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1. Abstract 

In the third year, we have developed a 
new segmentation scheme, which is capable 
of extracting multiple hepatic tumors 
simultaneously from an ultrasound image.  
Moreover, we have combined the 
segmentation results and the classification 
scheme to achieve a classification accuracy 
of 85.78% with leave-one-out cross- 
validation by using only texture information. 
As a future study, it is believed that the 
performance can be further improved by 
incorporating the characteristics of the 
boundary vicinity information. 
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中文摘要 
在第三年計畫中，我們發展出可以從

超音波影像中同時分割出多個腫瘤的技
術，並且結合了分割的結果與分類的技術
而達到 85.78%的良惡性腫瘤辨識率。此一
結果僅使用了紋路訊息。作為研究的下一
個工作，我們相信加入邊緣附近的訊息將
可進一步的改良辨識率。 

關鍵詞：電腦輔助診斷、肝臟腫瘤、超音
波影像、影像分割、資料發掘 
 

2. Introduction 
 Two essential tasks have been carried 
out in the third year of this project.  The 
first task was to develop a new segmentation 
algorithm, which is capable of extracting 
multiple tumors from an ultrasound image at 
the same time.  It is a very useful technique 
because it may contain more than one tumor 
in a clinical ultrasound image.  On the other 

hand, after a tumor was segmented from the 
liver, a set of features were extracted from 
the ROI and a multi-layer feed-forward 
neural network (MFNN) was employed as 
the classifier to differentiate HCCs from 
hemangiomas. 

For segmenting multiple tumors 
simultaneously, a new approach, called 
cell-based region competition, for ultrasound 
image segmentation was developed.  The 
basic idea of the proposed approach was to 
decompose the underlying image into cells 
with similar image property and combine the 
cells into regions, each of which may 
comprise more than one cell.  
Algorithmically, the first step was to apply 
multi-scale Gaussian filters to remove the 
speckle noises and preserve edge information.  
Then, filters, like the Sobel filter, were used 
to estimate the gradient vectors.  With the 
gradient vectors, an initial segmentation was 
generated by the watershed transform [1,2].  
These initial regions were further combined 
by the technique of region competition [3,4] 
based on likelihood ratio tests among cells. 

Two categories of features have been 
utilized to characterize the regional 
information for the benign and the malignant 
tumors, namely, the co-occurrence matrix 
based features and the local variance-to-mean 
based features.  
 
2. The Cell-based Region Competition 

In the proposed cell-based region 
competition approach, multi-scale Guassian 
filters are first used to smooth the initial 
image and preserve the edge information.  
Sobel filters are then used to generate the 
gradient map that consists of the absolute 
values of gradient vectors.  Immersion 



 2

simulation [1] is used to produce the 
watershed transform that generates initial 
cells.  Neighboring relationships of initial 
cells are stored in a neighborhood matrix.  
Cells are combined into regions and regions 
may be further split.  The merging and 
splitting are based on the likelihood ratio 
tests of the original ultrasound images.  The 
neighborhood matrix is updated and 
merging/splitting iterates until stopping 
criteria are met.   

 
2.1. Neighborhood Matrix 

The initial cells are generated after the 
watershed transform.  When two or more 
cells are merged, it is called a region.  If a 
region consisting of two cells is split, this 
region dismissed.  To keep tracking the 
neighboring relationship of these cells and 
regions as the cell-based split and merge 
proceeds, a neighborhood matrix is 
constructed to record the relations among 
adjacent cells and regions.  Let A denote the 
neighborhood matrix.  If cells (or regions) i 
and j are next to each other, 1 jiij aa .  

Otherwise, 0 jiij aa .  The diagonal 

entries are set to be zeros, i.e., 0iia .  
Thus, the neighborhood matrix is a 
symmetric matrix with entries of 0 or 1. 
 
2.2. Cell-based Split-and-Merge 

Three types of splitting and merging 
have been considered in this study.  These 
three types are Types Ⅰ,Ⅱ, and Ⅲ, which 
represent competition between two cells, one 
cell and one region, as well as one region and 
one cell in another region, respectively. 

