to include in a capacity model, but the next 
three factors require mathematical treatment. In calculating tool usage time, the total time is 
divided between operational time and non-operational time and operational time is further 
distinguished between up time and down time. Tool availability is defined as the ratio of tool 
uptime to tool operation time. Tool efficiency is the statistical mean of the ratio of actual 
throughput to maximum throughput. Yield is the ratio of good product output to input amount of 
material. Yield adversely affects workload in the form of reworks and scraps. Semiconductor 
manufacturing is characterized by long process flow time. Jobs released to the fab in one time 
period may introduce workload to other time periods. The expected arrival time of the workload 
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due to a job at a tool should be calculated using lead-time and process flow information. 
Normally, tool availability and efficiency, process yield, and flow time data are collected on 
shop floor [SI or they can be assumed as premises in capacity planning. 

Table 1. Scope of static models. 

Rudi-mental .I Rudi- 
mental Tool backup 

c 

Notation ?: uncertain but presumed 

The first four factors in Table 1 make up a basic static model [4]. To further enhance the 
precision of capacity models, the effect of nominal operation policy on tool efficiency can be 
incorporated. Tools can be classified as serial or batch tools. Serial tools have the first wafer 
effect errors while batch tools introduce batching efficiency errors. In [3], batching efficiency is 
estimated through regression analysis of the visits/starts ratio and efficiency, while the first wafer 
effect is estimated by analyzing the occurrence times of tool idleness based on historical data. 
Tool dedication and back-up are the second source of inaccuracy. Process constraints on 
dedication and backup can be maintained in database [SI. To forecast equipment loading, 
workloads are then assigned or manually shifted while observing the process capability, priority 
and availability of tool [2]. Tool backup has also been dealt with in a simple static manner [3]. 
Tool dedication and back-up practice complicates capacity estimation. It is involved with 
combinatorial optimization 12, 31 and is beyond the scope of static capacity modeling. There has 
been no satisfactory treatments in the literature. 

The focus of this paper is on presenting a tool portfolio planning method. It makes use of an 
enhanced static capacity model and a queuing capacity model. The remainder of this paper is 
organized as follows. In Section 2, workload computation logic for the static capacity model is 
described. Batching efficiency is analyzed in Sections 3. A tool portfolio planning procedure 
based on trade-off between cycle time, cost and throughput is presented in Section 4. Tool 
backup and dedication is analyzed in Section 5.  Finally, conclusions can be found in Section 6. 

2. WORKLOAD COMPUTATION LOGIC 

An input to portfolio planning is product demand, which are expressed as demand batches, each 
characterized by product type, quantity and due time. For each demand batch of product i in time 
t ,  Dit, unit workload can be generated for each tool. This step can be symbolically represented as: 

where the w represents workload, the double arrow means one or more items of unit workloads 
are generated, U }  represents the set of all process steps of product i, k(ij) indicates that the 
required tool k is specified for (id> in the process flow, and the term t-Z(ij) indicates that the 
occurrence time for the unit workload is product demand time t offset forward by the lead-time 
Z(ij). Specifically, for each demand batch D,, there will be J(i) unit workloads in total. Each unit 

D i t  -+P Wi,f i }ok( i j )~ t - l ( i j )  
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workload is identifiable by product-step pair (ij) and its occurrence time is t-Z(ij). Adjusting for 
yield allowance, the workload for each product-step pair of (i,j) at time t is calculated as 

Vi Di,t ' Pi, j,k 

Yai, j,t 
wi, j(i),k(i, j),t(i, j )  = 

where 
pi,,,k =processing time 

yai,j = syi,, * yai,j+l 

J'ai,J(i) = V i , j  

V i ,  j = yield of process step (i, j) 

j = 1 ,..., J ( i )  

Here, yield allowance @a) for each step is computed backward from the last step to the first step 
of the process flow. The yield allowance for the last step is set equal to its step yield. The yield 
allowances for all other steps are iteratively accumulated backward from the last step. The total 
workload for toolsets, Wkr, and tool requirement, q k r ,  can be computed as 

wk,t = E  E wi,j,k,f V k j t  
i j ( i )  

Wkpt - (operation - time)t V k, t qk,r = (avai[abi/ity)k 

3.  BATCHING EFFICIENCY 

To reduce cycle time, batch tools may not be loaded to capacity. Loading decisions for batch 
tools have been thoroughly studied [ 11. With local information (without arrival forecasts), the 
general conclusion is that the greedy loading rule is close to optimal. Lower bound formulas for 
average batch size were also derived for the special case of independent job streams and 
constant arrival rates. In practice, loading decisions are usually based on a minimum number of 
lots and a maximum wait time. 

