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In Yivo Measurement of Three-Dimensional Scapular Kinematics
Using Stereophotogrammetry with Artificial Neural Networks

Lu, T-W., Li, G.-J.,, Kuo, M.-Y.* Chang, L.-Y.* and Hsu, H.-C.*¥
Institute of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
*School of Physical Therapy, China Medical College, Taichung 400, Taiwan
+Department of Orthopedics, China Medical College Hospital, Taichung 400, Taiwan

Introduction

Knowledge of the scapular kinematics is essential for the assessment of shoulder function and
the study of the biomechanics of the shoulder complex, contributing to the understanding of the
aetiology and treatment of relevant joint diseases. Due to the large relative movement between the
scapula and the overlying skin, the in vive measurement of the scapular motion has been made only
at static positions (e.g. Pronk, 1992; Johnson et al., 1993) unless invasive methods (Karduna et al.,
1999) are used. Because of the difficulty, the kinematics of the shoulder complex has usually been
described by the motion of the humerus relative to the trunk (Davis et al., 1997; Newsam et al.,
1999). A method for the estimation of the scapular kinematics during dynamic movement is
necessary if individual joints of the complex, such as the glenohumeral joint, are to be studied. A
new method based on artificial neural networks (ANN) was developed for noninvasive in vivo
estimation of the scapular kinematics during dynamic activities. Markers attached to scapular
bone-pins were used to measure the true motion of the scapula for further comnparison.

Materials and Methods

Four male volunteers performed static and dynamic tests in a gait lab equipped with a
7-camera motion analysis system (Vicon 370, Oxford Metrics, U.K.). The static tests involved
arm elevation at discrete positions in the sagittal, frontal and scapular planes as well as scapular
elevation/depression and medial/lateral displacement around the chest wall. A locator with 3
markers indicated the scapular position while those of the trunk and humerus were each described
with four skin markers. Dynamic tests included functional activities involving continuous arm
elevation such as forward reaching, head touching and wheelchair propulsion, during which only
movements of the trunk and humerus were monitored. During all the tests, four markers attached
to scapular bone-pins were used to provide the true positions of the scapula. Movements of the
humerus and scapula were described relative to the trunk. The rotational movements of the
humerus were defined using an Euler angle sequence consisting of the plane of elevation, amount of
elevation and intemmal/external rotation (yz'-y’). Rotation sequence for the scapula was
internal/external rotation, upward/downward rotation and posterior/anterior tilting (w2’ -x" ).

For each subject, a three-layered, fully connected, feed-forward, back-propagation network
with 20 hidden neurons was constructed and trained with the humeral (input) and scapular (targets)



static data (both rotational and translational components), Figure 1. The ANN was then used to
estimate scapular positions from humeral data during dynamic tests. The estimated scapular

motion was compared to those obtained with skeletal markers.

Humeral angles and
displacements

Scapular angles and
displacements

Figure 1. The artificial neural network describing the relation between the humeral angles and
displacements with those of the scapula.

Results

An ANN was successfully trained to produce outputs closely matched the targets for each
subject. Good agreement between the true and estimated movement pattems was found during
wheelchair propulsion with RMS errors of 3.9, 1.9 and 2.1 degrees in protraction, lateral rotation
and tilt respectively, Figure 2. Comresponding figures for forward reaching and touching head were
(2.0, 2.4,2.9) and (2.0, 3.1, 2.6) respectively.
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Figure 2. Typical ANN-estimated (thin) and true (thick) scapular motion pattems during wheelchair
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Discussion

Although static tests may reveal some features of the scapulohumeral motion during simple arm
elevation, for a 3D activity it is difficult to define a series of static positions that follow the
trajectory of the movement {(van der Helm and Veeger, 1996). The ANN-based method was shown
to be a promising method for the determination of the scapular kinematics during dynamic activities.
It is suggested that the method will help extend the application of skin marker-based motion
analysis systems to the studies of the musculoskeletal mechanics of the shoulder complex and upper
extremities curing dynamic movements.
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Introduction

Individuals with anterior cruciate ligament (ACL) injuries have been suggested i avoid quadriceps
contraction with reduced extension moments during stance phase of gait to prevent excessive anterior
tibial displacement {Andriacchi et al., 1993). Functional knee braces have been designed to provide
necessary anterior/posterior stability (DeVita et al., 1997, DeVita et al., 1996) for these individuals.
Therefore, studies on the kinetics of the knee with bracing have been on the changes of gait components
in the sagittal plane, such as flexion and extension moments. Knowledge of their influence on the
kinetics of the knee has not been available though with clinical significance. In the present study, a
model of the lower limb combined with a specific marker system was developed and used to study the
mechanics of the knee joint in individuals with ACL injuries without and with braces during gait.

Method

Ten ACL-injured subjects {mean age: 24.1, height: 168.9cm, weight: 66.1kg) were each fitted with
suitable DonJoy Goldpoint braces (Smith & Nephew DonJoy Inc.) and walked at self-selected pace first
without and then with braces in a gait laboratory equipped with a 7-camera motion analysis system
{Vicon, Oxford Metrics, UK) and two force plates (AMTI, USA). A marker system was developed to
enable the measurement of the bony landmarks around the knee joint while with braces. At least 3
successful trials for each condition were collected. A model of the lower limb was developed and used
with inverse dynamics approach to calculate the forces and moments at the joints. Anthropometric data
for the subjects were estimated using Dempster” s coefficients (Winter, 1990). Note that the model knee
joint allowed translation on the tibial plateau, an important consideration for ACL-injured patients.
Angular impulses at the knee in three planes were calculated as the areas enclosed by the moment curves
and x axes. Peak values for each moment component were also obtained, Figure 1. Comparisons of
the angular impulses and peak moments between the bracing conditions and between injured and normal
knees were made using paired samples t-test with a significance level of 0.05

Results & Discussion

Without bracing, angular impulses and peak moments at the injured knees were smaller than at the
normal knees (p<0.05). With braces peak adduction and internal rotation moments and impulses at the
injured knees increased significantly (p<0.05) while those at the normal sides remained relatively
unchanged, Figure 2. No significant increase in flexion impulses and peak flexion moments was found
at the injured and normal knees with bracing. With bracing, impulses and peak moments for adduction
and internal rotation at the injured knees were not significantly different from the normal ones while
angular flexion impulses at the injured knees remained significantly lower than the normal sides.

Functional braces were shown to increase significantly the peak internal rotation and adduction
moments and angular impulses at the injured knees, improving the bilateral kinetc symmetry in the
frontal and transverse planes. Although knee braces were designed to improve sagittal plane stability for
ACL-injured patients, no significant improvement was found in this plane in terms of rotational stability
for the subjects studied. The present study suggests that knee braces may not be effective in increasing
sagittal plane stability, both rotational and translational, in ACL-injured patients.
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