 
2.2.1. Type Ⅰ 
 Type I split-and-merge is defined as 
merging two adjacent cells into a new region.  
Suppose that cells i and j may be 
characterized by two probability distributions, 
e.g., the Rayleigh distributions, with 
parameters i  and j .  Then the null and 
alternative hypotheses are 

.:    .   : 10 jiji HvsH    
If the null hypothesis is not rejected, cells i 
and j are merged into a new region. 

2.2.2. Type Ⅱ 
 Type Ⅱ is defined as merging a cell 
into a region.  Suppose that region k and cell 
j have probability distributions with 
parameters k  and j .  The hypothesis 
testings for two cells and one cell and one 
region are similar.  However, there is no 
new region generated for one cell and one 
region. 

.: . : 10 jkjk HvsH    

 
2.2.3. Type Ⅲ 

Suppose cells 1 and 6 in Fig. 1 formed a 
region, called region 1.  Cells 2, 3 and 4 
formed a region, labeled as region 2.  At 
some point, cell 4, which is delineated by a 
dashed boundary, is re-evaluated to check if 
it is better to split cell 4 from region 2 and 
merge it into region 1.  If cell 4 is split from 
region 2, the new region 2 would only consist 
of cells 2 and 3.  The parameters of 
probability distributions in cell 4, new region 
2 (of cell 2 and 3), and region 1 (of cell 1 and 
6) are estimated and denoted as 4 , 2  
and 1  respectively.  The following two 
hypotheses are considered.  The first one 
considers merging cell 4 to region 1 as 
follows: 

.: . : 141140   HvsH  
The other hypothesis considers the merging 
of cell 4 to the new region 2, i.e., keeping cell 
4 in the region consisting of cells 2 and 3: 

.: . : 241240   HvsH  
If the first one has the higher likelihood ratio 
test statistics, cell 4 is split from region 2 and 
merged into region 1.  Otherwise, cell 4 
remains in region 2.  The cycling 
phenomenon may occur.  For example, cell 
4 may be split from region 2 in one time and 
merged back into region 2 in another time.  
We will record the number of times that cell 
4 is merged into region 2.  If cell 4 is 
merged into region 2 for the second time, 
then cell 4 will be kept at region 2 thereafter 
in our current approach. 
 
2.3. Stepwise Merging/Splitting 

There are a variety of possible merging 
and splitting for all the initial cells generated 
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by the watershed transform.  In order to 
decide which merging and splitting shall be 
preformed first, we use stepwise 
merging/splitting.  That is, at each time, we 
only choose one merging/splitting among all 
possible cases belonging to Types Ⅰ,Ⅱ, and 
Ⅲ.  This is selected by the maximum value 
of the likelihood ratio test statistics by 
exhaustive search among all possible 
merging/splitting of one cell. 

For instance, we can use the Rayleigh 
distribution, as given in Eq. (1), for modeling 
of speckle noises in ultrasound images.  
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The maximum likelihood estimate (MLE) of 
i  of region i turns out to be 
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For the hypothesis testing of one cell, iR , to 
the other cell (or region), jR , the following 

likelihood ratio test is used.  The number of 
pixels in iR  and jR  are denoted as in  

and jn .  The estimated parameters are 

assumed to be i  and j .  The null and 

alternative hypotheses are   jiH :0  
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The MLE of   under 0H  turns out to be 
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Under 1H , the likelihood is 
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The MLE of i  becomes 
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Therefore, the likelihood ratio test statistic is 
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The larger the ratio is, the more likely these 
two cells (or regions) shall be merged. 
Therefore, we will compute the likelihood 
ratio test statistics for all possible cases and 
select that one has the largest value to merge 
and split. 

After this iterative procedure completes, 
all cells will be merged into different regions.  
Then, these regions will be regarded as new 
cells and further merging/splitting process 
can repeat.  This kind of repetition will stop 
when the largest value of likelihood ratio test 
statistics is smaller than a predefined 
threshold. 
 