Batching efficiency is expressed as the statistical mean of the ratio of actual loading size to tool 
capacity. The effect of tool capacity (B,"), tool quantity (C,) and tool downtime (p? %) on 
batching efficiency is analyzed in this study. Table 2 shows the factors of a two-level 
experiment matrix of simulation. 

Table 2. Experiment Design Matrix. 

Factor 

Tool quantity 
Downtime 

fraction 0.1 0.3 

Define traffic intensity (pg) of a tool as the total workload over its uptime. Figure 1 shows 
typical characteristic curve between average batch size and traffic intensity. For the eight cases 
studied, the downtime ratio does not have strong effect on the curve, but tool capacity and 
quantity do have an effect on the location of the excursion point D. 

-86- 



Average Batch Size 
(1.B"'") ( 2 ~ ' " ~ -  I ,Bml;) 

7 

*. 

I 
I * 

coio, ' Traffic Intensity 

Figure 1. Characteristic curves for the average batch size. 

Quadratic curve is fitted to the simulated data to obtain the following approximation formula: 

( B B "  - l ' . p ;  + O . p ,  + I  
- 
B ,  = 

( 1  - p F  ) 2  

A separate fab simulator that captures the interaction between job streams is used to validate the 
accuracy of the fitted lines. The results for 41 batch toolsets are shown in Figure 2. The mean 
and standard deviation of errors are approximately 4.93 percent and 9.76. The tool requirement 
for batch tools is: 

4. PLANNING PROCEDURE 

A tool portfolio can be represented as an ordered list of tool quantities, such as s = (nl, n2, ..., 
nN), where ni is the number of tools for toolset i. The performance measures of interest to 
capacity planning are throughput, utilization and cycle time. Since static capacity models provide 
limited information about throughput and utilization and do not provide cycle time information, 
an open queuing network capacity model was used to evaluate tool portfolios in this study. This 
queuing model has the following premises: (1) no scrap and rework, (2) two classes of customers: 
work-in-process and machine breakdown, and (3) two types of tools: batch and non-batch tools. 

I I t  

0 " " " " " " " " "  " 

I z 3 5 I I  I 4  17 I S  19 21 20 i z  1 3  15 I E  2.; 24 2.c is  m 4 1  
E w l D  

Figure 2. Performance of batch size formula. 
Figure 3 illustrates the structure of portfolio solution space for portfolio adjustment. Each 
portfolio can be characterized by three attributes: throughput, cycle time and investment cost. 
For a given tool portfolio, the tool count of certain toolsets can be increased (or decreased) to 
reduce (or increase) cycle time while maintaining the same level of throughput. This 
phenomenon is shown by equi-throughput curves in the figure. Two curves, such as TPI and TP:. 
represent relative effectiveness of portfolio. In the figure. curve TP. has a higher throughput than 
that of curve TP1. For the same investment cost (the vertical dotted line), TP2 has a more 
balanced portfolio, resulting in higher throughput and lower cycle time. In contrast, to achieve 
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the same cycle time (the horizontal dotted line), TPI will require a higher investment. Figure 3 
reveals three types of portfolio adjustment actions for improving cycle time, investment cost and 
effectiveness as indicated by the arrows T, C and E, respectively. 

I Capacity (cost) 

Figure 3. Portfolio adjustment strategies. 

