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1. 中文摘要
正子斷層掃描（PET）是一種提供被能
釋放出正子之放射性同位素所標記的化學
物於人體中之分佈的影像方法。和提供解剖
學資料的 CT與MRI所不同的是， PET透
露了人體中活體之生理與代謝之功能性的
訊息。臨床上，在形狀上起變化以前的早期
診斷可以藉由研究 PET 影像中的生理或代
謝的病變而達成。因此，PET已成為現代診
斷中最重要的影像工具之一。於 PET 中，
新陳代謝的強度是由置於人體外部的偵測
器所間接觀測到的。而用間接的觀測值來重
建實際的影像，這是一種典型的統計逆向問
題。 由於這種問題解的不良性，所以，沒
有正則化的 PET 影像將會有雜訊及邊界的
假象。這是 PET 的能力限制，並不能藉由
改良儀器設計來解決。所以為了要有較好的
重建影像，我們需要去考慮專家的見解或其
它的斷層掃描系統，例如：X-ray CT, MRI
等掃描器，所提供的相關資訊。
相關的邊界資訊可以提供有用的訊
息。但是因為解剖學上的人體器官構造與實
際的新陳代謝情形並不盡相同，所以，邊界
資訊可能是不完全的或是不正確的。因此交
互參照是重要而明智的。我們考慮有偶發事
件及衰減情形的 PET，研究交互參照式的最
大概似估計重建法，並以修改後的 EM演算
法來處理。特別是，我們將研究快速的影像
重建演算法，包含著連接式及平行式處理的
步驟。在本計畫中，我們將使用 IBM SP2
及工作站網路作為平行演算法的發展平
台。而本計畫的目標是應用相關但不完全的
邊界資訊，使用一部或多部的電腦來找到快
速、有效、且可行的方法，以重建 PET 的
影像。這可用來改進 PET 的重建影像，並
且可以用來整合其它不同的斷層掃描系統
以形成完整的專家系統。
關鍵詞﹕正子斷層掃描（PET）， 統計逆向
問題， 最大概似估計量，EM 演算法, 正則

化， 平行演算法。

Abstract
Positron Emission Tomography (PET) is

an imaging modality giving distribution of
positron-emitting isotope-labeled chemicals in
the human body.   Unlike X-ray CT and
MRI, which provide anatomical data, PET
reveals functional information on in vivo
physiology and metabolism of the human
body.  Clinically, early detection of a disease
before morphologically distinguishable may
be achieved through PET by studying
physiological or metabolic disorders.  Hence,
PET has become one of the most important
imaging tools in modern diagnosis.  The
intensity of metabolic activity is indirectly
observed through the scintillation detectors
outside a human body.  The reconstruction
from indirect observations to a target image is
a typical problem in statistical inverse
problem.  Due to the inherent ill-posedness
of statistical inverse problems, the
reconstructed images of positron emission
tomography (PET) without regularization will
have noise and edge artifacts.  This is the
limit of PET, which can not be resolved from
the improvement of instrumental designs.  In
order to have better reconstructed images, it is
necessary to borrow the strength from the
related information from expertise or other
tomography systems, such as X-ray CT scan,
MRI, and so forth.

The correlated boundary information
may offer the useful information in reducing
the noise and edge artifacts.  However, the
boundary information may be incomplete or
incorrect since the anatomy boundaries are
different from the functional ones.  Thus,
cross-reference is important to make use the
boundary information wisely.  In this project,
we will study the cross-reference
reconstruction methods for the maximum
likelihood estimate with the adapted EM



algorithm for PET in the presence of
accidental coincidence (AC) events and
attenuation.  In particular, fast reconstruction
algorithms for both sequential and parallel
approaches will be investigated, which is very
important for the practical use of the proposed
PET reconstruction algorithms.  In this
project, we will use a cluster of computers as
the platform of the parallel reconstruction
algorithms.  The aim is to find the fast,
efficient and reliable approaches that can
reconstruct the PET images with the related
but incomplete boundary information with
single or multiple computers.  The proposed
approaches will not only improve the quality
of the reconstructed PET images but also
establish a bridge to an expert system for
various tomography systems.

Keywords: positron emission tomography
(PET), statistical inverse problems, maximum
likelihood estimator, EM algorithm,
regularization, parallel algorithms.

2. Background and Aims
The reconstruction from indirect

observations to a target image is a typical
problem in statistical inverse problem.  Due to
the inherent ill-posedness of statistical inverse
problems, the reconstructed images of positron
emission tomography (PET) without
regularization will have noise and edge artifacts.
On the other hand, the correlated boundary
information may offer the useful information in
reducing the noise and edge artifacts.
However, the boundary information may be
incomplete or incorrect since the anatomy
boundaries are different from the functional
ones.  Thus, cross-reference is important to
make use of the boundary information wisely.
In this project, we will study the cross-
reference reconstruction methods for the
maximum likelihood estimate with the adapted
EM algorithm for PET in the presence of
accidental coincidence (AC) events and
attenuation.  In particular, fast reconstruction
algorithms for both sequential and parallel
approaches will be investigated, which is very
important for the practical use of the proposed
PET reconstruction algorithms.  The aim is to

find the fast, efficient and reliable approaches
that can reconstruct the PET images with the
related but incomplete boundary information
with single or multiple computers.  The
proposed approaches will not only improve the
quality of the reconstructed PET images but
also establish a bridge to an expert system for
various tomography systems.