3. Feature Extraction and Classification 
 At least two types of sonographic 
features have been used clinically in 
differentiating hemangiomas from HCC.  
One is the regional information inside and 
outside the tumors.  The other is the local 
property in the vicinity of the tumor 
boundary such as halo.  Since the local 
information around the boundary demands a 
more sophisticated characterization, in this 
pilot study, we have first examined the 
differentiation power of the regional 
information. 
 Co-occurrence matrix is one of the most 
widely used approaches for characterization 
of the sonographic textures.  In this study, 
we have considered four co-occurrence 
matrix based features, namely, contrast 
(CON), correlation (COR), entropy (ENT), 
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and angular second moment (ASM), which 
are defined below. 
Contrast 
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where ),( jiCO  denotes the co-occurrence 
matrix element ),( ji , which counts the 
number of pixel pairs simultaneously 
satisfying the following two conditions.  
One is that the distance and the azimuth 
angle between these two pixels are ),( d , 
respectively, as defined in advance.  The 
other is that the gray level of one pixel is i 
and that of the other is j.  Twenty-four 
combinations of ),( d  have been taken into 
account in this study to account for the 
complex sonographic texture pattern.  They 
are   135,90,45,0,61|),(   dd . 
 In addition to these four features, three 
features based on local means and local 
variances have been developed to 
characterize the texture and the relative 
brightness of the tumors. Two of these three 
features are the mean ( l ) and the standard 
deviation ( l ) of the means of the local 

1515  windows.  The third one is the 
mean ( vm ) of the ratio of the 
variance-to-means of the local 1515  

windows. 
 Since the gray levels and the textures 
may vary with the setting of the ultrasound 
imaging systems, the aforementioned features 
may be setting-dependent. To minimize the 
setting dependency, in this study, instead of 
using these features directly, we compute 
these features for both of the tumor area and 
the non-tumor area within the ROI of each 
image.  The final quantity of each feature 
used for classification is the ratio of the 
feature value from the tumor area to that 
from the non-tumor area.  
 The total number of ratio features under 
considerations is 99.  To avoid the curse of 
dimensionality [5], feature selection has been 
performed based on the forward sequential 
search approach [6] using the logistic 
discrimination function [7].  The selected 
features are then fed into the classifier, which 
is a multi-layer feed-forward neural network 
(MFNN).  Performance evaluation for both 
feature selection and classification are based 
on leave-one-out cross-validation. 
 
4. Experimental Results and Discussions 
 Figs. 2 and 3 show the performance of 
the cell-based region competition algorithm 
for the hypo-echoic and hyper-echoic hepatic 
tumors.  For both of Figs. 2 and 3, the left 
image shows the initial cells derived by using 
the watershed transform and the right one 
shows the segmentation results attained by 
the proposed cell-based region competition 
algorithm.  It is clear that the tumors in both 
images have been successfully delineated. At 
the same time, regions with significant 
boundaries with their adjacent areas have 
also been identified. 
 To evaluate the performance of the 
proposed features and classification scheme, 
80 HCCs and 85 hemangiomas have been 
collected from the NTU hospital.  Seven 
ratio features have been selected in most 
cases, including )0,2( ENT , )90,2( COR , 

)45,1( 0COR , )135,1( ASM , l , l , and 

vm . The accuracy, sensitivity and specificity 
derived based on leave-one-out 
cross-validation are 83.64%, 88.75% and 
78.82%, respectively.  The performance is 
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just fine given the condition that only the 
regional information has been used.  It is 
expected that the performance can be further 
improved by incorporating the local 
information in the vicinity of the boundary. 
 
5. Conclusions 
 At the end of this three-year project, 
several segmentation schemes have been 
proposed to detect the tumor boundaries in an 
ultrasound image with either a single tumor 
or multiple ones.  In this year, we have 
developed a new segmentation scheme for 
identifying multiple objects at the same time.  
Moreover, we have designed a classifier with 
seven regional ratio features, including four 
co-occurrence based and three 
variance-to-mean based ratio features.  The 
promising performance indicates that it is 
possible to attain a clinically useful CAD 
system by further incorporating the local 
property in the vicinity of the boundary. 
 

 
 
 
 
 
 

Figure 1. Cell 4 is split from region 2 (the 
light gray area) and merged into region 1 (the 
dark gray area). 
 

   
Figure 2. Performance for a hypo-echoic 
hepatic tumor. The left image shows the 
initial cells derived by watershed transform, 
and the right image is the segmentation result 
by the proposed cell-based region 
competition. 
 

  
Figure 3. Performance for a hyper-echoic 
hepatic tumor. The left image shows the 
initial cells derived by watershed transform, 
and the right image is the segmentation result 
by the proposed cell-based region 
competition. 
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