Portfolio adjustment is an iterative process based on marginal analysis. For each toolset of a 
current portfolio, a tool is added and subtracted to generate neighboring portfolios. The 
performance of all neighboring portfolios are evaluated using a queuing model and the ratio of 
cycle time decrement (or increment) over cost increment (or decrement) is computed. Two 
separate lists are maintained, one for cycle time reduction and the other for cost reduction. The 
two lists can be sorted to rank order action types T and C respectively. Type E actions are 
composed of a type T and a type C actions as shown in Figure 4. Portfolios b and c are obtained 
from a current portfolio (point a) by adding and subtracting a tool respectively. If the combined 
effect of the two actions result in a reduction of both cost and cycle time, they then constitute a 
type E action (point d). 

Delete tool B 

Initial portfolio 

L d ___, c o s t  

Figure 4. Type E adjustment action. 

Figure 5 illustrates the T action in greater detail for a second data set of product demands. The 
resultadt configuration and performance data can be found in Appendix B. (The investment and 
flow time data are business sensitive information, therefore, they have been normalized. 
Similarly, machine groups are identified by numbers.) Let the marginal cost of flow time be 
defined as the ratio of the flow time reduction to the investment cost increment that is associated 
with adding a machine to the portfolio. The marginal cost is computed for each machine group 
and the top five machine groups are listed in the second column of Appendix B. In each iteration, 
the top one is selected. Starting with a given initial portfolio (at the upper-left of the trade-off 
curve), a sequence of portfolios is then generated. This figure shows that 4% more investment 
(on critical machine groups) could reduce the flow time by 27%. 

--a- 



I .05 
2 1.00 .- 

0.95 
K 0.90 

0.85 

$ 0.75 
0.70 

- 
U 

5 .C 0.80 

0.99 1.00 1.01 1.02 1.03 1.04 1.05 
Investment 

Figure 5 .  Tool portfolio adjustment trajectory. 

This procedure utilizes both a static capacity model and a queuing capacity model. The static 
model is used to generate an initial tool portfolio and portfolio adjustment is based on 
performance data provided by the queuing model. There are a number of fine discrepancies 
between the premises of static and queuing capacity models. Therefore, the resultant portfolio 
should be subjected to human interpretation, taking into consideration the following analysis. 
Figure 6 shows the workload distribution for demand batches 1 and 2. The workload for time t 
will be B plus C in the static model. When product demands are stationary, this workload will 
equal A plus B. However, if the demands increase from time t to time t+l,  as in the case of fab 
capacity expansion, C will be greater than A. (Figure 5 is based on capacity expansion.) 
Similarly, the queuing capacity model is applicable to steady state. Therefore, the workload 
computed will be for B plus A. As such there is a time lag between portfolios generated by the 
static model and queuing model. 

A B 
1 

C D 2 

Time t t t l  

Figure 6 .  Workload distribution with lead time offset. 

5 .  TOOL BACKUP AND DEDICATION 

Tool backup and dedication has been implemented in a mixed integer linear program. The major 
purpose of tool backup is’to reduce tool investment by fine tuning the workload assignment. 
Workload for each toolset is first calculated. These workloads are then re-assigned according to 
constraints imposed by dedication decisions and backup relationships. The major constraints are 
listed below: 
Notation: 
f?Gk - Tool groups that can backup up tool type k 
B E m , k -  Backup efficiency of tool RI w.r.t. tool k 
Xk, - Original workload assignment for tool k at time f 
Ymkt - Workload shifted to tool m from tool k at time t 
Q k ,  - Quantity of tool type k at time f 
am,r - Tool availability 
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Tool backup planning is a task separate from the above portfolio planning procedure. This model 
is suitable for single or multi-period planning. For single period planning, the objective function 
is to minimize the total investment cost. For multiple period planning, the cost must be adjusted 
for its time value such that tools are commisioned earlier than is necessary. Figure 7 illustrates 
the differences between an initial and backed up portfolios. 
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Figure 7. Effect of tool back up adjustment. 

6. CONCLUSIONS 

A tool portfolio planning methodology is presented in this paper. The methodology has three 
major components: an improved static capacity model, a queuing capacity model and a portfolio 
adjustment procedure. It takes into account batching efficiency, and tool dedication and backup. 
The methodology enables capacity planners to explore the solution space and to better evaluate 
the trade-off between cycle time, investment cost and throughput. 
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