3. Mater ials and Methods
The maximum likelihood estimate

(MLE) with expectation maximization (EM)
algorithm has been investigated for
reconstruction of positron emission
tomography (PET) in literature [1-2].  Two
cross-reference-based approaches have been
proposed in our recent studies.  One is the
cross-reference weighted least square estimate
(CRWLSE) with the algebraic reconstruction
technique [3].  The AC events and
attenuation were included in this model.  The
distribution of differences between prompt
and delay windows is approximated by a
normal distribution.  The other is the cross-
reference MLE (CRMLE) with the modified
EM algorithm for PET without AC events and
attenuation [4].

Based on these studies, this project
investigates the solutions of the following
problems.
1. What is the MLE for the exact model of

PET with AC events and attenuation?
2. How can we combine the correlated but

incomplete boundary information in?
3. What is the proper numerical algorithm

for finding the solution?
4. How can we speed up the convergence

rate of the cross-reference method?
5. How to choose the penalty parameter

more quickly?

4. Results and Discussions
The expectation maximization (EM)

algorithm is a row operation iterative approach
to find the maximum likelihood estimate with
monotonic convergence, linear complexity and
nonnegativeness preserving.  It is also
parallelizable [5-9]. However, the convergence
rate is slow.  A variety of accelerated methods



had been proposed in literature.  Among them,
the space-alternating generalized expectation
maximization (SAGE) [10] or the alternative
expectation/conditional maximization (AECM)
algorithms [11] accelerates the convergence
rates effectively by alternating the complete
data space.  They are monotonically
convergent, nonnegativeness preserving and of
linear complexity.  However, they are not
parallelizable.  We propose a hybrid SAGE
(HSAGE) and a hybrid ECM (HECM)
algorithms to further speed up the convergence
rates.  The new algorithms retain monotonic
convergence, linear complexity and
nonnegativeness preserving.  Furthermore, the
new algorithms are easily parallelizable, which
make them even more practically appealing.
They are termed as parallel HSAGE (PHSAGE)
and parallel ECM (PHECM) algorithms
respectively. The incomplete boundary
information can be incorporated by a
constructed penalty function.  These new fast
algorithms can be applied to find the CRMLE
fast and preserve the merits of EM algorithms.
The penalty parameter can be selected from
data in speed when we apply the generalized
approximate cross-validation (GACV) method
[12].

Table 1 reports the required time and
iteration numbers for convergence by the
SAGE, HSAGE, ECM and HECM algorithms
on a personal computer with Pentimum II 300
MHz CPU and linux environment.  The
convergence rates of these algorithms and the
parallel versions are reported in Figure 1 and 2
by a cluster of SUN SPARC workstations with
Message Passing Interface (MPI) [13] to
simulate the message-passing interconnection
network.  These results confirm the
advantages of HSAGE and HECM algorithms
and their parallel versions.

5. Conclusions
The main consideration of a reconstruction

algorithm that can be realized in a clinical
environment strongly depends on the
computational time and the quality of the
reconstruction. The computational time can be
reduced in two directions. One is aimed to
accelerate the convergence rate and reduce the

overall computational time of the
reconstruction algorithm sequentially.  The
other approach is that a highly efficient parallel
algorithm may be helpful in attaching the goal.

Our new approaches, the HSAGE and
HECM algorithms, preserve the feature of
monotonic convergence.  The convergence
rates are also accelerated.  Furthermore, the
nonnegativeness is preserved.  No more
numerically complex implementations are
needed.  It only requires a simple modification
of the code after adding a simple search
program, which only consumes small overhead.
The computational complexity remains the
same linearity as O(BD).

In addition, the HSAGE and HECM
algorithms are easily parallelizable. The
convergence rates of parallel versions are
comparable to those of sequential ones.  The
gains in the total computational time depend on
the architectures and loading of the parallel
systems.

Hence, the success of the hybrid
accelerators not only represents an progress of
the SAGE and ECM algorithms, but also make
it a potential tool to improve other iterative
methods.
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6. Figures and Tables
7.

Table 1: Required time and iteration numbers
for convergence by the SAGE, HSAGE, ECM
and HECM algorithms on a personal computer
with Pentimum II 300 MHz CPU and linux
environment.

Iteration
No.

Total Time
(sec.)

Time per
Iteration

SAGE 17 17.5 1.029
HSAGE 13 13.7 1.054
ECM 31 20.2 0.65
HECM 13 10.6 0.82

Figure 1: The convergence rates of the SAGE,
HSAGE, and PHSAGE algorithms with respect
to iteration numbers.

Figure 2: The convergence rates of the ECM,
HECM, and PHECM algorithms with respect
to iteration numbers.
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